Topology Optimization: Concept and Theory

* History
Concept: paradigm shift

— extended design domain
— Characteristic function

Approach

— Microstructure or Homogenization
— Density or SIMP

Problem formulation

— Optimality conditions

— Procedure

Mean compliance vs. stress
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Structure’s Topology

— Topology: a branch of mathematics concerned with those properties of
geometric configurations (as point sets) which are unaltered by elastic
deformations (as a stretching or a twisting) that are homeomorphisms

— Basic geometric form that remains invariant through stretching or twisting

— Altered only when two material point in a body join (close a hole) or when
two are created from one (form a hole)
— Topology Optimization: best geometric configuration (i.e., number of
holes, connectivity of bars, etc.) of a structure
» Help determine the placement and number of holes and/or stiffening members
» Provide a good starting point for further structural refinement via sizing and
shape optimization
» Beneficial early in the design cycle when least is known about the design and
when design changes are easily accommodated
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History of Topology Optimization (1)
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History of Topology Optimization (2)
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History of Topology Optimization (3)

Homogenization-based approach by Bendsee and Kikuchi (19388)
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History of Topology Optimization (4)

Pavaval

Bendsge (1989)
Zhou and Rozvany (1991)
Meljnek {(1992)

"Density method”
"SIMP”

Mesh indep. _

filtering Sigmund (1994/1997)
Physical verification 1 "/ Bendsoe and Sigmund
of SIMP approach ’ e (1999)
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History of Topology Optimization (5)
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Discrete level set + top.
deriv. approach
(Challis et al., 2007 a.o.)
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Ground Structures

Truss ground structures  Continuum model
of variable complexity design domains
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Paradigm Change

— Shape is recognized by a set of pixels

Gray Scale = Density

d, = density of A-th pixel/voxel
1 if occupied by solid structure

d, =< a 1if structure is perforated

0 if no structure is placed
— Design optimization is completely decoupled with any sort of

mesh adaptation

— Shape and topology design variables are transformed into the
density of material or elasticity matrix of material which is
assigned in each finite element of a fixed FE model, at least a

fixed FE mesh generated at the initial time.
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Extended Fixed Domain (1)

L

Q4 - Unknown Domain

Q — Extended Domain

Old approach: Find the New approach: Find the
boundaries of the unknown material distribution in the
structure extended fixed domain
(Zienkiewicz and Campbell, 1973) (Bendsge and Kikuchi, 1988)
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Extended Fixed Domain (2)

« Extension Q to the fixed domain D
— DoQ is the extended design domain that is fixed and known a priori
— Structural optimization - optimal material distribution

D —
Q
@)
- O
E
The elasticity tensor " \ 7.E € L (Q)
Q

) very discontinuous
1 if xeQ)

« Characteristic function Za(x):{o if x 20

— Internal virtual work: fg &(v) Es(u)dQ = IDg(V)T 2oE &(u)do

v,
new material

constants
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Linear Elasticity (< Theory of Elasticity

< Continuum Mechanics)

— mathematical model of how solid objects deform and
become internally stressed due to prescribed loading

conditions
— Strong form

T'E

https://www.continuummechanics.org/

Equation/Form Cartesian Coordinate (coordin a-treeri]: g ;p endent)
(Stra?n?gizzﬁ:)(g%ent) &ij = 2 (Wi + ) £~ %[Vu + (V)]

e R

e ageh= oty | vaer=pn
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Principle of Minimum Potential Energy

— For all displacements that satisfy the boundary conditions,
known as kinematically admissible displacements, those
which satisfy the boundary-valued problem make the total
potential energy stationary on solution space

— Stationary condition <> first variation = 0

l'[(u)=U(u)—W(u)=%ﬂ a:edﬂ—ﬂ u-fdﬂ—J u- tdr
—>6£i1(u,v)=0 " '

— Virtual displacement: small arbitrary perturbation (variation)
of real displacement

=np=veH(Q
=0
H'(Q) = {v:.(l - R| Jo v-vdQ < +oo, [, OV - dvdQ < +00}

du\ d(éu) dv B .
o (E) =3 " 3x — d6e(u) = e(w), 60 = E: e(v)

1 d
6u=11_r)r(1);[(u+m)—u] —E(u+tn)
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— Variation of strain energy: energy bilinear form
1 1
oU(u,v) = EU [60: €+ 0:8e]ldQ = EU [e(v):E:e(u) + €e(u): E: e(v)]dQ
Q Q

= j jﬂ £(v): E: (w)dQ = a(u,v)

— Variation of work done by applied loads: load linear form

6W(u,v)=Uﬂ 6u-fdﬂ—jr Su-tdl‘zﬂﬂv-fdﬂ—jrv-tdl‘zl(v)

— Thus, principle of minimum potential energy becomes

oll(u,v) =6U(u,v) —W,v) =a(uv)—Il(v) =0- a(u,v) =1l(v)
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Principle of Virtual Work

— Instead of solving the strong form directly, we want to solve
the equation with relaxed requirement (weak form)

— When a system is in equilibrium, the forces applied to the
system will not produce any virtual work for arbitrary virtual
displacements

— If the virtual work becomes zero for arbitrary virtual
displacement, then it satisfied the original equilibrium
equation in a weak sense

UQ (0i;: + fi)vjd2 =0

—> Integration by parts
- Divergence theorem

jj Gl]v],ld.(l = jj f]v]d[) +j t]v]dl"
0 Xp) r

a(u,v) = l(v)
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Characteristic Function

— Very Rapidly Varying Function ».£ cannot be approximated
by a differentiable function of position x in the standard way

Elasticity Matrix This interval can be small
A > | as we want

possibly rapidly varying
A Ee

d N /\
|
Design Domain in the x Direction

Introduce Two Scales

at an arbitrary point > x
No way to approximate

by a standard way with

a distribution function
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Many Choices

* The key feature is an approximation of the extended

elasticity matrix

xaoE € L(D)

L*(Q) ={f:2 > R|3M > 0,|f| < M alomost everywhere in 2}

* There are infinitely many ways to approximate this by using

— Generalized porous media constitutive equations (bio-mechanics,
Geo-mechanics)

— Power law of density / elasticity constants: x,E~p’E

— Rank 1 & Rank 2 orthotropic materials: #oE~E"

— Others

Topology Optimization

]

‘m
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Relaxation

* Possible Approximation: Homogenization

— Introduce the two scales (x,y—%j and the micro-scale
perforation, and then x,£"is approximated by the homogenized
average elasticity matrix £”

1 >¢)
- . 1x=0 x
* Heaviside function: H(x>={0 E§<O§—>Hs(x)= s (=<9
0(x<—=%)

« G. Cheng and N. Olhoff (1981) [ —

— In plate thickness optimization

— smoothly varying thickness is not optimum é %
— optimum involves rapidly changing ribs = _—-

///

— Homogenization is required : | —
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Mathematical Background

— Lurier, Cherkaev, Fedrov (1981). G-convergence (average sense)

— Kohn and Strang (1984): microscale perforation and specialized
variational principle

— Murat and Tartar (1983): homogenization theory

a=b=1 < void/hole
a=b=0 < solid structure

Rotation

Micro-Scale Perforation by
infinitely many rectangular holes

Bendsge and Kikuchi: Design Variables are (a, b, 0) at every where
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Why Homogenization ?

— Shape design can be transformed into design of material
constants (material distribution over a fixed design domain)

=

Small Scale Rapidly
Varying Heterogeneity

Equivalent

Homogeneous Material

— If the exact heterogeneity is used in mechanics, we must
introduce so fine finite elements to represent all the detail.

This is a difficult task.

— This idealization is regarded as the homogenization in

theoretical mechanics.

Topology Optimization
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Homogenization Method = Optimal Design?

— A kind of averaging methods for partial differential equations

Commonly used to determine the averaged (or effective or
homogenized, or equivalent, or macroscopic) parameters of

Topology Optimization

a heterogeneous medium

:1'.."-
6o Y,
3.-7.':6'

Ly

HOMOGENIZATION

HETEROGENEOUS

Based on the concept of relaxation
* makes ill-posed problems well-posed by enlarging the space of

admissible “shapes”

EFFECTIVE MEDIUM

« think of generalized shapes as limits of minimizing sequences

of classical shapes

 allows, as admissible shapes, composite materials obtained by
micro-perforation of the original material (fine mixtures of

material and void)
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Theory of Homogenization (1): Lions (1981)

— Microstructure and asymptotic expansion of the
displacement field of a composite

ug(x)z u(x,y)z uo(x)+ wl(x,y)+ gzuz(x,y)+---, % :g

. op 10
ax(q)(x,y)y = J=£+gay? P 0 I 1
, :) oy sy >8(u )z ex(u ) + ey(u) +ggx(u)
strains due to the average strains due to the first order

dlSplacel’neIlt over the unit cell variation of the displacemeﬂt
from the averge one

] [0 ou o ow ow ow o o '
ox, OoOx, Ox, Ox; Ox, Ox, Ox; 0Ox, Ox

O|0|0

0010
ololo \‘

periodic microstructure

LN L

unit cell
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Theory of Homogenization (2)

— Total potential energy

Fi)=1] o <s>ff ko= [ [0 o+ 0 arbia- [ (Yo
—n (), 0 5l 2,01 -, >]m

—I{[ sl o o) J arh-[ (oo
[ b 0T e ) s <>Q
_I{[ ]Tao Yﬁ}lﬂ td@Q+O()

for a periodic function : hmI x)dQ I ‘ ‘ j X y deQ D¢ ( ) q)(x,fj
g

Do) 0T el v
_Q‘Y‘I{g )+8()00xy (pryf}deQ I td@Q
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Theory of Homogenization (3)

— Equilibrium equation of the macrostructure

I‘Y‘” 0O EGe e, )+ 2, ! lavde

Q‘Y‘j{[ ]faoxy ( Y,Oxyf}deQ I ld@Q \VATK
— Equilibrium equation of the microstructure

j ‘Y‘I [g ]I E(x,y) [g ( ) (ul)]—ao(x,y)}deQ:O \a%
» Relationship between first order variation and macroscopic strains
' (x, 7)== (6, ), (1 (x))+ ¥ (x, »)

« i is the displacement field of the unit cell when it is subject to the
unit macroscopic strain &, (u(o))zl while other components are zero.

» Characteristic displacements of the unit cell
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Theory of Homogenization (4)

— Equilibrium equation of the microstructure

Q%L5Wﬂ@@wba-.wy]%xyﬁw<>m

+ Lﬁy e, 0 ) {E(, ), (#(x, ) -0, (r, y)ld¥d2 =0 W'

E%ﬂ=§¢EuJW—%uuymW

H

aow=ﬁgh&yrawm@wymn

H

p (X)=ﬁfyp(x,y)dY

— Equmbrlum equation of the macrostructure

[0V E (el =] [o.0° 0, () () o7 () ki [ 6

Topology Optimization

td@Q vy°
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Homogenization Process

— Unit cell problem for computing characteristic displacements
[l 0] EGep)e, (eleyay = [ [, (/)] EGry)ay o

[ I, 0 E e, ), (e, pay = j[g () ooy v

— Compute the homogenized elasticity matrix

E%):ﬁ [ By - e, (e ). #@ﬁ [ {o(e. )~ B y), (¥(x. )y

— Solve the macroscopic homogenized problem

_[Q &y (VO )TEH (x)e, (MO)dQ - IQ [gx (vo )T Yp f]iQ+j td@Q vy’ } u’

— Compute strains and stresses in the unit cell at an arbitrary point

u'(x,y) =~z (x, »)e, (1 () + ¥ (x, )
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Homogenized Elasticity Tensor
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Homogenized Material Properties

* Layered microstructure

| | 1-a a
< s < 1

CH
: f-b HE

1

« Rectangular microstructure
— Rectangular hole is very close to Rank 2 materials

* Hexagonal microstructure

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Int. J. Numer. Meth. Engng 2004; 5§9:1925-1944 (DOIL: 10.1002/nme.945)

Continuous approximation of material distribution
for topology optimization

K. Matsui' and K. Terada2* 7

IDepartment of Information Media and Environmental Sciences. Yokohama National University,
79-1 Tokiwadai, Hodogaya-Ku, Yokohama 240-8501, Japan
2Department of Civil Engineering. Tohoku University, Aramaki-Aza 06, Aoba Sendai 980-8579. Japan

Topology Optimization Concept and Theory - 28




Layered Microstructures

— No resistance in shear - rotate to the principal stress direction

(upper bound)
|< 1-a - a_y |< 1-a W
Y2 b
£
< (1-b) v(1—b) 0
0 0 0 E (1 —v2)(1 —ab)(1 —a)
— EH = —
Ef=10 (1-aF 0 (T —v?)(1 - ab) Iv(l V0 wa-n Y
0 0 0 0 0 0
— Topology optimization - grayscale? bone structure
v
,///
Topology Optimization
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Rectangular Microstructures

2D Plate/Shell

D ={a,b},0 = {6} D ={a,b},0 = {6} D ={ab,c}, 0 ={0,9,¢}
p =po(a+b—ab) p =polho(a+b—ab)(hy —hy)l p=pll-(1-a)A-b)(1-0)]

VS.

D = {a, b}
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Homogenized Average Young's Modulus

Upper Bound: uniaxial tension
Mixture Theory (1D)

E= &, = &
E" = (1 - p)E, + pE, o= (1-p)oy, + pao

Ee = (1 — p)Ey&, + pEseg

E=(1-p)E, + pE;

\/ Lower Bound
§ Mixture Theory (1D)

1
1-p p
E, 'E

EH
0 = 0, = Oy

e=(1-ple, + peg

o _ (1 )O'v n
p=1 Material Density E p E, p E,
E

-1
E, Es
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Which microstructure is better?

« Hashin-Shtrikman bounds

— Upper and lower bounds for the effective elastic moduli of
guasi-isotropic and quasi-homogeneous multiphase materials

Layered microstructure: upper bound

— Stiff structure

Topology optimization - lower bound
— Separation of mixed materials

Topology Optimization

Rectangular/Hexagonal microstructure: lower bound

Material property of composite - upper bound

7. Mech, Phys. Solids, 1963, Vol. 11, pp. 127 to 140. Pergamon Press Ltd. Printed in Great Britain.

A VARIATIONAL APPROACH TO THE THEORY OF
THE ELASTIC BEHAVIOUR OF MULTIPHASE MATERTALS*

By 7. Hasmiv
ity of : i
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Without Microstructures: Density Approach

oPE (SIMP)
E" = f(E,p) = f(p)E = p
Trq—p = G

1 - .
i ( 2 4 2D
0.9t P
A max 1—v'1+v (2D)
0.8 {4 D = A
15 1—-v 3 1—v 1D
i T s 2T o2 O
-gﬂ.ﬁ- ) 1
Ene v=§—>p=3(2D),p=2(3D)
-g’ﬂ.a-
ﬂ r
> 0.3} A '
0.2
0.1 s
% 0.2 0.4 0.6 0.8 1

Fraction variable

Fig. 1 A comparizon of the SIMP model and the alternative
model when £ =1 and Eq =10.1. E_r,[_rJ:l for p =2, 3. 1{} are
shown as dashed lines; Ey [_r':, } for g =0, 1.5,4, 9 are shown as
solid lines
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Summary: Relaxation of Design Domain

Simple: _ General:
Density Method Material Models Homogenization Method
property . \\9
— +vP 0 t
Eijkl =X Eijkl -
1 K b
fraction of material A

in each point . yZT
Desig 1

Y
microstructure

Material Design

Structure Design

A point with material

A point with no material
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Microstructure or Homogenization based

Topology Optimization

Approach

M. Bends@e and N. Kikuchi, Generating Optimal Topologies
in Structural Design Using a Homogenization Method,
Comp. Meth. Appl. Mech. Engrg, 71, pp.197-224, 1988

Adjust the dimensions and orientation of a void in the
material of each element

Effective material properties are then computed by
homogenizing over each element

Provide bounds on theoretical performance ©

Three design variables per element for planar structures —
Cumbersome determination and evaluation ®

COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 71 (1988) 197-224
NORTH-HOLLAND

GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL
DESIGN USING A HOMOGENIZATION METHOD

Martin Philip BENDSOE
Mathematical Institute, The Technical University of Denmark, DK-2800 Lyngby, Denmark

and
Noboru KIKUCHI

Applied Mechanics Department, Computational Mechanics Laboratory, University of Michigan,
Ann Arbor, MI 48109, U.S.A.

Concept and Theory - 35

Received 28 March 1988




Homogenization Design Method

Optimal Material Distribution

Theory of Homogenization Optimization Algorithm

W

solid microstructure

X
macrostructure / >

porous microstructure
void microstructure

* independent of finite element discretization
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Density Approach (1)

— Power-law or SIMP (Solid Isotropic Material with Penalization)
— Bendsge(1989), Zhou and Rozvany(1991), Mlejnek(1993)

— Relative material density raised to some power times,
engineering approach
— No physical material ® — physically permissible
» With a perimeter/gradient constraint or filtering techniques
» Sigmund and Petersson(1998), Bendsge and Sigmund(1999)

Structural Optimization 1, 193-202 (1989) Structural Optimimtion g‘;‘;t‘}l:‘:;“!:‘l“;thms in Applied Mechanics and Engineering 106 (1993) 1-26

© Springer-Verlag 1989 CMA 352

An engineer’s approach to optimal material

Optimal shape design as a material distribution problem distribution and shape ﬁndlng
M.P. Bendsge H.P. Mlejnek and R. Schirrmacher

itut lications, Uni i Stuttgart, Idring 27, W-71 5
Mathematical Institute, The Technical University of Denmark, Building 303, DK-2800 Lyngby, Institute for Computer Applications ""’"’”"(X};{n a:y gart, Pfaffenwaldring 000 Stutigare 80,

Denmark

Received 30 August 1990
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Density Approach (2)

— Most popular approach at present 1oE = p’E

B 1 1if solid structure
P10 if void/hole

— Density approach can make only isotropic perforation
— This requires a lot of meshing to have reasonable layout

Un isotropic principa

T

— However, easy programming and handy design variable
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Standard Formulation

min  Total Weight
(1)
a(u,v ):l(uj Vv

 |nternal virtual work

T T
a(u,v) = j (0v) xqoE (0u) dQ — w? j v Yqp udf
QO —— —— haad Q ——

w: shifted(excited)frequency

— Strain-Displacement relation: (v)=ov
— Stress-Strain relation: ¢=E¢-g,

 External virtual work

L(V) =J (av)T)(andﬂ+j v yopbdQ + j vtdr
Q Q r

t

work done by work doneby  work done by
initial stress body force traction
oo=EaAT

[(u) = mean compliance by {6, pb t}

Topology Optimization
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Mean Compliance

— If the thermal stresses, body forces, and tractions are specified, if the
displacement resulted by such applied forces is small, it means that the
structure is stiff in its global response.

» Minimization of the mean compliance = Maximization of the global stiffness

— If constrained displacement is specified on the boundary, then the resulted
stress (that is traction) on the boundary must be large if the structure is stiff.

* In this case, we have to maximize the mean compliance

— Mean compliance was introduced by Prager and Taylor to define structural
optimization for continuum solids and structures.

— Weight minimization with stress and displacement constraints was
introduced for trusses, beams, and other space frame type structures in
aerospace and civil engineering since stresses are bounded in these frame
structures.
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Stiffness Maximization: Force Applied

traction ¢
jg e(v): 7oE e(u)dQ= I Zob- de+j t-vdlL ueV® Vyelp®

a(u,v)zj‘Q g(v): 2,E g(u)dQ
‘ —>a(wv)=I(v) uelV® Vver™

=J.Qd ZQb-VdQ+J‘rtt-vdF
l,.=I(u j AT udQ+j t-udl

I(u)=a(u,u)=2x(strain energy)

Minimize (mean compliance) = Minimize (strain energy)

total potential energy: F (v) = %a(v, v)-I(v) Vvelr®™

@equilibrium, F (u) = minimize F(v) = %a(u,u) —I(u)= —%l(u)
velpd
pinimize 1, = (u) = pinimize {-2F ()} = minimize |-2] minimize £ ()

— maximize F(u)=maximize minimize F (V)

design variables design variables veyd
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Stiffness Maximization: Displacement Applied

isplacement u,
Fg L =[ t u,dl1(u)

l,. =a(u,u)=2x(strain energy)

Maximize (mean compliance) = Maximize (strain energy)

total potential energy: F (v) = %a (v,v) Vvelr®™

ey . 1
7//// @equilibrium, F (u) = minimize F(v)= Ea(u,u)
T maximize /, = maximize a(u,u)=maximize 2F (u)
U design variables o design variables design variables

— maximize F(u)=maximize minimize F(v)

design variables design variables veyd
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Stress-Strain Relation

* E E E
Ox Oy o,
= Vp Tt Vy [ Ex ) 1 —v —v
Oy gy 0Oy Ey -v 1 —v
=V TVETE N 1=y -v 1
_Tﬂ ( <sz>_E 0 0 0
Yvz="¢ Vax 0 0 0
Tazx \Vxy ) 0 0 0
yzx G
_ Ty
A J
E
=
e=Co————0=Cle=Ds¢
- v v
1—v 1—v
v " v
1—v 1—v
v v
1
B E(1-v) 1—-v 1—-v
T A+vA=-2v)] o0 0 0
0 0 0
0 0 0

Topology Optimization

2(1+v)

OO+OOO

1—2v

2(1—v)

1—2v

2(1—-v)

0 ( Ox
0 gy
0 o
0 { Ty > —> € =Co
0 TZ.X
21 +v)l \Txy)
0
0
0
0
0
1—2v
2(1 —v).
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Optimization Problem Formulation

Topology Optimization

o maximize F(u)
inimi minimize [,, . = l(u) 1
minimize f pdf) design o 0
e > = » 9= f,D —{)y =<
9 =lne —lne <0 g—podQ—ﬂogo A D D

L=—Fu)+a(uw)—-Il(w)+4 (f pdf) — .(20> + j [Ag(—p) + A11(p — 1)]dn
D D

o - OFG) 9P daww) +/1f5 dg+jm( 5p) + 1, (8p)]d12
_auuappauuup Doplp

f W): ¥ E (5 L >d(2 1] (). ZoE
= — Eu). € u -_— _ = Eu).
5 Xa ap P 2], dp

:e(u)dpdN + f

du
eWw):xoE:e{ du+—=—235p |dQ
D dap

+/1f5pd.(2 + f [Ao(=6p) + A, (6p)]dN2
D

D

1 OxoE
5L = — = j e(u): XL cuyspdn + 4 f 5pdf) + f [A0(~8p) + 21 (8p)]d2
2Jp dap D D

1 aX_QE
=f ——&(u): ce(u)+A—2Ag+ A 6pd2 =0
p 2 ap
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KKT Conditions

Zeu. ap

a(u,v) =1l(v) uevPl vvey?

4
A>0, jpd.()—QOSO,A<jpd.(2—.QO>=O
D D

/1020, _pSO,/lo(—p):O

S(u)+/l—/10+/11=0
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Discrete Formulation

min Total Weight

' f <l
Ku=f

» Shifted stiffness matrix ~ k=[B EBiQ-0*[N' pNa©

%/_/

stiffness matrix mass matrix

« (Generalized load vector . . .
f=|B 6,d2+ [N pbdQ+|N tdl

e Dual problems
— Minimize the volume with the mean compliance constraint
— Minimize the mean compliance with the volume constraint

. dual probl . T
min jde( =22 > min u' f
Ku:f .[deQSQs
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Compliance and Energy

— Mean compliance = twice of the total strain energy

u' f =work done Ku=f = u'Ku=u"f
min I(v): I(u) =—u Ku-u f=——u'f
v — 2 2

minimum potential energy
at equilibrium

— Using the relation min #' f =min |_—2min ](v)J=2maX min (v)
design design v design v

— We can define the optimum design problem by the total

potential energy max min 7(»)
design v

— The most fundamental structural design problem can be
stated as the maximization of the minimum potential energy
of a structural system with respect to designs and admissible
displacements.
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Optimization Algorithm

* Optimization problem

o |
maé}l}?g)lze minimize Ea(v,v)— f (V)

1w)
subjectto [,(1-ab)dQ<Q,
0<a,b<l

« Lagrangian r=r1(u)-A[],(1-ab)i0-0.]
- jQ {/IaO(_ a)—i— ﬁ’al(a - 1)}dQ - _[Q {ﬁ'bo (_b)+ ﬂ’bl(b - 1)}dQ

* Principle of virtual displacement: equilibrium

ouza(u,v)=f(v) vveV
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Optimality Conditions

 for design variables

su:e(u) Xk g(u)—uTa—+Ab+Zao ~4,=0
oa oa
Oy E 0
3 é])=O:g(u)T)g—%8(u)—uTa—j;+Aa+ﬂbo -4, =0
50=0:c(u) a;ng £(u)=0

* Switching conditions

(Al (1-ab)dr-Q,]=0: A<0, [,(1-ab)d-Q, <0
Ao(-a)=0:2,<0,~a<0
(a-1)=0:4,<0,a-1<0

al —

Za
Ao(=b)=0:2,,<0,~b<0
(b=1)=0:2,<0,p-1<0

~
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Resizing Scheme

Ay =

bk+1 -

Topology Optimization

N

where E] =

alk(E,fy7 if min{(1+¢)a,,1} Sak(

min{(l+§')ak,1} if min 1+g’ ak, <a,\E

rmax{( g’)bk,O} it b (Eb)7 <max g’)

bk(E,’jy if min 1+§ bk,l <b (

min{(1+¢)b,1} if min{(1+¢)b, 1}<b (

1 T@ZQE
“Ab, e(u,) oa

k

A bisection J‘Q (1 . Clb)dQ . QS -0

n : weighting factor (0.7 ~ 0.85)

¢ :move limit

max{(1-¢)a,.0) if a,(Ef) <max{(1-¢)a,.0

¢(u,) and E} =
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Optimum Angle (1)

* Optimum angle is the one for the principal stress direction

— P. Pedersen, On Optimal Orientation of Orthotropic Materials,
Struct Optim 1, pp.101-106, 1989

* Orthotropic material
o E, E, 0 |l¢ g, (81 + &, )+ (81 - &, )cos 2¢
oc,r=|E, E, 0 e ; and J¢ =% (81+82)—(81—82)cos2¢

y
O O E66 7/xy 7/xy - 2(81 - 82)Sin 2¢

=

<

y
Txy

* Minimize compliance = Maximize strain energy

| E, E, 0 |l&
q):_{gx £, VuwlEn En 0 e,

2
O O E66 7/ xy

o4 2

0P _ —l(gl — gz)sin 2¢[a(51 + 52)+ ,6’(51 —gz)cos 2(/5] =0
%
where o =E,,—FE,, and f=FE ,+E,, -2F,—-4E
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Optimum Angle (2)

a;i)=0—>sin26?=0 or cos26?=—M
Y. Ble, —¢,)

2
P = —(6‘1 - &, )[a(gl + gz)cos 20+ ﬂ(el - &, )cos 46’]

06’
[ :measure of shear stiffness

(for low shear stiffness : > 0) — global minimum compliance(é? = O)

« Rectangular hole should be aligned in the principal stress
direction
— Large hole can be assumed in the small principal stress direction
— Small hole must be placed in the large principal stress direction

Topology Optimization Concept and Theory - 52



Multiple Loading

al%lréKd ;w{ 2m1n[ }
X, _{ (a,,0)|0<a,b <1, jﬂ(l—ab)dgsgs}

where <0<w, <1, Zwl.:l
i=1

11‘&2'1" ’ 2min [’ I
w; =1: lim 2 {— min (v)} —'_mail.)’(m{— min (v)}— max ' (u)

i=l,....m

— p = 1: linear combination of minimum value of the total potential energy
— p = co: minimization of the maximum value of the mean compliances

5 sl -kl haar)

i=1 <
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Density or SIMP Approach

Optimization
Theory, Methods and

Applications

haoond Edition
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1.1 Problem Formulation

* To find the optimal lay-out of a structure within a
specified region
 Known quantities
— Applied loads
— Possible support conditions
— Volume of the structure to be constructed

— Some additional design restrictions: location and size of
prescribed holes or solid areas

* Unknown
— Physical size and shape and connectivity of the structure

* Representation

— Not by standard parametric function, but by a set of
distributed functions defined on a fixed design domain
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Minimum Compliance Design

* Problem set-up
— Well known formulations for sizing problems for discrete and
continuum structures
— Large scale both in state and in the design variables

« Simplest type
— Minimum compliance (maximum global stiffness) under
simple resource constraints
— Problem of finding the optimal choice of stiffness tensor
E;(x) which is a variable over the domain

min /(u)

a; (u,v)=1(v), forallveU, E €E,,

u,kE,
discrete

} min f u

N
" \K(E)u=f,E eE,, K=Y K,(E,)

e=1

- ou,
a(u,v)= IQ E, (x)e, (1), (v)dQ: energy bilinear form ¢« — g (y) = %(%+ aZJ j
J i

I(u)= IQ fudQ + J-F tuds : load linear form
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Design Parametrization (1)

« Determination of the optimal placement of a given
Isotropic material in space
— Optimal subset of material points

« Geometric representation of a structure = black-white
rendering of an image

« E_,: distributed, discrete valued design problem (0-1
problem)

— Replace the integer variables with continuous variables and
then introduce some form of penalty

— 0 —
Ek[ - IQmat El]kl > IQ;n(:t -

g

{lﬁxeﬁm

0 if xeQ\Q™
Eijo.k,: stiffness tensor for the given isotropic material
E, €L (Q)

[ 1y dQ=Vol(Q™ )<y
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Design Parametrization (2)

* Sizing problem by modifying the stiffness matrix so
that it depends continuously on a function (design
variable) interpreted as a density of material

— SIMP-model: penalized, proportional stiffness model
E.(p=0)=0
E (X)=p(x)"E),, p>1>7 "
/kl( ) ( ) ijkl {Eij/d (le)zEgkl
[ p(x)da<y, 0<p(x)<1, xeQ

— Physical relevance: Hashin-Shtrikman bounds for two-phase
materials: limits of possible isotropic material properties one
can achieve by constructing composites (materials with
microstructure) from two given, linearly elastic, isotropic

materials. pZmaX{ 2 4 }(21))

1-v° " 14+v°

1-v" 3 1-y°
> max<15 ,— 3D
P { 7 -5/° 21—21/0}( )

v” : Poisson ratio of the given base material with stiffness tensor Eijo.k,
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Design Parametrization (3)

* Role of composites
— Homogenization method: viewed as an interpolation model

— Inspired by theoretical studies on generalized shape design
in conduction and torsion problems

i ()

a (u,v):l(v), forallveU, E€E

equilibrium condition — principle of minimim potential ener . 1
. L R & > max min< —a, (u,u)—1(u)
minimizer of the functional F(V):EaE (v,v)=I(v) on U EeE,y ueU |9

principle of minimim complementart energy ; ; l
> min min { > _[Q Cykz%o'kde}

EcE,y oce§
C. = (El)
ikl ijki

S={c7|divc7+f:() inQ,0-n=t onFT}
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Design Space

Fassenger cabin

Design domain

* Design parametrization 1 mnn

— 6 circular holes: one center and one radius per hole (18 variables)

* Design parametrization 2
— 6 slightly more complicated holes: splines (hundred variables)

« Design parametrization 3 —

— Raster representation: use pixels
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Integer Form vs. Continuous Form

Black and white [‘3

34(0/1) =]

- B = XM |ll-conditioned

. T
min CD(p,U(p))—F U

1 (material)

K(p)U=F

N
subjectto Y v,p, =v p<V’
e=1

.....

Gray sale [A=
2"2|' 37 'E

2=(0~1) 2HlI]

- T
min CD(p,U(p))—F U

N
subjectto Y v,p, =v p<V’
e=1

gi(p)ﬁgi* i=1,...,

O<pmin Spgl
K(p)U=F

Material Density Distribution

Topology Optimization
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SIMP

Simplified Isotropic Material with Penalization

e 4 T f-}f"_l
E(pe) = IOepEO
le i p=3
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p=1

Material Interpolation Model

SIMP

E(pe) = {

pepEO
Emin + pep(EO - Emin)

e=1

. T
min CD(p,U(p))—F U
N
subjectto > v,p, =v p<V’

g.(p) <g' i=lL..,M
0<Ppin <P =1
K(p)U=F

Topology Optimization

RAMP q=1

E(pe) =

Pe -
1+q(1—p,) °

Convexity in compliance !

1 T T - T f -'||

o8 )

LR

Young's modulus
= o o = =
£ o wn & .
R

T,

o
e

Sy —

=
=l

Dﬁ 0.2 4 06 05 1
Fraction variable

Fig. 1 A comparizon of the SIMP model and the alternative

model when Ey = 1 and Ep =0.1. Eplz;) for p=2,3, 10 are

shown as dashed lines; Eglzy) for g =0, 1.5, 4,9 are shown as

sotid lines




1.2 Solution Methods

« Optimal topology problem - sizing problem on a

fixed domain
— Typically very large number of design variables
— Efficiency of the optimization procedure is crucial

« Conditions of optimality

min l(u) o
OL _ P o (uw)e, (u)+ A4 A"~ 2 =0
a; (u,v)=1(v), forallveU Lt} ag (w0)-1@) A [ plx)a0r |+ op op "’
A (x)[ p(x)-1]dQ+| A7 (x)] pin —p(x) ]dQ n .

Eijkl (X) = '0 (x)p E;kl & u:[iagrangeilultiplier for‘[}glze equilibfium clznstraint ? ﬂ/ I:p(x) B 1:| - 0
[ p(x)aa<y A pam —pP(x)]=0
0< P < p(x)<1 2720, >0

aEi' " _

8;1 ; (u)e,d (u) =A+1" -1
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Sensitivity Analysis

* Design problem as an optimization problem in the
design variables only

— Displacement fields given implicitly in terms of these design
variables through the equilibrium equation

— Derivatives of the displacements with respect to the design
variables

— Additional material in any element decreases compliance

min f u (

u.p, mmc( ) f"u where u solves: (prK ju f
v Pe

(Zpe”lfe]u# o x

p ( deslgno Z';lyrlables 5 J Zve o) <V

N =1

ez—llvepeSV 0<10minspe£1

O<pmin Spe Sl J

c(p)=f'u—i" (Ku-f)
T_gT :,i:
”TK) ou —ﬁTa—Ku+i(u+ﬁ) ek o >6c =—u a—K”_—PP”1 "K,u
ap., op.  op, op., op

oc
(s

Topology Optimization Concept and Theory - 65



Sensitivity Analysis

©=0(U(p)), K(p)U=F

* Direct method * Adjoint Method
— One FE load case per — One FE load case per
design variable constraint
o = 9% =0+ (KU-F)
oU . oD
KU+KU =0 D' = EU%L,%T (K'U+KU')
—> KU'=-K'U oD
:(lTK+—jU’+/1TK’U
oU
=0—>K;f,1=—a£
oUu
=1 KU
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Compliance Sensitivity

Topology Optimization

®=F'U(p), K(p)U

F

d=F'U
K a9 _
oU

Q' =1"KU—>® =-UK'U=-pp,"'U"KU,

K=>)K,

K,=p'K,

—-F > i=-U
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OC Update

* Optimality criteria method
— Fully stressed design condition in plastic design
— Specific strain energy vs. Lagrange multiplier A
— Independent update of design variable

. (>1
E, "E g, 7
0 ijkl £, (u)gkl (Ll) _ A _)BK _ p,O(X) ik €ig (MK)gkl (uK) N BK J—
op A <1
rmaX{(l_é/)pKHDmin} lf IOKBKT7 SIrlax{(l_é/)'DK”'Omin}
P = min{(1+¢) oy, 1} if min{(1+¢)p,,1} < pi By
o B otherwise

p. =107, 7=0.5 (tuning parameter), ¢ = O.2(m0ve limit)
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Topology Optimization: Formulation

N (min U'F = o(U(p

minJ‘ pdQ — Zvepe P ( ( ))
pv Ja — K(p)U =F
subjectto a(u,v) = f(v)Vv > K(p)U = F ; —elpoblem N

_( ) ) ( ) Fled)=el s subject to Zve p <V

o < O ax e=l1

—u'f > U'F
|u| <u,. 0<p, <1

L(anaﬂaAaﬂ’e_aﬂ’;) :¢+1T (KU_F)—FA(iv@’Oe _V

e=1

oU OF

6L_d¢+8¢6U+/1T oK
op dp 0U op op op Op

d—¢+(@+ATKJ6—U+ATa—KU—a—F

J

dp \0U op op Op
a_L:%+/1TK:0_>F+KT,1:0_>ﬂ:_U
ou oU
oK a(zKej
RS R A a aLy
op ap.

Topology Optimization

—U+K———J+Av@—ﬂ.@+/1€+ =0

N

jiZNlﬂe (—p)+ 24 (. -1)

e=1

—UT (pp" 'K2)U, +Av, =0

. _
Ul (pp! KU, 5
Av,

P =p.(B.)

P —>11=
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Implementation

[nitial guess
( Initial design)

[
Th

Analysis
{ Finite elements)

Sensitivity analysis

|

Updating
(optimizationstep)

plot results i

[ stop )

Topology Optimization Concept and Theory - 70




Minimize Compliance vs. Stress

(double dot products)

lm.c. = a(u, u) = fg(u):)(_QE: £(u)d.(2 = fO':)(_QC: od() A:B = AUBU = A11B11 + A12312 +A13B13 +
b b Az1B31 + AppByy + Ay3Byz +
i 1 A3z1B3q + A33B3; + A33Bs3
62 = 2 [(011 — 022)% + (022 — 033)* + (033 — 011)°] + 3(012% + 023° + 0312)
1 1 17
2 2
, 1 1
=0:M:0 < 04" Where M = ) 1 )
1 1 1
2 2 |
p
1204) 1 1y [ 3
—— oM< 0:Co<—0:M: —|-6< |——a:C:
(3D)<E s 0Mo<ag o< oMo |ifv+; a 2(1+v)a o
1 .M. J— .C. 'f —_ 1
LEG' i0=0:C:ov |ifv =2
12(1+v) 1
plane stress: ETG: M:o<o0:C.0 < EZ(l —v)o:M:o
- e straim L2AEY) _120-v+6r?) o
plane strain: .————0:M:0 < 0:C:0 < T 2v)2 o:M:o
f 72d0 < 3k f C:odf Sk e >mes(24)] - | 2 +v) Zmes(24)
_— . . = = —_ =
DXQO- —= 2(1 +V) Da Xa o 2(1 +V) m.c. Omax Mes d m.c. 3E Omax mes d
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Stress Constraints (1)

« Using the quadratic interpolation of
— maximum Mises stresses & weights
— compute the weight for the allowable stress constraints

— determination of the weight constraint to enforce the stress
constraint if exist

Maximum Mises Stress

A

éCJI

' - >
W1 / W2 W3 Weight Constraint
Weight for the Upper Bound

Mises Equivalent Stress
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Stress Constraints (2)

multiple objectives
( pie %) ) (multiple constraints )

mpin max (6.),,

N
(N .
non—differentiable mpln Z vep e
e=1

N
subjectto D v,p, <V° t —><subjectto (o,),, <p o ifp, >0, e=1...,N

e
e=1

0<p,. <p<l 0<p, sp sl
K(p)U=F K(p)U=F
(0. )y < plo = {(Z;)OV_M —1:| <0— p, {(pa:p—k‘f—l} <0 (singularity)

1-p,), € = Pun < p, (&-relaxed stress constraint )

RS
1
—~
= ‘“q
;—/
S
[

P
L 1
IA
™
—~
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Stress Constraints (3)

[ D———
( N /P
. ) ) P
min max(c,),, min (3, |
=1
non—differentiable N - y

p—norm measure

N
: * multiple objectives—>one objective N
subject to ;vepe <V — . >4 subject to Zveloe <
e=1
0<pminSpS1 O<,0min£p£1
K(p)U=F | K(p)U=F
) N
1’1’}.}1’1 eZZI:Ve,Oe
N /P
— { subject to (Z(O'e)mpj <o
e=l
0<10min < P <1
K(p)U=F
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Three significant challenges

— Singularity phenomenon - relaxation

— Local nature of the constraint = single integrated stress
constraint, not adequate

— Highly non-linear stress behavior: drastic stress level
changes by density

1 N P fl(U)
Kreisselmeier-Steinhause (KS) function: G, = —ane Fows ()
i=1

» I/p
Park-Kikuchi (KK) function: G,, = { [ {ffi (ET)J dQ}
« max G

N : number of finite elements
o . stress

f;(o): maximum von Mises stress
foae (07) : von Mises stress for each finite element
p : parameter determining the difference the original function and its approximation (=20)

p T: peak stress is weighted more heavily — oscillation or diverge
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Fig. 1 WVanous L-bracket
designs: b and ¢ are compliance
based; d—m are stress-based.
(Stress plots are based on

I - [ ed von Mises stress. of [E—— |

Section 3, and have different ?
color scale ranges). a Problem
definition, b Min. compliance
design. ¢ Stress distribution in
b. d Duysinx and Bendsee

i 1998). e Duysinx and Sigmund
(1998}, f Svanberz and Werme
(2007), g Pereira et al. (2004). h
Bruggi and Venini (2008), i
Paris et al. (2009), j Guilherme
and Fonseca (2007). k Altair
Optistruct (2007) (density
distribution). | Present work.

m Stress distribution in |

(al
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Struct Multidisc Optim (20107 41 :605-620
DO 1010075000 58-009-044 00y

— RESEARCH PAPER L —

Stress-based topology optimization for continua

Chau Le - Julian Norato - Tyvler Bruns -
Christopher Ha - Daniel Tortorelli

LB

I

— I —

T

muax=1.52 max=1.30

= |
: ,-'. ': i w4
(e)

Fig. 3 Effect of stress norm parameter P on the L-bracket. a Problem definition. b P =4 (63 iter.), ¢ P =6 (72 iter.),d P =8 (T8 iter.), e P =
12 (235 iter.)

max=1.70

‘VA L‘A»J
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(a) (c) (d)
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