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Topology Optimization: Concept and Theory

• History

• Concept: paradigm shift
– extended design domain

– Characteristic function

• Approach
– Microstructure or Homogenization

– Density or SIMP

• Problem formulation
– Optimality conditions

– Procedure 

• Mean compliance vs. stress
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Structure’s Topology

– Topology: a branch of mathematics concerned with those properties of 
geometric configurations (as point sets) which are unaltered by elastic 
deformations (as a stretching or a twisting) that are homeomorphisms 

– Basic geometric form that remains invariant through stretching or twisting

– Altered only when two material point in a body join (close a hole) or when 
two are created from one (form a hole)

– Topology Optimization: best geometric configuration (i.e., number of 
holes, connectivity of bars, etc.) of a structure

• Help determine the placement and number of holes and/or stiffening members

• Provide a good starting point for further structural refinement via sizing and 
shape optimization

• Beneficial early in the design cycle when least is known about the design and 
when design changes are easily accommodated
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History of Topology Optimization (1)
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History of Topology Optimization (2)
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History of Topology Optimization (3)
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History of Topology Optimization (4)
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History of Topology Optimization (5)
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Ground Structures

Truss ground structures
of variable complexity

Continuum model
design domains
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Paradigm Change

– Shape is recognized by a set of pixels

– Design optimization is completely decoupled with any sort of 

mesh adaptation

– Shape and topology design variables are transformed into the 

density of material or elasticity matrix of material which is 

assigned in each finite element of a fixed FE model, at least a 

fixed FE mesh generated at the initial time.

Gray Scale = Density










         placed is structure no if  0

         perforated is structure if  

structure solidby  occupied if  1

kd

dk = density of k-th pixel/voxel
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Extended Fixed Domain (1)

New approach: Find the 
material distribution in the 
extended fixed domain
(Bendsøe and Kikuchi, 1988)

t

d - Unknown Domain
Extended Domain

t

Old approach: Find the 
boundaries of the unknown 
structure
(Zienkiewicz and Campbell, 1973)
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 x  
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The elasticity tensor E
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E
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very discontinuous

Extended Fixed Domain (2)

• Extension  to the fixed domain D
– D is the extended design domain that is fixed and known a priori

– Structural optimization optimal material distribution

• Characteristic function

– Internal virtual work:      
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Linear Elasticity (Theory of Elasticity 
Continuum Mechanics)

– mathematical model of how solid objects deform and 
become internally stressed due to prescribed loading 
conditions

– Strong form

Equation/Form Cartesian Coordinate
Tensor

(coordinate independent)

Compatibility
(Strain-Displacement)

Constitutive
(Hooke’s Law)

Equilibrium
(motion) ,  ௧௧ 

 , ,

  

𝑻

https://www.continuummechanics.org/
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Principle of Minimum Potential Energy

– For all displacements that satisfy the boundary conditions, 
known as kinematically admissible displacements, those 
which satisfy the boundary-valued problem make the total 
potential energy stationary on solution space

– Stationary condition  first variation = 0

– Virtual displacement: small arbitrary perturbation (variation) 
of real displacement

𝛀 𝛀 𝚪

𝝉→𝟎
𝝉ୀ𝟎

𝟏

ଵ
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– Variation of strain energy: energy bilinear form

– Variation of work done by applied loads: load linear form

– Thus, principle of minimum potential energy becomes

𝛀𝛀

𝛀

𝛀 𝚪 𝛀 𝚪
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Principle of Virtual Work

– Instead of solving the strong form directly, we want to solve 
the equation with relaxed requirement (weak form)

– When a system is in equilibrium, the forces applied to the 
system will not produce any virtual work for arbitrary virtual 
displacements

– If the virtual work becomes zero for arbitrary virtual 
displacement, then it satisfied the original equilibrium 
equation in a weak sense

,  
ఆ

 Integration by parts
 Divergence theorem

 ,
ఆ
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Characteristic Function

– Very Rapidly Varying Function          cannot be approximated 
by a differentiable function of position x in the standard way

E

Introduce Two Scales
at an arbitrary point

Design Domain in the x Direction

Elasticity Matrix This interval can be small
as we want

x

Ee

possibly rapidly varying

No way to approximate
by a standard way with
a distribution function
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Many Choices

• The key feature is an approximation of the extended 
elasticity matrix

• There are infinitely many ways to approximate this by using
– Generalized porous media constitutive equations (bio-mechanics, 

Geo-mechanics)

– Power law of density / elasticity constants:

– Rank 1 & Rank 2 orthotropic materials:

– Others

EE p 

HEE 

1

2
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Relaxation

• Possible Approximation: Homogenization
– Introduce the two scales               and the micro-scale 

perforation, and then         is approximated by the homogenized 
average elasticity matrix

• Heaviside function:

• G. Cheng and N. Olhoff (1981)
– in plate thickness optimization

– smoothly varying thickness is not optimum

– optimum involves rapidly changing ribs

– Homogenization is required







 


x

yx,

E
HE

𝐻 𝑥 = ቊ
1 𝑥 ≥ 0
0 𝑥 < 0

→ 𝐻క 𝑥 =

1 𝑥 > 𝜉           
௫

ଶక
+

ଵ

ଶ
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Mathematical Background

– Lurier, Cherkaev, Fedrov (1981): G-convergence (average sense)

– Kohn and Strang (1984): microscale perforation and specialized 
variational principle

– Murat and Tartar (1983): homogenization theory

Bendsøe and Kikuchi: Design Variables are (a, b, ) at every where

     Micro-Scale Perforation by
infinitely many rectangular holes

Rotation

a

b

a b

a b

  
  

1

0

void / hole

solid structure
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Why Homogenization ?

– Shape design can be transformed into design of material 
constants (material distribution over a fixed design domain)

– If the exact heterogeneity is used in mechanics, we must 
introduce so fine finite elements to represent all the detail. 
This is a difficult task.

– This idealization is regarded as the homogenization in 
theoretical mechanics.

Small Scale Rapidly
Varying Heterogeneity

Equivalent 
Homogeneous Material
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Homogenization Method  Optimal Design?

– A kind of averaging methods for partial differential equations

– Commonly used to determine the averaged (or effective or 
homogenized, or equivalent, or macroscopic) parameters of 
a heterogeneous medium

– Based on the concept of relaxation
• makes ill-posed problems well-posed by enlarging the space of 

admissible “shapes”

• think of generalized shapes as limits of minimizing sequences 
of classical shapes

• allows, as admissible shapes, composite materials obtained by 
micro-perforation of the original material (fine mixtures of 
material and void)
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Theory of Homogenization (1): Lions (1981)

– Microstructure and asymptotic expansion of the 
displacement field of a composite
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Theory of Homogenization (2)

– Total potential energy
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Theory of Homogenization (3)

– Equilibrium equation of the macrostructure

– Equilibrium equation of the microstructure

• Relationship between first order variation and macroscopic strains

• is the displacement field of the unit cell when it is subject to the 
unit macroscopic strain                    while other components are zero. 

• Characteristic displacements of the unit cell
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Theory of Homogenization (4)

– Equilibrium equation of the microstructure

– Equilibrium equation of the macrostructure
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Homogenization Process

– Unit cell problem for computing characteristic displacements

– Compute the homogenized elasticity matrix

– Solve the macroscopic homogenized problem

– Compute strains and stresses in the unit cell at an arbitrary point
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Homogenized Elasticity Tensor
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Homogenized Material Properties

• Layered microstructure

• Rectangular microstructure
– Rectangular hole is very close to Rank 2 materials

• Hexagonal microstructure
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Layered Microstructures

– No resistance in shear  rotate to the principal stress direction 
(upper bound)

– Topology optimization  grayscale? bone structure

𝐸ு =
0 0 0
0 1 − 𝑎 𝐸 0
0 0 0

𝐸ு =
𝐸

1 − 𝜈ଶ 1 − 𝑎𝑏

1 − 𝑏 𝜈 1 − 𝑏 0

𝜈 1 − 𝑏
1 − 𝜈ଶ 1 − 𝑎𝑏 1 − 𝑎

+𝜈ଶ 1 − 𝑏
0

0 0 0
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Rectangular  Microstructures

1

1

1 a–

1 b–

h0 h1

1

1

1 a–

1 b–

1

1

1

1 a–

1 b–

1 c–

2D Plate/Shell 3D









𝐷 = {𝑎, 𝑏}, 𝛩 = {𝜃}
𝜌 = 𝜌 𝑎 + 𝑏 − 𝑎𝑏

𝐷 = {𝑎, 𝑏}, 𝛩 = {𝜃}                           
𝜌 = 𝜌 ℎ 𝑎 + 𝑏 − 𝑎𝑏 ℎଵ − ℎ

𝐷 = 𝑎, 𝑏, 𝑐 , 𝛩 = 𝜃, 𝜓, 𝜑
𝜌 = 𝜌 1 − 1 − 𝑎 1 − 𝑏 1 − 𝑐

vs.
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Homogenized Average Young’s Modulus

Es

Ev

Upper Bound: uniaxial tension
Mixture Theory (1D)

Lower Bound
Mixture Theory (1D)

𝐸ு =
1

1 − 𝜌
𝐸௩

+
𝜌
𝐸௦

Material Density

𝐸ு = 1 − 𝜌 𝐸௩ + 𝜌𝐸௦

ρ = 1

𝜀= 𝜀௩ = 𝜀௦

𝜎 = 1 − 𝜌 𝜎௩ + 𝜌𝜎௦
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Which microstructure is better?

• Hashin-Shtrikman bounds
– Upper and lower bounds for the effective elastic moduli of 

quasi-isotropic and quasi-homogeneous multiphase materials

• Layered microstructure: upper bound

• Rectangular/Hexagonal microstructure: lower bound

• Material property of composite  upper bound
– Stiff structure

• Topology optimization  lower bound
– Separation of mixed materials
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Without Microstructures: Density Approach

ு



𝑝 ≥

𝑚𝑎𝑥
2

1 − 𝜈
,

4

1 + 𝜈
                (2D)

𝑚𝑎𝑥 15
1 − 𝜈

7 − 5𝜈
,
3

2

1 − 𝜈

1 − 2𝜈
 (3D)

𝜈 =
1

3
→ 𝑝 = 3 2𝐷 , 𝑝 = 2 (3𝐷)

𝑝 = 3𝑝 = 1
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Summary: Relaxation of Design Domain

x2

x1



t

Structure
  Design
 Domain




y2

y1

a

b

Material Design

E x Eijkl
p

ijkl 0

property

fraction of material 
in each point

Simple:
Density Method

General: 
Homogenization Method

A point with no material

A point with material

microstructure

Structure Design

Material Models
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Microstructure or Homogenization based 
Approach

– M. Bendsøe and N. Kikuchi, Generating Optimal Topologies 
in Structural Design Using a Homogenization Method, 
Comp. Meth. Appl. Mech. Engrg, 71, pp.197-224, 1988

– Adjust the dimensions and orientation of a void in the 
material of each element

– Effective material properties are then computed by 
homogenizing over each element

– Provide bounds on theoretical performance 

– Three design variables per element for planar structures 
Cumbersome determination and evaluation 
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Homogenization Design Method

macrostructure
x



 t

f

t

porous microstructure

solid microstructure

y

void microstructure

d

y

y

Optimal Material Distribution

Theory of Homogenization Optimization Algorithm

* independent of finite element discretization 
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Density Approach (1)

– Power-law or SIMP (Solid Isotropic Material with Penalization)

– Bendsøe(1989), Zhou and Rozvany(1991), Mlejnek(1993)

– Relative material density raised to some power times, 
engineering approach

– No physical material  physically permissible
• With a perimeter/gradient constraint or filtering techniques

• Sigmund and Petersson(1998), Bendsøe and Sigmund(1999)
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Density Approach (2)

– Most popular approach at present

– Density approach can make only isotropic perforation

– This requires a lot of meshing to have reasonable layout

– However, easy programming and handy design variable









        void/holeif   0

structure solid if   1


 EE p

Un isotropic principal stress distribution
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Standard Formulation

• Internal virtual work

– Strain-Displacement relation: 

– Stress-Strain relation: 

• External virtual work

𝑎 𝐮, 𝐯 = න 𝜕𝐯
ஐ

்

𝝌𝛀𝐄ถ 𝜕𝐮ถ 𝑑Ω − 𝜔⏟ଶ න 𝑣
ஐ

்

𝝌𝛀𝜌ถ 𝐮⏟ 𝑑Ω

𝜔: shifted excited frequency

𝑙 𝐯 = න 𝜕𝐯 𝑻𝝌𝛀𝝈𝟎𝒅𝛀
𝛀

 work done by 
initial stress

        ఙబୀாఈ௱்

+ න 𝒗𝑻𝝌𝛀𝜌𝐛𝒅𝛀
𝛀

work done by 
body force

+ න 𝒗𝑻𝒕𝒅𝚪
𝚪𝒕

work done by 
traction

𝑙 𝐮 = mean compliance by 𝛔 𝜌𝐛 𝐭
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Mean Compliance

– If the thermal stresses, body forces, and tractions are specified, if the 

displacement resulted by such applied forces is small, it means that the 

structure is stiff in its global response.

• Minimization of the mean compliance = Maximization of the global stiffness

– If constrained displacement is specified on the boundary, then the resulted 

stress (that is traction) on the boundary must be large if the structure is stiff.

• In this case, we have to maximize the mean compliance

– Mean compliance was introduced by Prager and Taylor to define structural 

optimization for continuum solids and structures.

– Weight minimization with stress and displacement constraints was 

introduced for trusses, beams, and other space frame type structures in 

aerospace and civil engineering since stresses are bounded in these frame 

structures.
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Stiffness Maximization: Force Applied
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Stiffness Maximization: Displacement Applied

displacement ug

g

u

d

 

   
 

   

     

design 

. .

variab

.

l

. , 2 strain energy

Maximize (mean compliance)  Maximize strain energy

1
total potential energy: ,    

2
1

@equilibrium, minimi

maximize

ze  ,
2

g

d

d

m c r g

m c

V

l d l

l a

F a V

F F a








   

  



  

 



v

t u u

u u

v v v v

u v u u

   

   
design variables design variables

design variabl

. .
es

design variables es

 

m

maximize  , maximize  2

maximize  mina imizeximiz  e  
d

m c

V

al

F

F

F


 

 
v

u u

u

u

v



Topology Optimization Concept and Theory - 43

Stress-Strain Relation

𝛆 = 𝐂𝛔
 ீୀ

ா

ଶ ଵାఔ
 

𝛔 = 𝐂ିଵ𝛆 = 𝐃𝛆
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Topology Optimization Concept and Theory - 44

Optimization Problem Formulation

maximize
ఘ

 𝐹 𝒖

𝑔 = න 𝜌𝑑𝛺


− 𝛺 ≤ 0

𝑎 𝒖, 𝒗 = 𝑙 𝒗    𝐮 ∈ 𝑉, ∀𝒗 ∈ 𝑉

0 ≤ 𝜌 ≤ 1

minimize
𝒅𝒆𝒔𝒊𝒈𝒏

 න 𝜌𝑑𝛺


𝑔ᇱ = 𝑙.. − 𝑙ሜ.. ≤ 0
𝑎 𝒖, 𝒗 = 𝑙 𝒗    𝐮 ∈ 𝑉, ∀𝒗 ∈ 𝑉

minimize
𝒅𝒆𝒔𝒊𝒈𝒏

 𝑙.. = 𝑙 𝒖

𝑔 = න 𝜌𝑑𝛺


− 𝛺 ≤ 0

𝑎 𝒖, 𝒗 = 𝑙 𝒗    𝐮 ∈ 𝑉, ∀𝒗 ∈ 𝑉

𝐿 = −𝐹 𝒖 + 𝑎 𝒖, 𝒘 − 𝑙 𝒘 + 𝛬 න 𝜌𝑑𝛺


− 𝛺 + න 𝜆 −𝜌 + 𝜆ଵ 𝜌 − 1 𝑑𝛺


𝛿𝐿 = −
1

2
න 𝜺 𝒖 :

𝜕𝜒ఆ𝑬

𝜕𝜌
: 𝜺 𝒖 𝛿𝜌𝑑𝛺



+ 𝛬 න 𝛿𝜌𝑑𝛺


+ න 𝜆 −𝛿𝜌 + 𝜆ଵ 𝛿𝜌 𝑑𝛺


= න −
1

2
𝜺 𝒖 :

𝜕𝜒ఆ𝑬

𝜕𝜌
: 𝜺 𝒖 + 𝛬 − 𝜆 + 𝜆ଵ 𝛿𝜌𝑑𝛺



= 0                               

𝛿𝐿 = −
𝜕𝐹 𝒖

𝜕𝒖
𝛿𝒖 −

𝜕𝐹 𝒖

𝝏𝝆
𝛿𝜌 +

𝜕𝑎 𝒖, 𝒘

𝜕𝒖
𝛿𝒖 +  𝛬 න 𝛿𝜌𝑑𝛺



+ න 𝜆 −𝛿𝜌 + 𝜆ଵ 𝛿𝜌 𝑑𝛺


                                           

= − න 𝜺 𝒖 : 𝜒ఆ𝑬: 𝜺 𝛿𝒖 +
𝜕𝒖

𝜕𝜌
𝛿𝜌 𝑑𝛺



−
1

2
න 𝜺 𝒖 :

𝜕𝜒ఆ𝑬

𝜕𝜌
: 𝜺 𝒖 𝛿𝜌𝑑𝛺



+ න 𝜺 𝒘 : 𝜒ఆ𝑬: 𝜺 𝛿𝒖 +
𝜕𝒖

𝜕𝜌
𝛿𝜌 𝑑𝛺



+𝛬 න 𝛿𝜌𝑑𝛺


+ න 𝜆 −𝛿𝜌 + 𝜆ଵ 𝛿𝜌 𝑑𝛺
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KKT Conditions

−
1

2
𝜺 𝒖 :

𝜕𝜒ఆ𝑬

𝜕𝜌
: 𝜺 𝒖 + 𝛬 − 𝜆 + 𝜆ଵ = 0              

𝑎 𝒖, 𝒗 = 𝑙 𝒗    𝐮 ∈ 𝑉, ∀𝒗 ∈ 𝑉                 

𝛬 ≥ 0,  න 𝜌𝑑𝛺


− 𝛺 ≤ 0,  Λ න 𝜌𝑑𝛺


− 𝛺 = 0 

𝜆 ≥ 0,  − 𝜌 ≤ 0,  𝜆 −𝜌 = 0                                 

𝜆ଵ ≥ 0,  𝜌 − 1 ≤ 0,  𝜆ଵ 𝜌 − 1 = 0                          
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Discrete Formulation

• Shifted stiffness matrix

• Generalized load vector

• Dual problems
– Minimize the volume with the mean compliance constraint

– Minimize the mean compliance with the volume constraint

 WeightTotal  min
  

max
fKu

fu

lT


matrix mass

2

matrix stiffness

  
dd

TT
NNEBBK 

  
ddd

TTT

t

tNbNσBf 0

fu
fKu

fKu
fu

T

d
l

s

T
d   min  min

 

problem dual

  
max
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Compliance and Energy

– Mean compliance = twice of the total strain energy

– Using the relation

– We can define the optimum design problem by the total 
potential energy

– The most fundamental structural design problem can be 
stated as the maximization of the minimum potential energy 
of a structural system with respect to designs and admissible 
displacements.

    fufuKuuuv
v

TTTII
2

1

2

1
  min

mequilibriuat          
energy potential minimum



Ku = f u Ku = u fT Tu fT  work done

    vvfu
vv

II
designdesign

T

design
 min max2 min2  min  min 

 v
v

I
design

 min max
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Optimization Algorithm

• Optimization problem

• Lagrangian

• Principle of virtual displacement: equilibrium
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1   subject to
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Optimality Conditions

• for design variables

• Switching conditions
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Resizing Scheme

       
         
       

       
         
       

       

 

limit move :                       

0.85)~(0.7factor   weighting:                       

01                       

1
  and  

1
    where          

1,1min  if    1,1min

0,1max1,1min  if                

0,1max  if   0,1max

1,1min  if    1,1min

0,1max1,1min  if                

0,1max  if   0,1max
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Optimum Angle (1)

• Optimum angle is the one for the principal stress direction
– P. Pedersen, On Optimal Orientation of Orthotropic Materials, 

Struct Optim 1, pp.101-106, 1989

• Orthotropic material

• Minimize compliance = Maximize strain energy
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Optimum Angle (2)

• Rectangular hole should be aligned in the principal stress 
direction
– Large hole can be assumed in the small principal stress direction

– Small hole must be placed in the large principal stress direction

 2  1

 
 

      

 0compliance minimum global0):stiffnessshear  low(for 

stiffnessshear  of measure :

4cos2cos

2cosor    02sin0

2121212
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21
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Multiple Loading

– p = 1: linear combination of minimum value of the total potential energy

– p = : minimization of the maximum value of the mean compliances
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Density or SIMP Approach
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1.1 Problem Formulation

• To find the optimal lay-out of a structure within a 
specified region

• Known quantities
– Applied loads

– Possible support conditions

– Volume of the structure to be constructed

– Some additional design restrictions: location and size of 
prescribed holes or solid areas

• Unknown
– Physical size and shape and connectivity of the structure

• Representation
– Not by standard parametric function, but by a set of 

distributed functions defined on a fixed design domain
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Minimum Compliance Design

• Problem set-up
– Well known formulations for sizing problems for discrete and 

continuum structures

– Large scale both in state and in the design variables

• Simplest type
– Minimum compliance (maximum global stiffness) under 

simple resource constraints

– Problem of finding the optimal choice of stiffness tensor 
Eijkl(x) which is a variable over the domain

 

       

         

 

,
,

ad ad
1

linearized
strain

min
min

, ,   for all ,  E ,  E ,  

1
, : energy bilinear form

2

e

T

E
discreteu U E

Nform

E e e e e
e

ji
ijkl ij kl ij

j i

l u

a u v l v v U E E E E

uu
a u v E x u v d u

x x

l u fu

  








  

      


 
        







u
f u

K u f K K

:  load linear form
T
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Design Parametrization (1)

• Determination of the optimal placement of a given 
isotropic material in space
– Optimal subset of material points

• Geometric representation of a structure = black-white 
rendering of an image

• Ead: distributed, discrete valued design problem (0-1 
problem)
– Replace the integer variables with continuous variables and 

then introduce some form of penalty

 
 

0

0

1  if  
1 ,1

0  if  \

: stiffness tensor for the given isotropic material

1 Vol

mat mat

mat

mat

ijkl ijkl mat

ijkl

ijkl

mat

x
E E

x

E

E L

d V
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Design Parametrization (2)

• Sizing problem by modifying the stiffness matrix so 
that it depends continuously on a function (design 
variable) interpreted as a density of material
– SIMP-model: penalized, proportional stiffness model

– Physical relevance: Hashin-Shtrikman bounds for two-phase 
materials: limits of possible isotropic material properties one 
can achieve by constructing composites (materials with 
microstructure) from two given, linearly elastic, isotropic 
materials.

   
 
 

   

0

0

0 0
,  1

1

,  0 1,  
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ijkl ijkl
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:  Poisson ratio of the given base material with stiffness tensor ijkl
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Design Parametrization (3)

• Role of composites
– Homogenization method: viewed as an interpolation model

– Inspired by theoretical studies on generalized shape design 
in conduction and torsion problems
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Design Space

• Design parametrization 1
– 6 circular holes: one center and one radius per hole (18 variables)

• Design parametrization 2
– 6 slightly more complicated holes: splines (hundred variables)

• Design parametrization 3
– Raster representation: use pixels



Topology Optimization Concept and Theory - 61

Integer Form vs. Continuous Form
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Material Density Distribution
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SIMP

  0
p

e eE E 

1p 

Simplified Isotropic Material with Penalization
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Material Interpolation Model
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1.2 Solution Methods

• Optimal topology problem  sizing problem on a 
fixed domain
– Typically very large number of design variables

– Efficiency of the optimization procedure is crucial

• Conditions of optimality

 

   
   
 

 

       
       min

,

,

   10
: Lagrange multiplier for the equilibrium constrai

min

min

, ,   for all 

0 1

E

u U

L l u a u u l u x d VE

x x d x x dp

ijkl ijkl u

l u

a u v l v v U

E x x E

x d V

x





    




 


 

 



           
         





     


  


   



   

 
 

   

        

nt

min

1 0
min

0

1 0

0

0,  0

  for intermediate densities 1

ijkl
ij kl

ijkl
ij kl

p

ijkl ij kl

EL
u u

x

x

E
u u

p x E u u x

   
 

 

  

 

   


    

 





 

 




       

     
    
  


   



   



Topology Optimization Concept and Theory - 65

Sensitivity Analysis

• Design problem as an optimization problem in the 
design variables only
– Displacement fields given implicitly in terms of these design 

variables through the equilibrium equation

– Derivatives of the displacements with respect to the design 
variables

– Additional material in any element decreases compliance
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Sensitivity Analysis

• Direct method
– One FE load case per 

design variable

• Adjoint Method
– One FE load case per 

constraint
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Compliance Sensitivity
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OC Update

• Optimality criteria method
– Fully stressed design condition in plastic design

– Specific strain energy vs. Lagrange multiplier 
– Independent update of design variable
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Topology Optimization: Formulation
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Implementation
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Minimize Compliance vs. Stress

𝑙.. = 𝑎 𝒖, 𝒖 = න 𝜺 𝒖 : 𝜒ఆ𝑬: 𝜺 𝒖 𝑑𝛺


= න 𝝈: 𝜒ఆ𝑪: 𝝈𝑑𝛺


(double dot products)
𝑨: 𝑩 = 𝐴𝐵 = 𝐴ଵଵ𝐵ଵଵ + 𝐴ଵଶ𝐵ଵଶ + 𝐴ଵଷ𝐵ଵଷ +

𝐴ଶଵ𝐵ଶଵ + 𝐴ଶଶ𝐵ଶଶ + 𝐴ଶଷ𝐵ଶଷ +
𝐴ଷଵ𝐵ଷଵ + 𝐴ଷଶ𝐵ଷଶ + 𝐴ଷଷ𝐵ଷଷ

�̄�ଶ =
𝟏

𝟐
𝜎ଵଵ − 𝜎ଶଶ

ଶ + 𝜎ଶଶ − 𝜎ଷଷ
ଶ + 𝜎ଷଷ − 𝜎ଵଵ

ଶ + 3 𝜎ଵଶ
ଶ + 𝜎ଶଷ

ଶ + 𝜎ଷଵ
ଶ

 = 𝝈: 𝑴: 𝝈 ≤ 𝜎௫
𝟐  where  𝑴 =

1 −
1

2
−

1

2

−
1

2
1 −

1

2

−
1

2
−

1

2
1

                                             

(3D)

 
1

𝐸

2 1 + 𝜈

3
𝝈: 𝑴: 𝝈 ≤ 𝝈: 𝑪: 𝝈 ≤

1

𝐸
𝝈: 𝑴: 𝝈  if 𝜈 ≠

1

2
→ �̄� ≤

3𝐸

2 1 + 𝜈
𝝈: 𝑪: 𝝈

 
1

𝐸
𝝈: 𝑴: 𝝈 = 𝝈: 𝑪: 𝝈𝜈  if 𝜈 =

1

2

→
𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠: 

1

𝐸

2 1 + 𝜈

3
𝝈: 𝑴: 𝝈 ≤ 𝝈: 𝑪: 𝝈 ≤

1

𝐸
2 1 − 𝜈 𝝈: 𝑴: 𝝈          

𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛:
1

𝐸

2 1 + 𝜈

3
𝝈: 𝑴: 𝝈 ≤ 𝝈: 𝑪: 𝝈 ≤

1

𝐸

2 1 − 𝜈 + 6𝜈ଶ

1 + 2𝜈 ଶ
𝝈: 𝑴: 𝝈 

න 𝜒ఆ�̄�ଶ𝑑𝛺


≤
3𝐸

2 1 + 𝜈
න 𝝈: 𝜒ఆ𝑪: 𝝈𝑑𝛺



=
3𝐸

2 1 + 𝜈
𝑙.. = 𝜎௫

𝟐𝑚𝑒𝑠 𝛺ௗ → 𝑙.. =
2 1 + 𝜈

3𝐸
𝜎௫

𝟐𝑚𝑒𝑠 𝛺ௗ
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Stress Constraints (1)

• Using the quadratic interpolation of
– maximum Mises stresses & weights

– compute the weight for the allowable stress constraints

– determination of the weight constraint to enforce the stress 
constraint if exist

Maximum Mises Stress

Weight ConstraintW1 W2 W3

max

Weight for the Upper Bound
Mises Equivalent Stress
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Stress Constraints (2)
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Stress Constraints (3)
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Three significant challenges

– Singularity phenomenon  relaxation

– Local nature of the constraint  single integrated stress 
constraint, not adequate

– Highly non-linear stress behavior: drastic stress level 
changes by density
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Kreisselmeier-Steinhause (KS) function: ln

Park-Kikuchi (KK) function: 

:  number of finite elements
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 von Mises stress for each finite element

:  parameter determining the difference the original function and its approximation =20

:  peak stress is weighted more heavily oscillation or diverge

p

p  
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