Classification of Optimization Problems (1)

- Variables « Constraints
— Continuous, discrete or mixed — None
* Objective — Simple bounds
— Function of a single variable _ Linear
— Function of many variables _ Non-linear
— Linear : : :
_ Sum of squares — Equality / inequality
_ Nonlinear — Smooth / non-smooth
_ Smooth / non-smooth — 1st derivatives are available
_ Convex / non-convex — 2nd derivatives are available
— 1stderivatives are available e Optimum

— 2nd derivatives are available — Local

— Global
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Classification of Optimization Problems (2)

« The choice of solution method is very dependent on
— the class of the problem
— the size of the problem
— the structure of the problem
— the cost of function and gradient evaluation
— etc.
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Classification of Optimization Problems (3)

* Some more jargon * Optimization software
— Gradient — In
— Hessian « EXCEL GRG2
_ Sens|t|v|ty ana|ysis « MATLAB OPTIM toolbox
— Scaling * NAG
. « NETLIB
— Normalization Soecial )
— Mathematical Programming ~ Specialized packages
Lp « NPSOL
- - IDESIGN
- NLP « LANCELOT

— Plus hundreds of others
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Structural Optimization (1)

« Rational establishment of a structural design that is
the best of all possible designs within a prescribed
objective and a given set of geometrical and/or
behavioral limitations

« Mathematics and mechanics with engineering

« Broad multidisciplinary field

— Aeronautical, civil, mechanical, nuclear, off-shore engineering,
space technology

 Motivation

— Limited energy resources, shortage of economic and some
material resources, strong technological competition,
environmental problem
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Structural Optimization (2)

« Minimum cost or weight of the structure for given
performance / Maximum performance for a bound on cost
— Decreasing the weight of space, aero, or land-borne structures

— Cost reduction of load-carrying structures for given capacity,
strength, and/or stiffness requirements

— Increasing the efficiency of fibers in composite materials by
optimizing their distribution and orientation

— Minimizing dynamic response of rotating machinery or structures
subjected to external excitation
* Research in optimal structural design
— Fundamental aspects of structural optimization

— Development of effective numerical solution procedures for
optimization of complex practical structures
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Analysis Problem

« Completely specified in deterministic problems /
Given in terms of probabilities in probabilistic
problems

— Structural design, properties of materials, support/loading
conditions

« Determine the structural response

— Equilibrium (or state) / constitutive equations, compatibility /
boundary conditions

— Stress, strain, deflection, natural vibration frequencies, load
factors for elastic instability

Structural Optimization




Redesign (or Sensitivity Analysis)

* Design, material, or support parameters are changed
(or varied) and the corresponding changes (or
variations) of the structural response are determined
via repeated (or special) analysis

« Conventional design procedure

— A series of repeated changes of the structural parameters
followed by analysis

— A series of redesign analyses until a structure fulfills the
behavioral requirements and is reasonable in cost

— Changes decided by guesswork based on information
obtained from the previous analysis
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Optimization of Structures

« Set of structural parameters is subdivided into
preassigned parameters and design variables

* Problem consists in determining optimal values of the
design variables such that they maximize or minimize
a specific function termed the objective (or criterion,
or cost) function while satisfying a set of geometrical
and/or behavioral requirements, which are specified
prior to design, and are called constraints.
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Beam Design

« Structural analysis

d—Z(EI dzw) = q(x)

dx? dx?

* T_ q(x)
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« Structural designer

— Optimal distribution of the moment of inertia /(x) of the beam
along its length

— Objective function : mass m = cjé[p (x)dx

— Constraints : displacement w, . = max w(x) < w,

0<x<l/

— Optimality condition : in the form of a differential equation in /(x)
and w(x) — “calculus of variations”
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Function vs. Parameter Optimization

Before 60s After 60s
analysis | analytic solutions computer implementation
solution | (e.g., by using infinite series) | (€.9., finite element method)
unknown | function discrete value
equation | differential algebraic
discipline | calculus of variations mathematical programming

Structural Optimization
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Elements of Problem Formulation (1)

» Design variables: x=(x,x,,...,x,)

Structural Optimization

Parameters controlling the geometry of the structure
» Cross-sectional dimensions

* Member sizes . S 3
. . l.
Material properties ] h
: 1 i 2
Continuous *-T
* Range of variation s
. ¥ L - —‘.a:. ?. 1
Discrete -
L
* |solated values - ) >

» Manufacturing considerations
Critical to the success of the optimization process
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Elements of Problem Formulation (2)

- Objective function : f(x)=| f;(x). £, (x)..... £, (x)]
— Measure of effectiveness of the design

» Weight, displacements, stresses, vibration frequencies, buckling
loads, cost

— Multicriteria(multiobjective) optimization
» Generate a composite objective function

» Select the most important as the only objective function and impose
limits on the others

« Edgeworth-Pareto optimization
» Constraints
— limits on the design variables : side constraints
— Impose upper or lower limits on quantities : inequality constraints

— Equality constraints — inequality constraints (some solution
strategies)

Structural Optimization
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« Cross-sectional DVs: Properties of structural elements

Design Variables (1)

Cross-sectional areas (of a bar, rod or beam)
Second area moment (of a beam, column or arch)
Thickness (of a plate)

Continuous (function of the spatial coordinates) / Discrete
(distinct, standardized sizes)

« DVs describing the layout of a structure

Structural Optimization

Topological DVs: number, spatial sequence, and mutual
connectivity of members and joints (integer)

Configurational (or geometrical) DVs: coordinates of joints,
centerlines or midsurfaces of structural members (bar, beam,
arch, shell)
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Design Variables (2)

« Shape DVs

— Shape of external boundaries or interface of a structure
— Cross-sectional shape of a rod, column, or beam
— Boundary shape of a disk, plate, or shell

« Material DVs

— Material properties (discrete)
— Fiber composite materials: concentration and direction of the
fibers (continuous)
e Support or loading DVs

— Support (or boundary) conditions or the distribution of
loading on a structure

— Location, number, and type of support or the external forces

Structural Optimization
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Continuous vs. Discrete

« Continuous (or distributed parameter) optimization problem

— DVs are considered to vary continuously over the length or domain
of the element

— Rod, beam, arch, plate

« Discrete (or parameter) optimization problem
— Inherently discrete structure
— Truss, frame, complex practical structures

« The governing equations of both types of problem (as well
as mixed types) can be derived by variational analysis

Structural Optimization
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Design Variables

 Finite element model
— Distribution of DVs should be much coarser

— Optimal thickness distribution of a plate
* Thickness of the FE model, 7X77?

— Optimized shape of a hole in a plate
e Coordinates of nodes of the FE model
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Objective Function

— Cost or criterion function

— Function whose value is to be minimized or maximized by the
optimal set of values of DVs within the feasible design space

« Structural weight or cost

* Local or global measure of the structural performance

— Stress, displacement, stress intensity factor, stiffness, plastic
collapse load, fatigue life, buckling load, natural vibration
frequency, aeroelastic divergence, flutter speed, etc.

» Single-criterion / Multicriteria

Structural Optimization
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Problems with Multiple Objectives (1)

Min f, (x) )

Min f,, (x)

 Individual objectives are usually in contradiction with
one another, hence

« Ifx,’, ..., Xy are the solutions to individual objectives,
then x," = ... # x

* If the individual objectives are controlled by different
sets of variables, then the optimum of f can be
obtained by optimizing the individual f;s.

Structural Optimization
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Problems with Multiple Objectives (2)

 All objectives are controlled by the same set of
variables:
— Composite objective function

Flx)=afix)esa, ()= 3 (x)

— Choose the most important to Max(Min), and put limits on
the others.

Min(Max) f(x)= f,(x) suchthat f(x)=4, - f,(x)>4,

— Optimize each of the objectives w.r.t. x individually to find f;”
and the corresponding x; .

M . *
Min _Alla)]‘cl[di(x)] or Min E diz(x) where dl.(x):f"(x)* J/
i=l,..., =
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Rectangular Beam (1)

* Design variables
— Width and height of the cross-section
* QObjective functions
— Minimize the area: f, =A=wh
L . |
— Minimize the maximum shear stress: f,=7_. = 1.52 =3
. w
« Constraints: 0.5<w,h<5

| )
- s,
Koy
2 1 ®
1 k
1 2 W 3 4 5 1 2 W 3 4 5
area contours shear stress contours
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Rectangular Beam (2)

 Weighted sum: f =w,f; + w,f,
 Euclidean norm of the distance from the individual

minima:
f _ f1—f1*_|_ =12
f1 fa
o e Wrh* = 0.25
H
v 4]
5
2 3-
S 24 wHh* = 25.0
14 \
f -
20 25
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Constraints

— Directly or indirectly impose limits on the range of variations of DVs
— Design space / hypersurfaces — feasible or admissible designs

« (Geometrical (or side) constraints
— Explicit restrictions on DVs
— Manufacturing limitations, physical practicability, aesthetics
— Typically inequality constraints: lower and upper bounds

« Behavioral constraints
— Generally nonlinear and implicit

— Equality: state and compatibility equations governing the structural
response associated with the loading conditions

— Inequality: restrictions on those quantities that characterize the
response of the structure

» Local (stress, deflection) / global (compliance, natural vibration
frequencies)

Structural Optimization
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Solution Process

« Selection of the active constraint set

» Calculation of a search direction
— Based on the objective function and the active constraint set

« Determination of a travel distance
— One dimensional line search

 Termination criteria

— No improvement of the objective function w/o violating
constraints

— Check for optimality (Kuhn-Tucker conditions)

Structural Optimization

23



Numerical Search Techniques (1)

* Procedure
— Selection of an initial design in the n-dimensional space

— Evaluation of the function (objective and constraints) at a
given point in the design space

— Comparison of the current design with all of the preceding
designs

— Avrational way to select a new design and repeat the process

 Questions

— How is the initial design selected and what effect will it have
on the outcome of the search?

— What is a rational way to select the new designs and how
does it affect the final outcome?

— Where to stop the search?

Structural Optimization 24




Numerical Search Techniques (2)

« 50s: simplex method and its variations
— LP: transportation, scheduling, chemical processes, efc.

« 60s: gradient projection, feasible directions, penalty
function methods

« 70s: implementation and serious applications

« 80s: refinement of the algorithms proposed in the 60s
and 70s
— (U.S.) Vanderplaat's implementation of the feasible directions
— CONMIN, ADS, MICRODOT

— (Europe) Fleury’s CONLIN, Schittkowski’s implementation of
SQP (NLPL) — IMSL library

Structural Optimization
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Issues in Practical Design
Optimization

* Robustness
— theoretically guaranteed to converge to a local minimum point

* Potential constraint strategy

 Attributes of a good optimization algorithm
— Reliability
— Generality
— Ease of use
— Efficiency
 rate of convergence / iteration(minimum number of calculations)

» Search direction: potential constraint strategy
» Step size determination: inexact line search, polynomial interpolation

Structural Optimization
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Industrial applications Struct Multidisc Optim 27, 460-468 (2004)
e iy

A comparative study of software systems
from the optimization viewpoint
U.P. Hong, K.H. Hwang and G.J. Park
= Design software
Software Version Developer LU —— m—
VisualDOC 1.2 VR&D 2
iSIGHT 5.0 Engineous = =
OPTIMUS 2.2 LMS International = -
ModelCenter 2.0 Phoenix Integration I = Z
Analysis Input o [ ; E
No. VisualDOC iSIGHT OPTIMUS ModelCenter | &l wE =
- L -5 : = O
1 o o 0 IS [ m - ; .ﬁ- :
7 ks e
2 ¥ o o o = Lo = S
: g - 3 = RS
g o ) o o Analysis Program 3 o ES:
1 x o o X s & }s:
5 o % ' * ; S E.
6 X o X o P ) I ,S, -
7 S o o o | & |p= —
Analysis Output ' ; _ ‘
1: GUI to define design problem | B :
2: Multiple input /output files : £
3: Definition of user supplied equation = .
4: Script to define user defined problem E
5: Compile process to integrate an analysis software = B
6: Real time output monitoring :
7: Remote access to the analysis software
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Optimization Algorithms

No.  VisualDOO

iSIGHT OPTIMUS ModelCenter

1 BFGS MFD SQP VMM
2 FR MMFD GRG CGM
3 MMEFD SLP MFD
4 SLP SQP SLP
5 SQP SAM SQP
6 DHS
7 EP
8 GA
9 HI

10 SA

11 GRG

BFGS: Broyden-Fletcher-Goldfarb-Shannon algorithm
CGM: Conjugate gradient method

DHS: Direct heuristic search

EP: Exterior penalty

FR: FletcherReeves algorithin

GRG: Generalized reduced gradient

GA; Genetic algorithm

HJI: Hooke-Jeeves algorithm

MFD: Method of feasible directions

MMFD: Modified method of feasible directions
SLP: Sequential linear programming

SQP: Sequential quadratic programming

SA: Bimulated aAnnealing

SAM:; Successive approximation method
VMM Variable metric method

Structural Optimization

VisualDOC has a powerful optimization module.
Some unstable functions exist in the design environ-
ment specification, especially for interface funetions
with input/output files. Therefore, some improve-
ments are needed for those functions.

iSIGHT is excellent in the design environment spe-
cification. The designer can easily specify the design
environment. It has various capabilities in the DOE
module compared to others. However, performances
of the optimization algorithms are not as efficient as
those of others,

OPTIMUS has different characteristics from others.
The GUI displays the relationship between input/
output variables and analysis software with a dia-
gram. However, there are some unstable functions in
the interface functions between the input /output files.
ModelCenter separates the design environment spe-
cification and system design software with an analy-
sis server and ModelCenter. Therefore, ModelCenter
-an be the most powerful in the network environment.
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1. Rosenbrock’s valley problem (Kroo et al. 1994)

Find =z, 22
To minimize

f(z) =100 (z2—22)° + (1—z1)*

2. Spring design problem (Haug 1979)

Find d.D. N
To minimize f= (N + 2)Dd?
Subject to

D3N

O

N 71875d% =
D(4D—d) 9.46

_ ~1.0<00

92 = 12566d3(D—d) ' 1256642 =
140.54d
e ey
D+d
gi=—2_1.0<0.0
%

Structural Optimization

—&— VisualDOC-BFES

1.0E+00 - - -~ YisualDOC-FR
e [ BICHT-MMFD
—— .- -%---iBISHT-30P
i ; —w— OPTIMUS -S0F
= ca e o= MadelGanter=YM
; £.0E-01 b sl niter—C Ghd
=
=
= 4.0e-01
2, 0E-01
[:.I:IE*[II] N LTIt T TTT FEETIE TR n
1] 10 20 30 40
lteration

Fig. 2 Optimization results of the Rosenbrock’s valley prob-
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Fig. 3 Optimization results of the spring design problem



History (1)

» Galileo’s problem
— Strongest cantilever beam in bending and constant shear for
minimum weight under a uniform stress constraint
 Introduction of calculus by Newton and/or Leibniz
— Development of mathematical optimization
— Min-max conditions: necessary conditions for optimal solutions
— Only the unconstrained optimization problems

* Augmented Lagrangian function

— Extension of simple min-max conditions to constrained
optimization problems
— Lagrangian multipliers: dual variables

» Weighting factors in establishing the importance of the various
constraints at different regions of design space

» Link between the objective and the constraint functions

Structural Optimization
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History (2)

« Calculus of variation (attributed to Bernoulli, Euler, Lagrange)
— Brachistochrone problem
— Generalization of the elementary theory of minima and maxima
— Dealing with extremum of a function of functions
— Solution? One or more functions represented by differential equations
— Solution of D.E. — optimal path, or all the optimal points
— Euler-Lagrangian equations — most of field equations of mechanics

— Principles of least action: originally derived by Euler

» Hamilton’s principle — most of dynamic system equations based on
Newton’s Laws

» Lagrange’s equation — basis for an elegant description of Newtonian
dynamics

— Numerical difficulties in practical applications
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History (3)

* The Euler-Lagrange equations: extreme conditions
— Yield one or more nonlinear differential equations for solution

— Variational approach: difficult to solve, restricted continuity
and differentiability

— Numerical approach: approximation of derivatives by
differences and of integrals by sum

 Differential equation — algebraic equation
» Reliable? accuracy, time steps, convergence
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History (4)

* Separation of the analysis and design as different
problems

— Analysis: determination of the state of the system as a
function of time and spatial coordinates

— Differential equations of analysis are obtained by
minimization or maximization of one or more functions
* e.g., in solid mechanics, potential energy in the system

» Dependable variable: state variables — define the state of the
system

* Independent variable: spatial coordinates and time

— Design: minimization or maximization of a predefined
performance function subject to a set of constraint conditions

» Variables: physical parameters that define the configuration of

the system, sizes and/or geometrical quantities of the structural
elements
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Well-Established Areas

« Single-criterion optimization problems
* Optimal plastic design
— Design against plastic collapse (limit load)
— Uniform energy dissipation

» Elastic optimal design under static loading
— Elastic design under strength, stiffness, or stability requirement

* Optimal layout of trusses

» Optimal design under dynamic loading

— Natural frequency / forced steady state / transient response
requirements

Structural Optimization
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Basic Structural Optimization Setting

 Two sets of variables:
— Design variables £
— State variables U

« which are coupled via a state equation that (for given
fixed values of the design variables) gives values of
the state variables

* Terminology in applied mathematics
— Mathematical programs with equilibrium constraints
— PDE constrained optimization problems

Structural Optimization
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Structural Optimization Formulation (1)

min D(p,U) < Objective function

subject to V (p)<V™ <

g, (P»U) <g i=L..,M - Constraints

pmin SpSlOmax <
K(p)U=F « State equation (FE)

Structural Optimization



Structural Optimization Formulation (2)

Structural Optimization

I?,iun D(p,U)

subjectto V(p) <V’

IOmin SpSIOmax
K(p)U=F

gi(an)Sgi* I =

L....M

Simultaneous Analysis And Design (SAND)

min ®(p,U)
p
subjectto V(p) <V’

g, (p,U)Sgl.* i=1....M
IOmin SpSIOmax

F

K(p)U
—

Nested Analysis And Design (NAND)
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Choices to Make

* Analysis setting: state equation

div(El.jkl(p)gkl)+fi =0 in Q ordiv(El.jk,ng)+ﬁ =0 in Q(p)

o,;+/,=0 i Q ‘{K(p)UZF

Ey(p)ey(u)e, (v)dQ= J.Q HdQ, YvelU

Q

» Design space: choice of design variables
— Sizing variables
— Shape variables
— Topology variables: 0-1 in each point

 (Cost and constraint functions

Structural Optimization
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Structural Optimization

» Lay-out of the structure

— Information on the topology, shape and sizing of the
structure

* Sizing optimization

— Optimal thickness distribution of a linearly elastic plate

— Optimal member areas in a truss structure
« Shape optimization

— Optimum shape of the domain which is the design variable
* Topology optimization

— Determination of features such as the number and location
and shape of holes and the connectivity of the domain
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Three Major Design Problems

. Sizing Optimization (1960) Shape ofthe Quter Boundary
— How thick it is?
— Thickness
— cross sectional properties
— Finite element model is fixed
« Shape Optimization (1973)
— What are the boundaries?
— Location and/or radii of holes/arcs
— Control points of splines
— Element shapes change during optimization
« Topology Optimization (1988)
— Where are the holes?
— Number of holes
— Shape of holes
— Finite element topology possible not defined

Structural Optimization 40
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Concept of Structural Optimization

« Size Optimization (1960)
— thickness, cross section

— restricted to beam/frame-
like structures

« Shape Optimization (1973)

— location of holes/arcs, radii
of holes/arcs

— control points of splines
» Topology Optimization (1988)

— number of holes, shape of
holes, connectivity
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Levels of Structural Optimization

s1zing

shape optimization
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Categories of Structural Optimization

PZOZOZ0Z0%0

M.P.Bendsoe and O. Sigmund, Topology Optimization: Theory, Methods and Applications, Springer, 2003
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Three categories of optimal design problems

v

1) Parametric optimization 2) Shape optimization 3) Topology optimization
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