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Design Parameterization

• Sizing design parameters

– Material properties

• Density, modulus, viscosity

– Boundary conditions

• Applied loads or displacements

– Element properties

• Bar cross section, plate thickness, node point locations

• Shape design parameters

– Coordinates of a single node point location 

– Relationship between a shape parameter and each of the 

node locations

• Geometry-based mesh parameterization

• Reduced basis approach
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Size Optimization

• 2nd ASCE Conference on Electronic Computation, Pittsburgh, 

PA, September 8-9, 1960

– R. W. Clough, The Finite Element Method in Plane Stress Analysis

– L. A. Schmit, Structural Design by Systematic Synthesis

• Weight minimization with stress and displacement constraints

– Truss, beam, other space frame type structures

– Aerospace and civil engineering

10 bar truss
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Truss System

• Tensile bar of length l

– Uniform material (Young’s modulus E), cross section (area A)

• Axially loaded bars joined together at pinned joints

– Transfer forces, but not moments

Node 1: downward vertical force P

Node 3, 4: pinned
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Truss Analysis

• Find the displacements

• Linear approximation of spring systems
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Truss Optimization

– Find the optimal areas such that the total volume of the truss 

system is minimized, with the following constraints: (1) the tip 

displacement of node-1 does not exceed 0.01, and (2) the stresses 

within the members lies between 160MPa and -80 MPa.
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Truss Optimization: Matlab
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Truss Sensitivity
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Continuum Tensile Bars

– Non-uniform cross section: A(x)

– Non-uniform material: E(x)

– Body force: b(x)

– Find the displacement of the bar u(x)

• Force balance:

• Minimum potential energy: 
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• Force balance • Minimum potential energy
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Examples 
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Necessary Condition for an Extremum

• Real-valued function f: slope of the tangent

• Functional J: (Gâteaux) variation
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Calculus of Variations (1)
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Calculus of Variations (2)
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Calculus of Variations (3)
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Euler-Lagrange Equation

• Boundary conditions

– Essential: y(x) is specified at end points,

– Natural: y(x) is NOT specified at end points,
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Applications

• Geodesic: path minimization

– In a plane

– On a general surface ?

• Brachistochrone: shortest time (John Bernoulli in 1696)
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Geodesic Problem
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Brachistochrone Problem
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Optimal Weight Design Problem: 10 Bar Truss
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Results: 10 Bar Truss
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Size Design in MCAE

R
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Sizing in Mechanical Design is always

related to the shape of a structure !
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Shape Optimization (1)

• FEM + Design Sensitivity + SLP

– O. C. Zienkiewicz and J. S. Campbell, Shape Optimization and 

Sequential Linear Programming, International Symposium on 

Optimization of Structural Design, University of Wales, Swansea, 

January 1973

• Adaptation of Nodal Points on the Boundary

• Without using parametric representation, they adapted 

the nodes of the finite element model → a lot of problem !

– possibility of non-smoothed optimum shape due to non-smooth 

stresses on the design boundary

– possibility of excessive element distortion

– unclear adaptation schemes
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Shape Optimization (2)

• Reducing stresses at a boundary by changing that 

boundary

• Difficulties in shape optimization

– Accuracy of the FE analysis? continuously changing FE 

model

– Good sensitivity derivatives w.r.t. shape design variables? 

expensive

R.T. Haftka and R.V. Grandhi, Structural Shape Optimization−A Survey, Computer Methods in 

Applied Mechanics and Engineering, 57, pp.91-10, 1986
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Design Variables

• Coordinates of the boundary nodes of FE model

– Accuracy problem

• Polynomial coefficients: polynomial describing 

boundaries

– High-order? Oscillation

• (cubic) spline, Bezier and B-spline blending functions

• Design element concept
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FE mesh generation (1)

• Manual mesh refinement: simple modification rules for 

deforming the initial mesh

• Automated mesh generation: adaptive mesh refinement

– Adding additional elements in the area to be refined

– Increasing the order of the FE

– FE mesh points are relocated

– FE analysis + automatic mesh generation + structural optimization
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FE mesh generation (2)

• Optimum mesh refinement

– Optimum mesh + optimum shape
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Sensitivity derivatives calculation

• Differentiation of the discretized (FE) system

– Calculation of dK/dx is quite costly even small changes of the 

boundary

– Spurious component: changes in shape → distortion of the FE

• Differentiation of continuum equations

– Concept of material derivatives

– Differentiation → discretization: avoid spurious errors

– Numerical difficulties in boundary integrals
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Solution techniques

• Calculus of variations and optimality criteria methods

– Optimality criteria: either rigorous or intuitive (uniform tangential 

stress or the strain energy density along the boundary)

• Pattern transformation methods

– Transforming the shape of the boundary based on the stress ratio 

in the boundary finite elements

• The photoelasticity technique

– Optimize the shape of the holes experimentally

– Modifying hole boundaries in a two-dimensional photoelastic model 

until the tensile and compressive boundary stresses were 

approximately constant

• Boundary element method

– Overcome two major drawbacks: FE mesh regeneration and 

difficulties in sensitivity derivatives calculation

– Not as reliable as the FEM
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Shape: Formulation (1)

Typical Setting of Optimization
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Shape: Formulation (2)

• Virtual Work Principle

• Finite Element Approximation:

• Design Sensitivity:

– A lot of mathematical evaluation is necessary to compute 

required design sensitivity for shape design
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Design Sensitivity

– Step 1 : Relation between FE nodes and Design control points

– Step 2 : Design Sensitivity w.r.t. control points

– Design Sensitivity Analysis must be in FEA codes

– Design Sensitivity Analysis must be linked with spline representation 

of design segments/surfaces D
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Practical Approach

• Difficulties 
– Every FEA code does have their own special finite elements, and 

then design sensitivity must be performed in such a FEA code

– Geometric representation of the control points and the FE nodes 
must be related, and then this requires full link with CAD 
representation and mesh generation scheme

– Full integration of

• CAD like representation of Design Segments

• Control Point Adaptation

• Adaptive Finite Element Method

• Full Automatic Mesh Generation Method

is not realistic in practice.

• What is a possible alternate ?
– GENESIS Approach / Bio-mechanical Growth Approach
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Control Points

Design Boundary Segment

Shape Design Parameters (1)

• Geometry-based mesh parameterization

– Higher-level geometry data: surface control points, fillet radii

– Mapped / free meshes

– Integration with parametric solid modelers ☺

– Mesh generator must be included 

• Reduced basis approach

– Base configuration with a distinct mesh topology that 

remains fixed during the optimization

– How to generate the design velocities (design base shapes 

for complex FE meshes)?
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Shape Design Parameters (2)

– Design velocities giving shape changes as a function of 

shape design parameters
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GENESIS Approach (1)

Linear Combination of Base Shapes generated by FE

deformation by artificial loads

Loads to Generate Shape (1)

Loads to Generate Shape (2)
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GENESIS Approach (2)

• Advantage 
– Design boundary change is smooth and can be controlled, 

since elastic deformation due to fictitious load is regarded as a 
base design change

– Finite element distortion is minimized

– Remeshing methods need not be integrated, since the initial 
finite element connectivity is maintained during optimization

• Success
– By creating interactive preprocessor to define the base shapes 

for the design change, but it is independent of CAD S/W

– Three-dimensional curved design segments are treated by the 
same way

– FORD extensively uses this after Topology Design results to 
make detailed design
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Bio-mechanical Growth (1)

• Similarity with thermal deformation

– increasing temperature results expansion

– cooling results shrinkage of a structure

• (temperature change) = (difference between the 

current stress and the targeted one) in the optimality 

criteria method

• Characteristics 

– Bio-mechanical growth approach is quite powerful for the 

fully stressed design approach and also for the optimality

criteria method for design optimization

– It is similar to GENESIS approach in the sense that fictitious

loadings are considered to adapt the design shape and no 

need to make remeshing schemes
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Bio-mechanical Growth (2)

For the Fully Stressed Design

thermal loading

fictitious loading

Shrink if stress is too low, enlarge if stress is too high
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Nature of Shape Change

– If dramatic shape change is not required, CAD linked 

remeshing scheme with full automatic mesh generation

methods is not quite essential.

– Thus, if shape design is considered after topology 

optimization, then both GENESIS and Bio-mechanical

growth approaches are sufficiently powerful.

• Shape design optimization

– Since Topology Design Optimization does not include many 

design constraints, Shape Design stage should involve all 

kind of design restriction not only for

• stiffness, strength, local buckling

– but also

• manufacturability

• geometric constrains
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Engine Connecting Rod: Problem Description

– Minimize mass with a limit on the maximum allowable von 

Mises stress developed under the applied pressure load

– 1120 3D solid elements

– Design variables

• Outer radius at crank

• Outer radius at piston

• Rod body curvature

• Flange thickness

• Flange width

Courtesy of VR&D, Inc.
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Engine Connecting Rod: Basis Vectors
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Engine Connecting Rod: Results

weight reduction (23.1%)
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Classification of Shape Optimization

• Nonparametric optimization

X ( )=x T Xs

Parametric (value) Nonparametric (function)

2X

3X

1X

4X

Topology change Boundary change
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Nonparametric Optimization

Deign Variable value function

Objective J0=P·u

Constraint J1=m(X) − m0  0

Equilibrium K(X)u=P
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Design Variable: Value

– Lagrange multiplier method

( ) ( ) ( )

( )

0

0 0

0, , , ,

, , ,

0

0

0,  0,  0

L K m m

L
K

L
K

L
m m m m

L K m
L J

 

 =  −  − +  −


= − =




= − =




= − =    − =



   
 =  =  = −  +   =  

   
Xu v u v

u v X P u v u P

P v
u

P u
v

X v u X G X
X X X

Adjoint equation: v

State equation: u

Gradient

Lagrange multiplier: 
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Design Variable: Function

– Lagrange multiplier method

– Adjoint variable method

– Material derivatives

( )0  d


=  u VJ G ( )( )1−



T
V T xs

s
s

   ( )      ( )0 0

1

, ,
=

= + u v u v
q

m m m

m

G G G

Lagrange multiplier

Adjoint variable

Shape Gradient Velocity of domain change

Shape gradient density
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Representation of Shape Change

• Domain mapping (Zolesio 1981)

• Velocity V: derivative of Ts w.r.t. s

( ) ( )s s sx T X T=  = 

X 

( )

( )
( )

( )( )1

sT

s

s

s s
s

X x

x T X

T X Tx
V x T x

s s s

−

⎯⎯→ 

=

 
= = =
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Dirichlet Problem

• Elliptic boundary value problem

– Strong form

– Weak form

( ) ( ) ( ) ( ) 
( )

( )

1 1

0,      0

where   ,  

               

a u v l v v U H u H u

a u v u v dx

l v fv dx







=   =  =   =

=  

=





( ) ( )

( )

  

0  

u x f x x

u x x

− = 


= 

Elliptic P.D.E.

B.C.

1

2

3

x

x

x
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Shape Optimization Problem Formulation

( ) ( )  J u F u dX


= 

( )

( ) ( )
R

0

min  such that

,     

 

n
J u

a u v l v v U

dx M





=  





s

( ) ( ) ( ) ( ) ( )0, ,L u v J u a u v l v dx M


= − + + −

Adjoint variable function

Lagrange multiplier
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Material Derivatives

• Distribution function

• Domain Functional

• Boundary Functional

( ) ( ) ( ) ( )
shape derivative

X X X V X   +    

( ) ( ) ( ) ( ) ( ) 



 +=→= dXVXdXXIdxI  

( ) ( ) ( ) ( )( ) ( )  ( )  



 ++=→= dXVXXXIdI  

( ) ( ) ( )( ) ( ) ( )( ) ( )1 = =    s s
s s s s sX X T x x T X X x    −  
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Shape Gradient

( )
, , , ,

 dG
u v u v
L J l V G V

  
= = =  

Shape Gradient

Shape Gradient Density

( )G F u u v fv= −  + +

v|=u|=0 in Dirichlet Problem
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Stiffness Maximization for Linear Elastic Problem

)( ( )

0 0 0
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a u v l v v U
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Shape Gradient: Linear Elastic

( ) ( ) ( ) ( )0

1

2
L u, a u,u l u dx M
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Direct Gradient Method

( )
( )( ) ( )

( )( )0 0:  , ,

                                                

n n
H H

V D b V y G y

y Y
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V needs to be continuous.

G−V

(From Braibant and Fleury 1984,1985)

Problems when nodes 

are relocated 

proportional to −Gv
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Traction Method

– Apply tensional boundary force proportional to −Gv

– Shape gradient: Neumann B.C.  → Solve boundary value 

problem

( )

( )

( )( ) 
( )( ) 

0

0

, ,

1

1

,  d

 d

 0

 0
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( ) ( ):  ,   GV D a V y l y y Y = −  

G−V
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Traction Method: Procedure

Sensitivity analysis:

shape gradient

Virtual loads

Shape change
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Traction Method: Example
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Michell Truss
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MBB beam
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L-shape

Max. Stress : 50%

Volume        : 35.1%
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Knuckle Joint

Initial Shape Optimal Shape

Volume 73.5%


