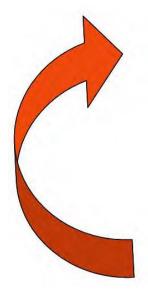
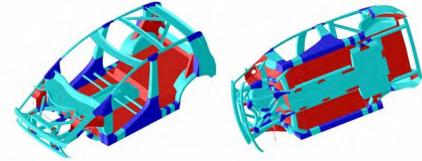
T3: Low Fidelity 3G (Geometry, Grade & Gauge) Optimization


- Objective
- LF3G: An integrated Optimization Process
- LF3G Optimization Model
- LF3G Optimization Parameterization
- Material and Gauge Choices
- LF3G Targets
- LF3G Optimization Results
- LF3G Battery Optimization
- Conclusion

Objective

- Initial topology optimization: linear static analysis
- LF3G optimization: non-linear dynamic model
- Define the optimal position of the structure's major loadpaths
- Define the approximate size and general crosssection, grade and gauge of the structure along the loadpath
- Create a robust set of boundary conditions for the next phase of sub-system loadpath optimization


LF3G: An integrated Optimization Process

- parameterized CAD model using SFE software
 - based on various design inputs and a comprehension of the styling and packaging constraints
 - size, shape, and/or position of various parts of the dominant load paths, such as the B-pillar and rocker
 - outputting finite element models for any combination of parameterized parameters.

LSDYNA: Crash & Non-linear load-cases NASTRAN: Torsion & bending

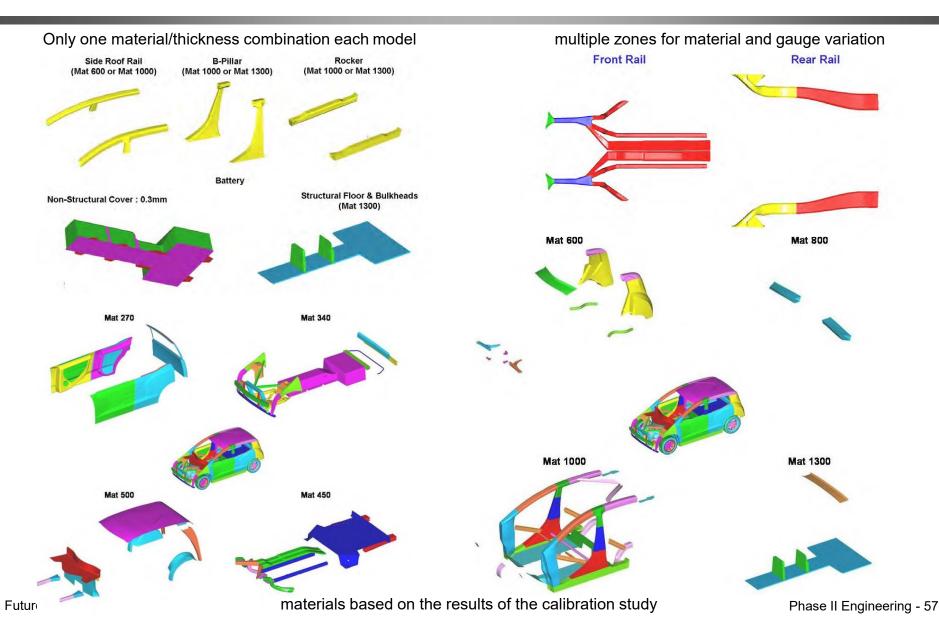
Results

HEEDS: Compare results with targets and Determine new set of variables (Geometry, Gage, Grade)

SFE: Generate Model and create Data decks for LSDYNA & NASTRAN

LF3G Optimization Parameterization

- allow position and shape to be modified by the optimization
- all ranges of movement in the parameterization conformed to the allowable structural packaging space
 - B-Pillar
 - Front Bumper Beam
 - Radiator Support to Shock Tower Beam
 - Shotgun
 - Instrument Panel Beam
 - Front Longitudinal above Tunnel
 - Front Cross-Bar
 - Side Roof Rail
 - Roof Bow and Headers
 - Rear Cargo Area Cross Bar
 - Front Seat Crossmember
 - Rocker
 - C-Pillar
 - Rear Longitudinal Rail
 - · Bulkheads

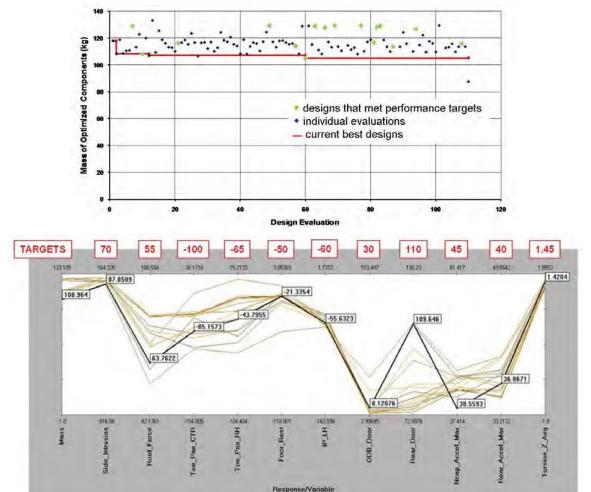

Future Steel Vehicle

Material and Gauge Choices (1)

- Grades: intended strength levels only
 - Performance: same with two or more grades with the same tensile strength
 - Manufacturing capability: different between the grades
- minimum and maximum gauges: range of commercially available thicknesses for each steel grade
- Load path study: six critical components with the widest range

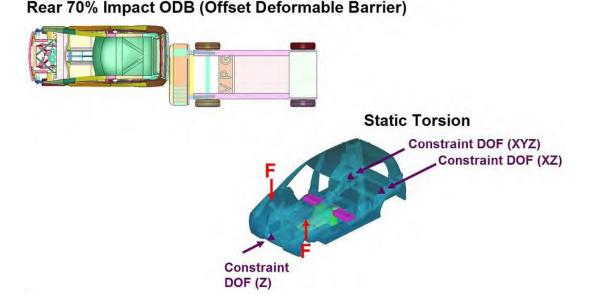
MATERIAL	GAUGE						
MATENIAL	MIN (mm) MAX (mm)		COMPONENT	POSITION	MATERIAL	GAUGE RANGE	
Mat 270	0.50	4.60	1	Outboard	Nat 340 or Mat 500		
Mat 340	0.50	3.40	Front Rail	Mid	Nat 450 or Mat 500	1.5 to 2.5mm	
Mat 450	0.50	2.30	The second se	Inboard	Mat 450 or Mat 600		
Mat 500	0.50	5.00	Rear Rail	Outboard	Nat 450 or Mat 600	15402000	
Mat 600	0.60	2.30	RearRai	Inboard	Mat 1000	- 1.5 to 3.0mm	
Mat 800	0.60	2.30	Side Roof Rail	N/A	Mat 600 or Mat 1000	0.8 to 1.2mm	
Mat 1000	0.60	2.30	B-Pillar	N/A	Mat 1000 or Mat 1300	0.8 to 1.2mm	
Mat 1300	0.60	2.00	Rocker	N/A	Mat 1000 or Mat 1300	0.8 to 1.6mm	
Mat 1500	0.42	2.92	Battery	N/A	Mat 1300	2.0 to 3.0mm	

Material and Gauge Choices (2)

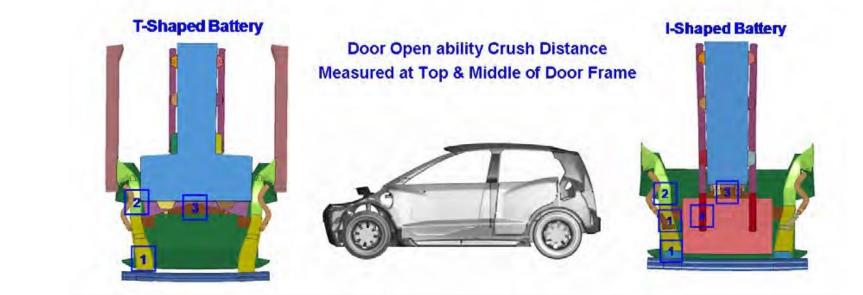

LF3G Targets & Optimization Results (1)

- 6 load cases
- static bending and pole impact
 - 80~90% satisfied if met, easily achieved by adding local reinforcements without the need of adding much mass

LOADCASE	TARGET	PERFORMANCE
NCAP Frontal Impact	45g Peak Acceleration	38.6g Peak Acceleration
IIHS Front Crash 40% ODB	GOOD Rating	GOOD Rating
FMVSS 301 Rear 70% ODB	40g Peak B-Pillar Good Rear Door Openability	36.9g Peak B-Pillar Acceleration
IIHS Side Impact	GOOD Rating	GOOD Rating
FMVSS 216 Roof Crush (with IIHS 4*strength to weight ratio)	55 kN (4.0 x Curb Weight)	58.2 KN
Torsional Static Stiffness	18,082 Nm/deg	18,459 Nm/deg


LF3G Targets & Optimization Results (2)

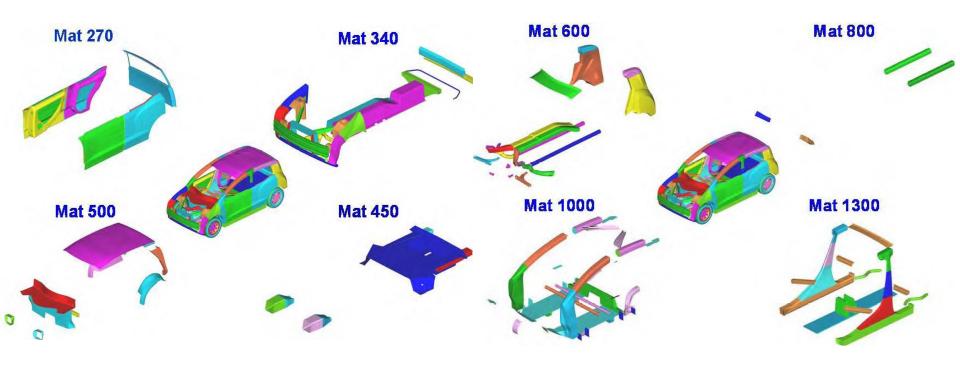
- Parametrized model + variable range + performance targets
 - Total 110 designs, 17 feasible designs



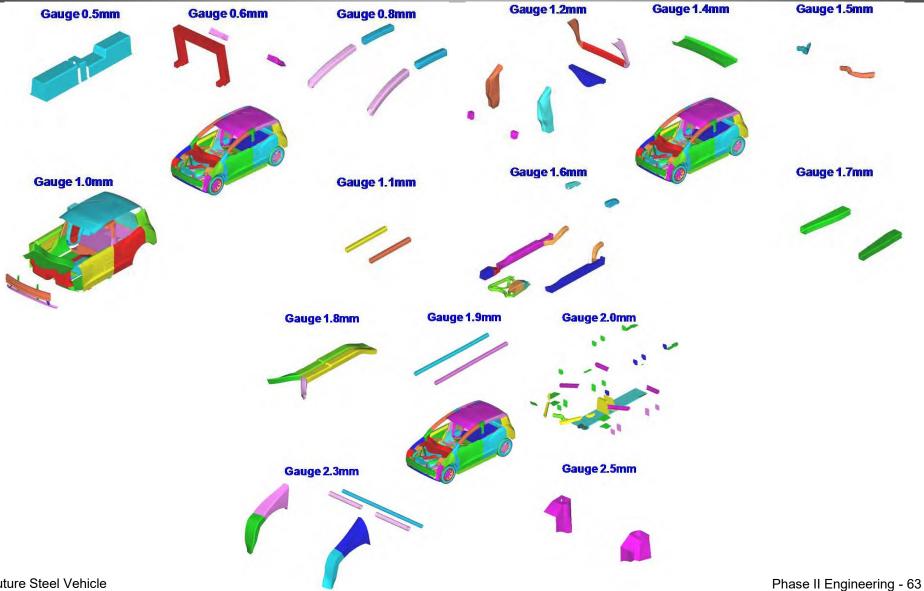
LF3G Battery Optimization

- All previous optimization was based on use of a T-Shaped battery
- Identify the most mass efficient shape for the FSV vehicle battery, as well as the most robust rear load path
- Two configuration: original T-Shaped and newly revised I-Shaped
- gauge only optimization
- two load cases most affected by rear longitudinal design

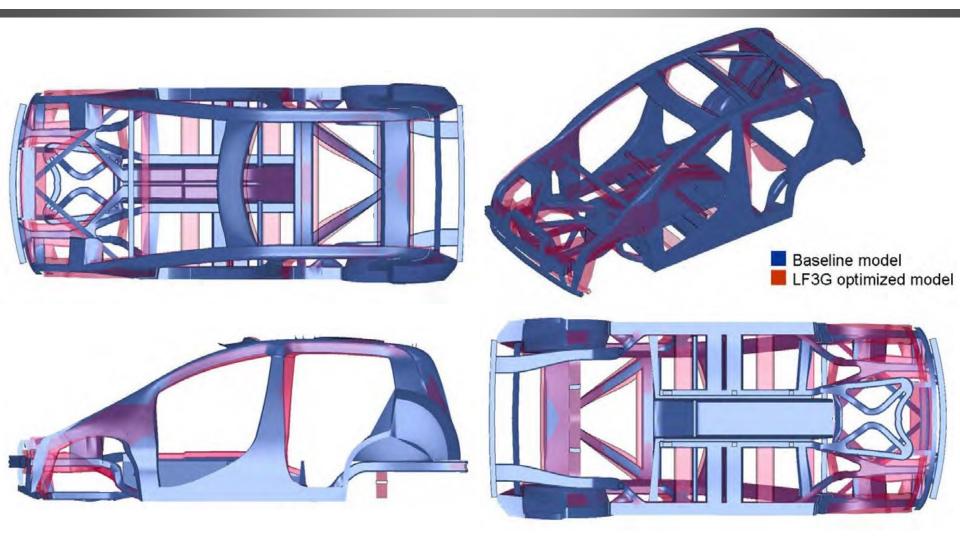
Optimization Results

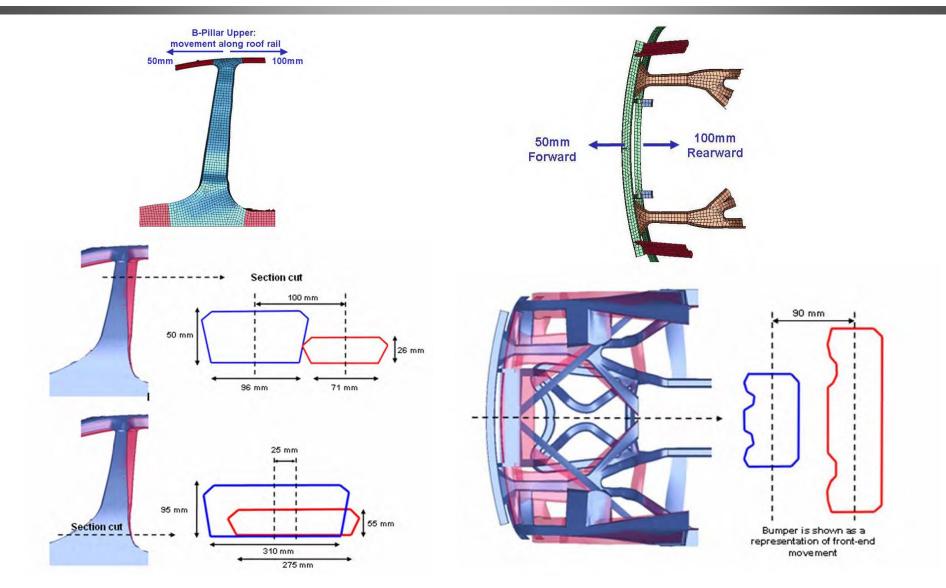

ITEM	GAUGES		MATERIAL	MASS OF OPTIMIZED PARTS		REAR IMPACT PEAK ACCELERATION		DOOR OPENABILITY		TOR SIONAL STIFFNESS	
, F	T-SHAPED	I-SHAPED	-	T	1	T	1	T	1	T	
1	1.7mm	2.2mm	Mat 450		-	1	1				
2	1.6mm	2.1mm	Mat 1000	89kg	96kg	346	34G	108mm	99mm	1.44mm	1.44mm
3	1.2mm	1.2mm	Mat 450	oaky	эоку	1040	340	10011011	ออกแก	1.99mm	1.44(1)(1)
4		1.1mm	Mat 800	1			-			-	-

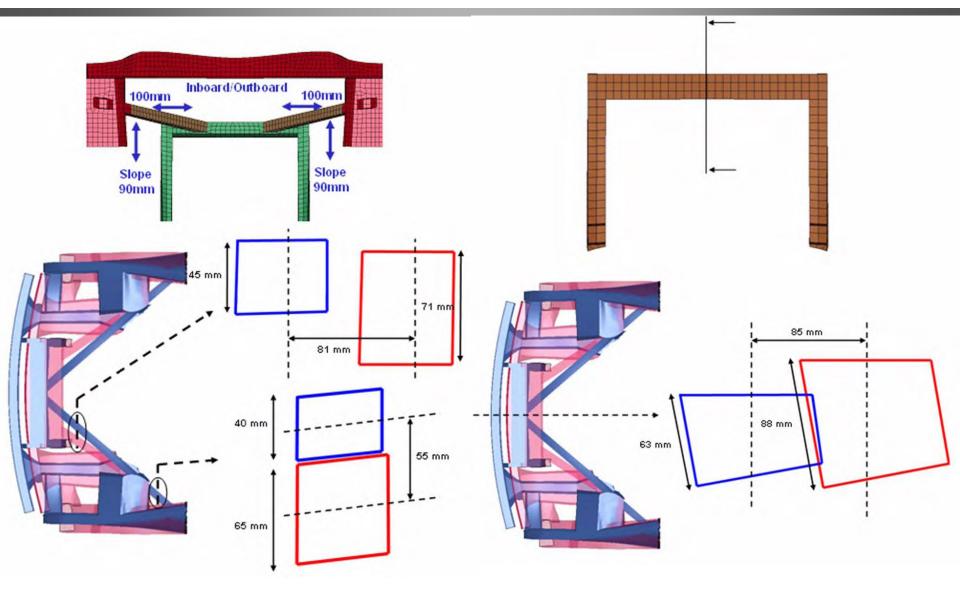
COMPONENT	T-SHAPE	I-SHAPE	
Optimized BIVV Components	89 kg	96 kg (+8%)	
Battery* (Structural Floor Only) 💦 👘	34 kg	22 kg (-35%)	
TOTAL FUNCTIONAL MASS	123 kg	118 kg (-4%)	


* Does not include mass of battery cells or cover

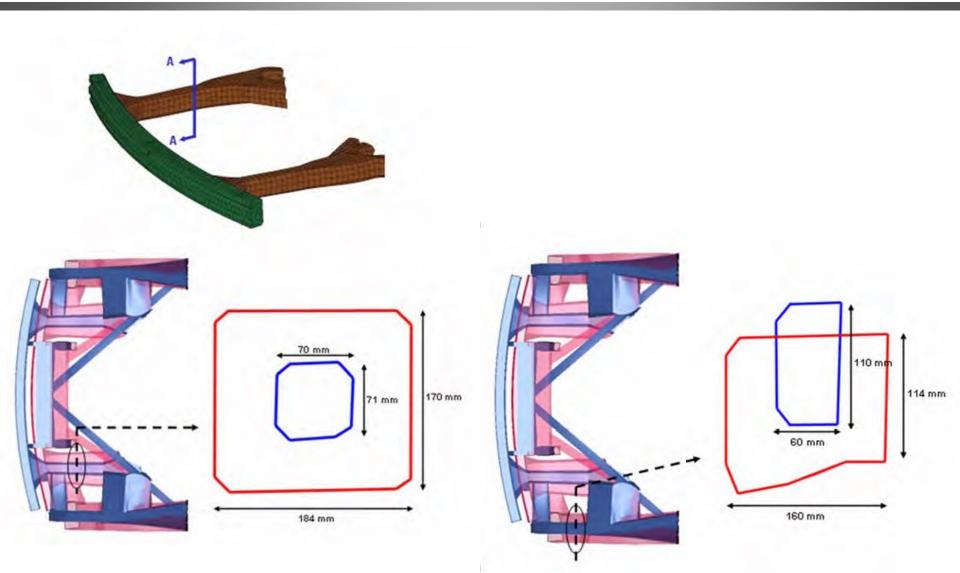
Future Steel Vehicle

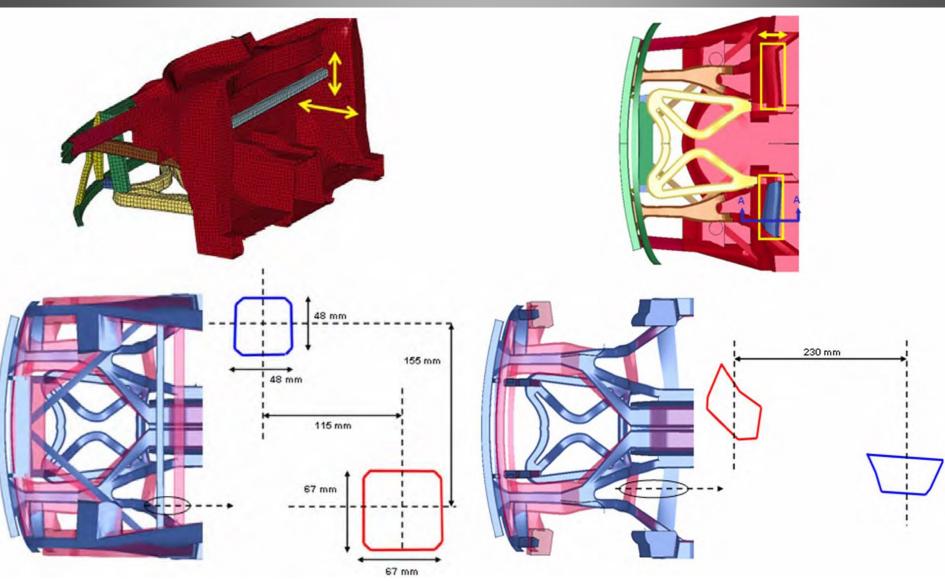

Conclusion: Grade


Conclusion: Gauge


Conclusion: Geometry (shape)

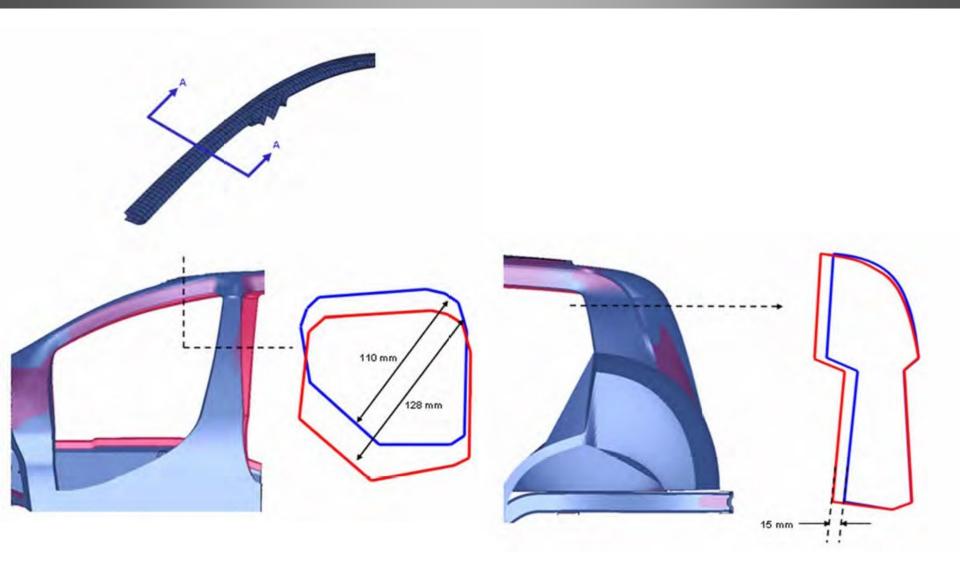
B-pillar / Front end


Radiator support

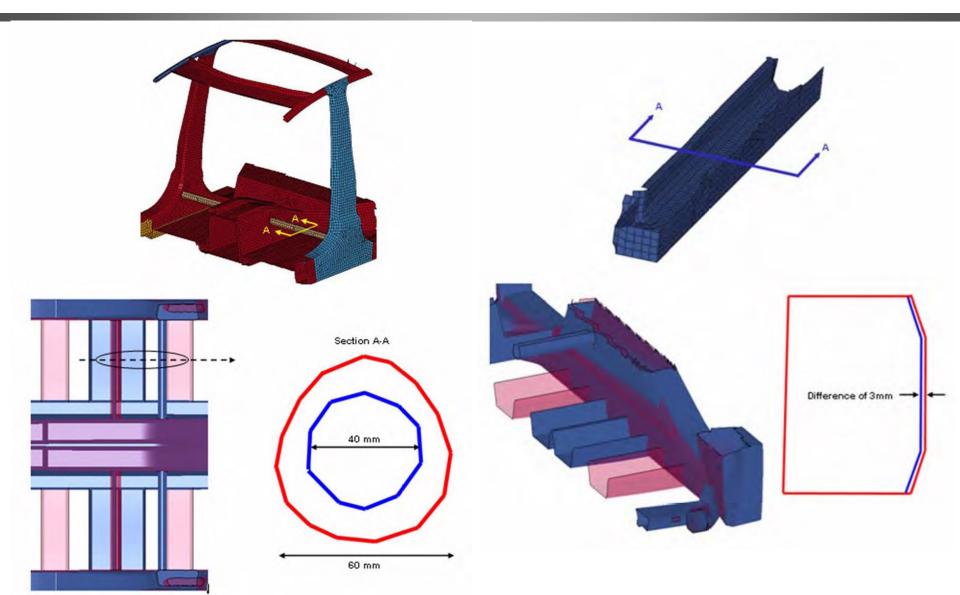

Future Steel Vehicle

Phase II Engineering - 66

Front rail / Shotgun

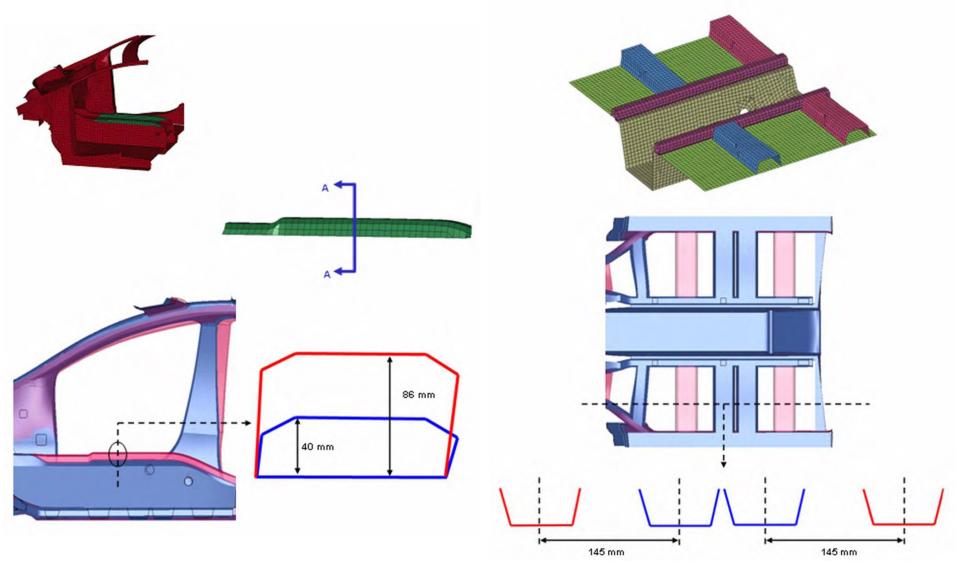


Lower IP / Torque box member



Future Steel Vehicle

Roof rail member / Joint rear upper

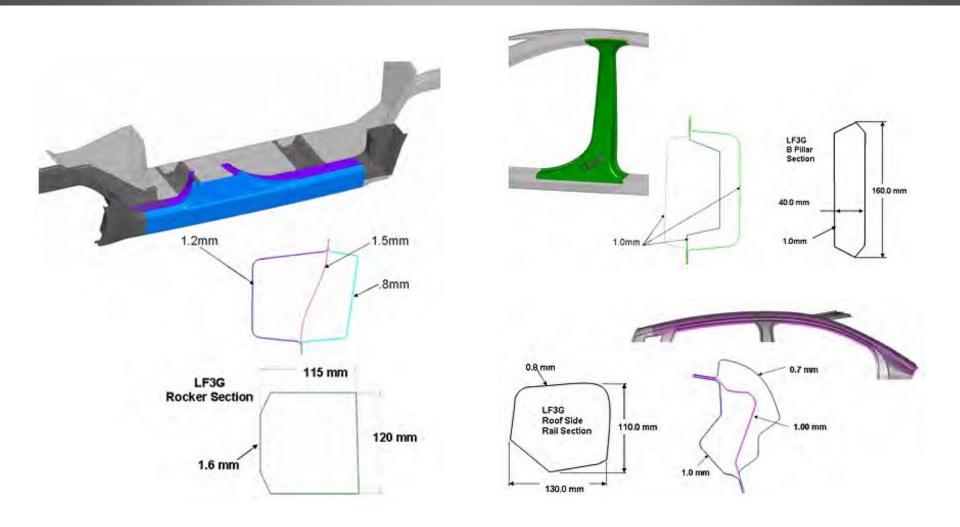


Seat crossmember / Rocker

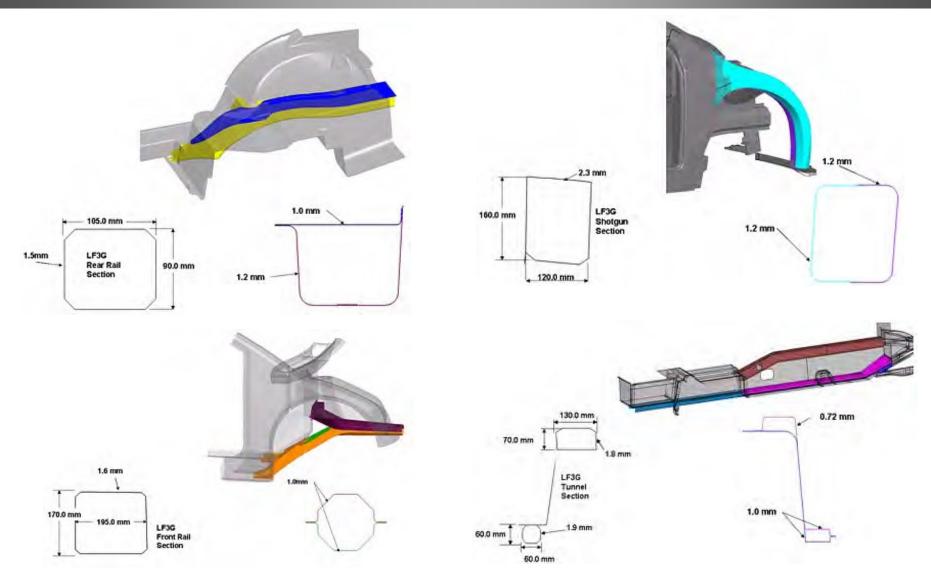
Future Steel Vehicle

Tunnel top member / Underbody crossmember

Future Steel Vehicle


Phase II Engineering - 71

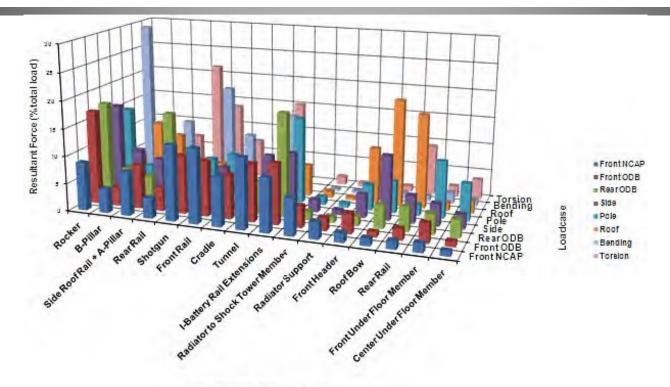
LF3G Geometry Interpretation


- Geometry from LF3G model → sheet metal design
 - assess and optimize various body structure sub-systems and related manufacturing processes
 - Rocker
 - B-pillar
 - Roof side rail
 - Rear rail
 - Front rail
 - Front upper rail (shotgun)
 - Battery upper & lower

Rocker / B-pillar / Roof side rail

Rear rail / Front rail / Shotgun / Tunnel rails

Structural Sub-System Design Optimization

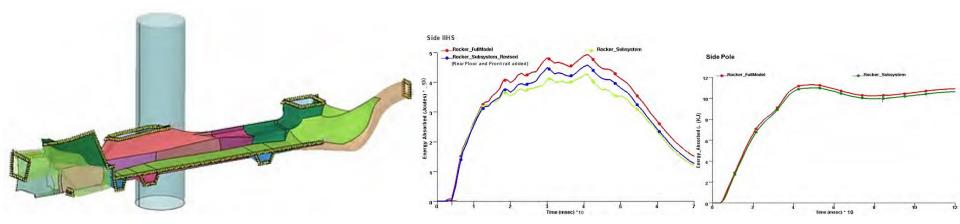

- Objective
- Loadpath mapping
- Sub-System
 - Rocker
 - B-pillar
 - Side roof rail
 - Rear rail
 - Battery tunnel rail
 - Shotgun
 - Front rail

Objective & Optimization Methodology

- best combination of material grade, gauge, geometry and manufacturing process for particular sub-system
- basic steps for the sub-system optimization
 - Sub-system development and validation
 - Initial design representing manufacturing approach
 - Establish design space
 - Parameterize geometry
 - Time history, constraints and targets from LF3G
 - Detailed 3G optimization; geometry (shape), grade (material) and gauge

LF3G Loadpath Mapping

Major Load Path Components

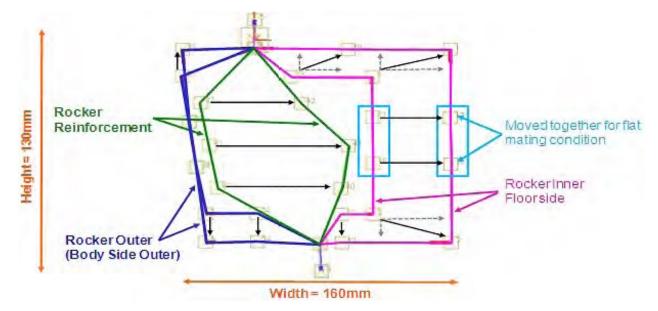

SUBSYSTEM	LOADCASE								
SUDSTSTEM	1	2	3	4	5				
Rocker	Front NCAP	Front ODB	Rear ODB	IIHS Side	Pole				
B-Pillar	IIHS Side	Roof Crush							
Side Roof Rail	Front ODB	Rear ODB	IIHS Side	Pole	Roof Crush				
Rear Rails	Rear ODB	Torsional Stiffness							
Tunnel Rails	Front ODB	Rear ODB	IIHS Side	3G Jounce					
Shotgun	Front NCAP	Front ODB							
Front Rail	Front ODB								

Future Steel Vehicle

Phase II Engineering - 77

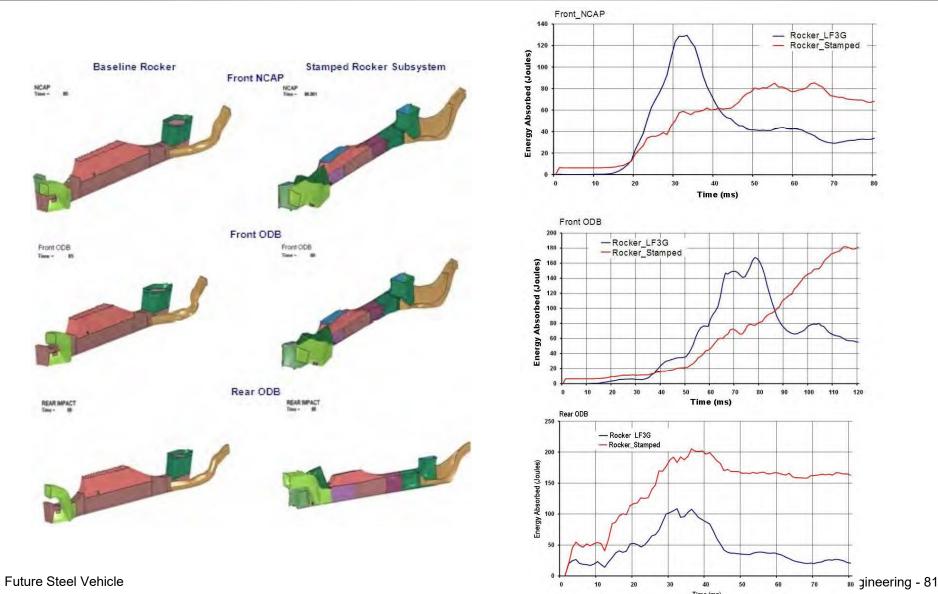
Rocker Sub-System

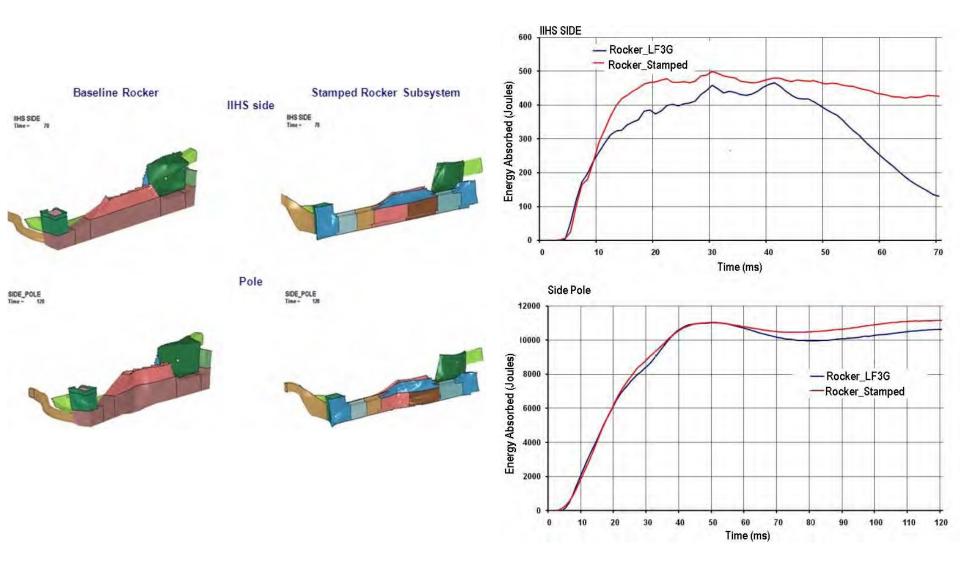
- Development of Sub-System from the Full Model
 - rocker and the major attachment components it is attached to such as the B-pillar, hinge pillar, rear rail, floor and underbody crossbeams
- Generating Boundary Conditions
 - nodal displacement time history is used so that it behaves in a similar manner to the full LF3G model



Stamped Rocker Concept

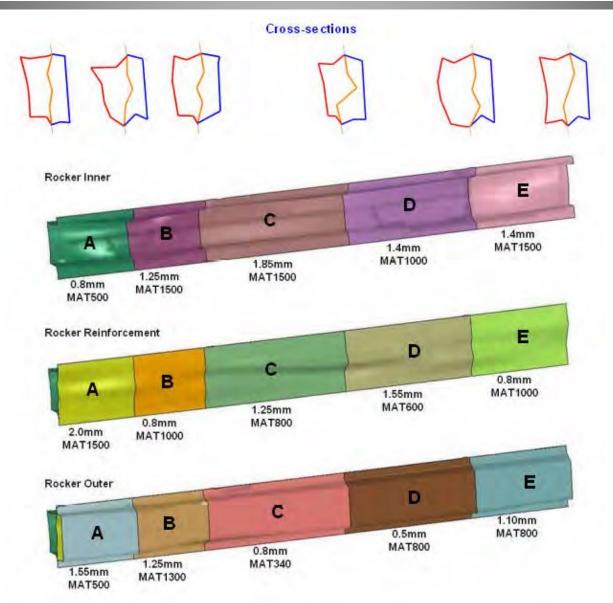
- Grade and Gauge Geometry Design Space
- Geometry Parameterization
- Optimization Setup
 - Objective: maintain the performance of the rocker so that the
 - total strain energy remains the same as the LF3G for front NCAP, front ODB, rear ODB, IIHS side and pole impacts. The mass of the LF3G rocker is 12.4 kg
 - Target: minimize the mass of the rocker
 - Constraint: energy absorbed by the rocker in the LF3G model (full model)
 - For IIHS side and pole impacts, +/-15% (plastic deformation)
 - For Front NCAP, front ODB and rear ODB impact, ≤ 650 J (elastic deformation)
 - Design solution


Stamped Rocker: Design Space & Geometry Parametrization

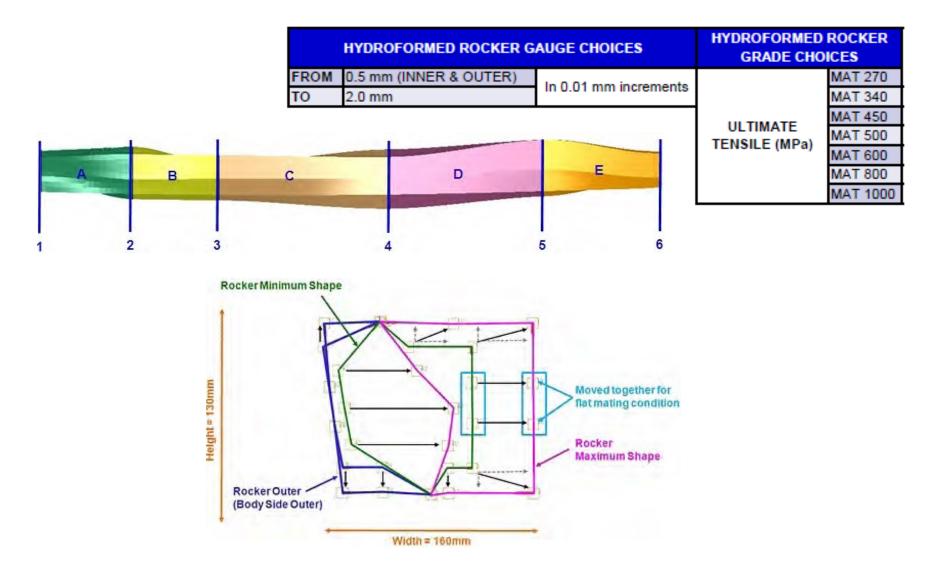


Stamped Rocker: Design Solution (Longitudinal Impact)

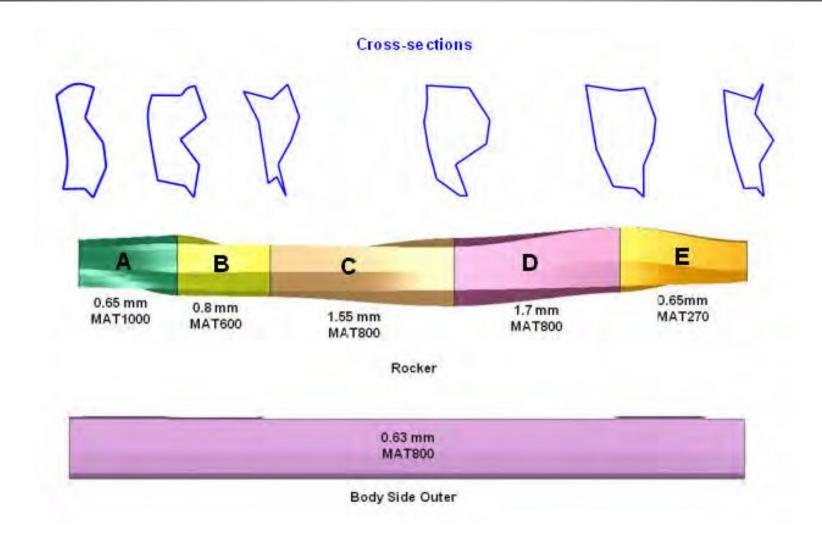
80

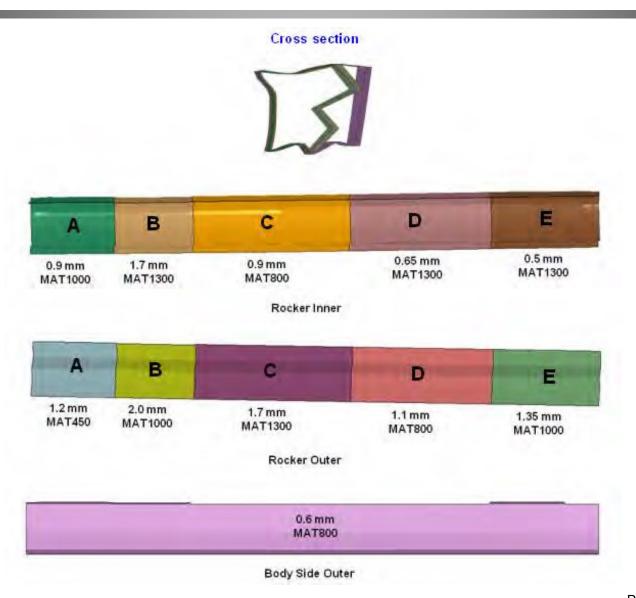


Stamped Rocker: Design Solution (Side Impact)

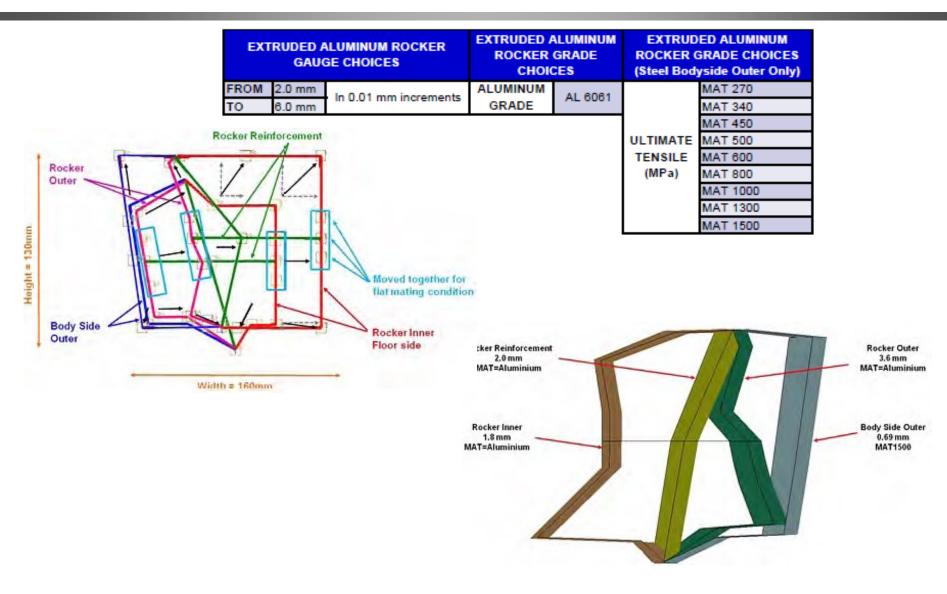


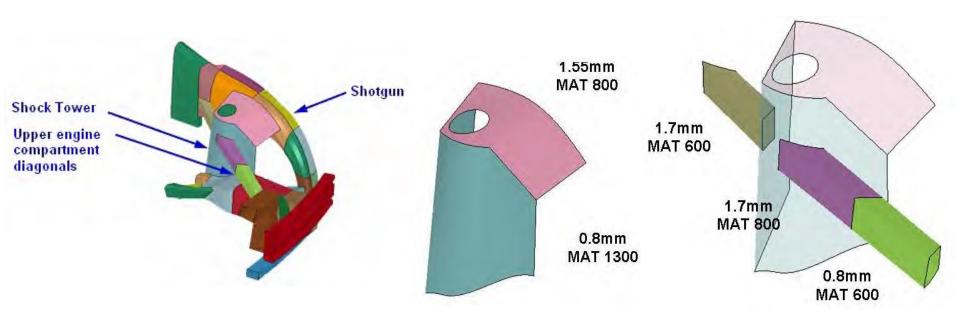
Phase II Engineering - 82


Stamped Rocker: Design Solution (Final)


Hydroformed Rocker Concept

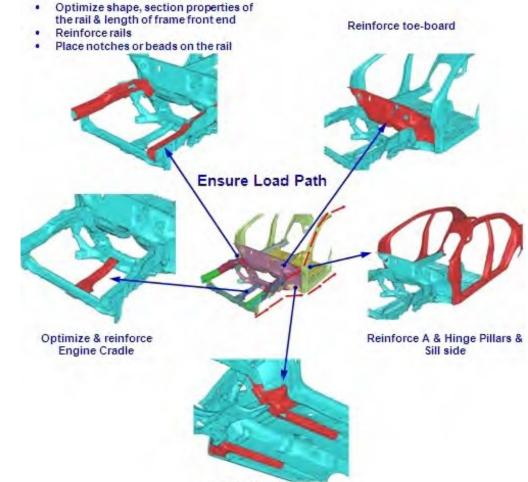
Hydroformed Rocker: Design Solution (Final)


Roll formed Rocker: Design Solution (Final)

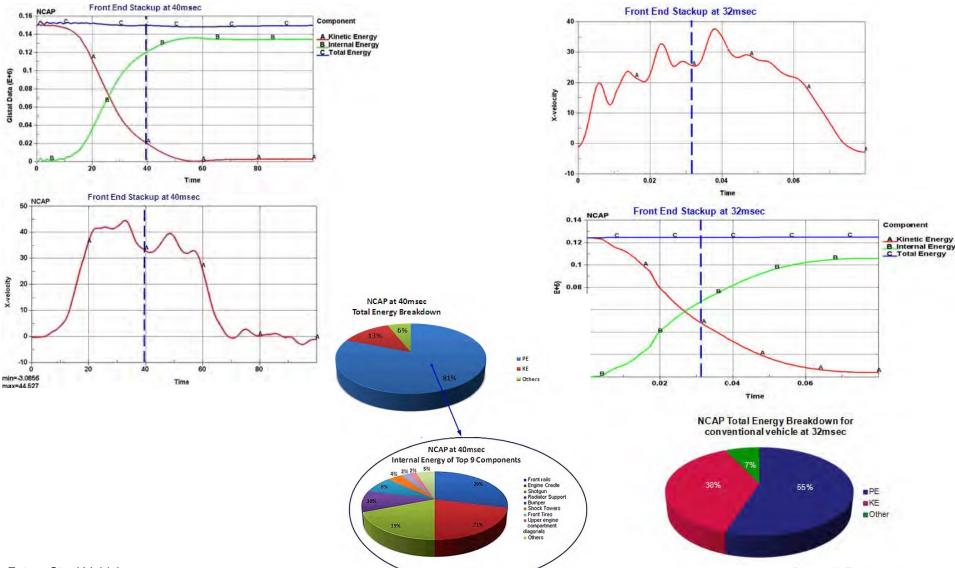

Future Steel Vehicle

Phase II Engineering - 86

Extruded Aluminum Roll Rocker


Front End Optimization

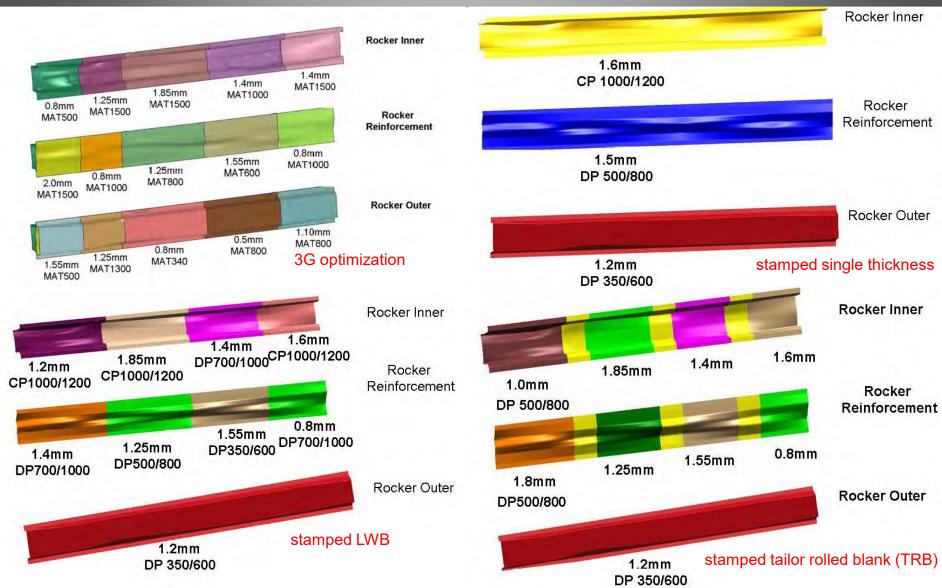
COMPONENT	LF3G BASELINE (kg)	DESIGN SOLUTION (kg)	MASS SAVING		
COMPONENT	LI'SO DASELINE (Kg)	Design socorrow (kg)	Kg.	%	
Shotgun (Stamped)	10.6	6.4	4.2	40%	
Shaw Member	2.13	1.7	0.43	20%	
Shock Tower	3.6	1.6	2	56%	
All Parts (LH/RH)	32.66	19.4	13.26	41%	


Front End: Load Path

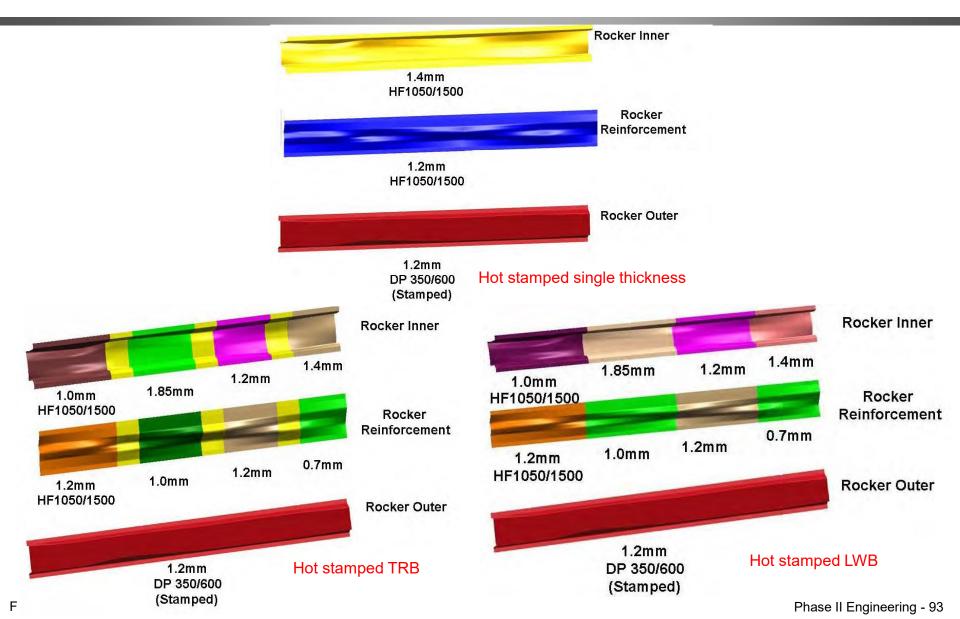
- loadpath and energy management strategies to both absorb and then transfer load: reduce the mass in the remaining
 - structure

Reinforce Torque box

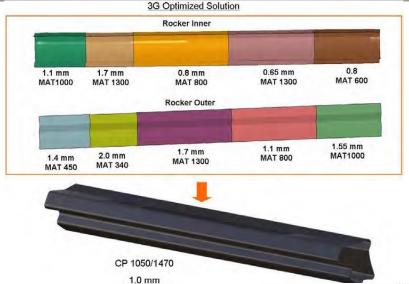
Front NCAP: FSV vs. Conventional

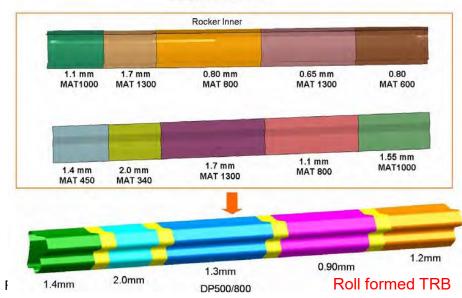

Phase II Engineering - 90

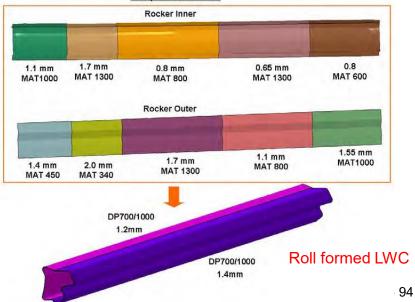
Structural Sub-System Design and Manufacturing Interpretation

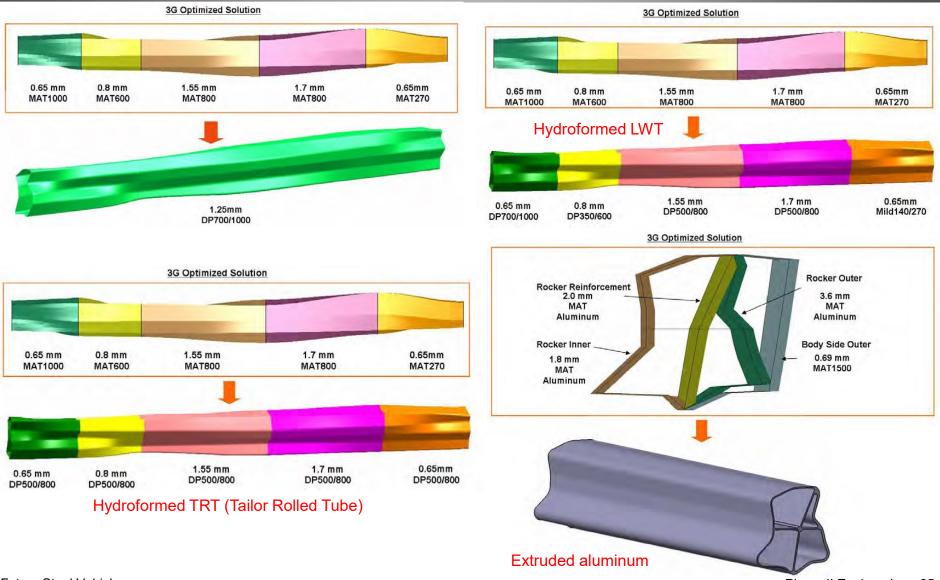

- structural sub-system multidiscipline 3G optimization

 → assess considering the respective manufacturing
 technology guidelines, to ensure manufacturibility of
 the sub-system
 - Sub-system 3G Optimized Solution
 - Manufacturing Interpretation (Design for Manufacturing)
 - Verification of Interpreted Results


Rocker: Stamped


Rocker: Hot Stamped


Rocker: Tubular (Roll Formed)


3G Optimized Solution

3G Optimized Solution

Rocker: Tubular (Hydroformed)

Future Steel Vehicle

Phase II Engineering - 95

Sub-Systems Selection Methods

- Every automobile manufacturer uses a certain selection criterion dependent on the market segment, demographics and relevant government regulations
- Mass
 - part mass and blank mass (influences the material costs, energy costs and the CO2e emissions)
- Costs
 - the manufacturing costs were assessed for the various subsystems using a cost model
- CO₂e Life Cycle Assessment
 - an environmental assessment, of Greenhouse Gases (GHG) emissions, was conducted for each sub-system over the complete vehicle life cycle

Manufacturing processes and operations sequence

	Manufacturing Portfolio									
	Stamping	Stamping Tailor Rolled Blank (TRB)	Stamping Laser Hot Welded Stamping Blank (LWB)		Hot Stamping Tailor Rolled Blank (TRB)	Hot Stamping Laser Welded Blank (LWB)				
Material Price	Steel Material Prices	Steel Material Prices + Rolling Premium	Steel Material Prices	Steel Material Prices	Steel Material Prices + Rolling Premium	Steel Material Prices				
Operation #1	Blanking (Single)	Blanking (Single)	Blanking (Multiple)	Blanking (Single)	Blanking (Single)	Blanking (Multiple)				
Operation #2	Stamping	Stamping	Laser Welding	Blank heating	Blank heating	Laser Welding				
Operation #3	Trimming	Trimming	Stamping	Hot forming	Hot forming	Blank heating				
Operation #4			Trimming	Laser Trimming	Laser Trimming	Hot forming				
Operation #5						Laser Trimming				
	Closed Roll Form	Open - Roll Form	Hydroform	Hydroform Laser Welded Tubes (LWT)	Hydroform Multiple Walled Tubes (MWT)	Aluminium Extrusion				
Material Price	Steel Material Prices	Steel Material Prices	Steel Material Prices + Tubing Premium	Steel Material Prices	Steel Material Prices + MWT Premium	Aluminum Material Prices				
Operation #1	Forming	Forming	Bending	Blanking (Multiple)	Bending	Cutting Billet				
Operation #2	Welding	Trimming	Pre-forming	Laser Welding	Pre-forming	Extrusion				
Operation #3	Trimming		Hydroforming	Master Shearing	Hydroforming	Straightening				
Operation #4			Trimming	Tube Rolling/Welding	Trimming	Hydrosizing				
Operation #5				Bending		Machining				
Operation #6				Pre-forming						
Operation #7				Hydroforming						
Operation #8				Trimming						

Sub-System Cost Assessment

- "technical cost modeling" approach similar to the one used by MIT in the ULSAB AVC and Future Generation Passenger Compartment (FGPC)
 - no supplier cost assessments conducted for any of the parts costs and assembly costs
 - costs for each of the operations involved in the manufacturing process, starting from blanking the steel coil, until the final operation to fabricate the component
 - Material, Labor, Equipment, Tooling, Energy, Building, Maintenance
 - determination of the component related inputs such as blank size, cycle time and tooling costs
 - remaining inputs that were crucial: Program Parameters, Plant Parameters, Process parameters

Parameters	FSV Assumptions
Model year	2015-2020
Annual Production Volume	100,000
Parts volume	only consider BEV
Production life	5 years
Energy cost	\$0.12 /kWh

Plant Parameters	FSV Assumptions
Working days	235 days/yr
Annual Paid Time	3525 hrs/yr
Indirect workers (Overhead)	0.25 per direct worker
Wage (including benefits)	\$45.00 /hr
Interest (Equipment, Building etc.)	10%
Equipment life	20 yr
Building life	25 yr
Building unit cost	\$1,500 /sqm

Process Parameters	FSV Blanking Assumptions	FSV Stamping Assumptions
Energy consumption rate	300 kW/hr	150 kW/hr
Space requirement	115 sqm/line	150 sqm/line
Manpower	1 worker/line	part dependent
Unplanned downtime	2 hrs/day	3 hrs/day
Maintenance Percentage	10%	10%
Material loss percent	1%	NA
Reject rate	0.10%	part dependent
Press line die average change time	NA	30 mts
Press line lot size	NA	1500 parts/lot
Cycle Time	2000 hits/hr	part dependent

Process Parameters	FSV Welding Assumptions	FSV Trimming Assumptions
Energy consumption rate	400 kW/hr	150 kW/hr
Space requirement	250 sqm/line	200 sqm/line
Manpower	1 per line	2 per line
Unplanned downtime	4 hrs/day	NA
Maintenance Percentage	5%	5%
Installation Percentage	25%	NA
Auxiliary Equipment Percentage	NA	NA
Reject rate	0.1%	0.5%
Press line lot size	part dependent	1500
Line rate	part dependent	500 hits/hr
Die Change time	NA	30 mts

Rocker sub-system Costs

						Manufactur	<u> </u>					
Part	T4 - Sub System Rocker Analysis Solution 1											
	Stamp	ping	Stam (TR	<u> </u>	Stam (LW		Hot Sta	mping	Hot Star (TR		Hot Star (LW	
Name	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)
Rocker Inner	4.92	\$10.15	4.46	\$11.72	4.61	\$ 13.77	4.31	\$12.07	4.15	\$14.32	4.15	\$15.73
Rocker Reinforcement	2.66	\$5.44	2.69	\$6.73	2.49	\$8.37	2.13	\$7.18	2.14	\$7.63	2.14	\$10.15
Rocker Outer	3.37	\$5.90	3.37	\$5.90	3.37	\$5.90	3.37	\$ 5.90	3.37	\$5.90	3.37	\$5.90
Total	10.95	\$21.50	10.52	\$24.36	10.47	\$28.04	9.80	\$25.16	9.66	\$27.86	9.66	\$ 31.78
	Solu	tion 2	Solu	tion 3			Solu	tion 4	Solutio			tion 5
Part	Closed For		Closed Form (1		Hydro	form	Hydroform Hydroform (LWT) (MWT)			Aluminium Extrusion		
Name	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)
Rocker Inner- Reinforcment	6.30	\$11.00	6.39	\$12.48	5.37	\$19.62	5.28	\$24.71	5.28	\$20.73	5.85	\$36.52
Rocker Outer(Stamped)	1.68	\$3.27	1.68	\$3.27	1.68	\$3.27	1.68	\$3.27	1.68	\$3.27	1.68	\$3.27
Total	7.98	\$14.27	8.07	\$15.74	7.05	\$22.88	6.96	\$27.98	6.96	\$24.00	7.53	\$39.78

Future Steer vernicie

Finase in Engineering - 100

B-pillar sub-system Costs

	Manufacturing Portfolio												
Part						System B-Pil	<u> </u>		1				
Fait	Stam	Stamping (TRB)			Stamping	-	Hot Star		Hot Stamping (TRB)			Hot Stamping (LWB)	
Name	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	
B-Pillar Inner	2.44	\$8.62	2.39	\$12.58	2.39	\$9.01	2.32	\$11.57	2.00	\$14.31	2.00	\$12.01	
B-Pillar Reinforcement	1.62	\$6.47	1.37	\$10.71	1.37	\$7.48	1.30	\$8.35	1.29	\$13.09	1.29	\$11.34	
B-Pillar Outer	2.19	\$7.08	2.19	\$7.08	2.19	\$7.08	2.19	\$7.08	2.19	\$7.08	2.19	\$7.08	
Total	6.25	\$22.17	5.95	\$30.37	5.95	\$23.57	5.81	\$27.00	5.48	\$34.48	5.48	\$30.44	
	Solu	tion 2	Solu	ition 3			Solu	ition 4			Solution 5		
Part	Closed For		Open - For		Hydro	form		Hydroform (LWT)		Hydroform (MWT)		Aluminium Stamping	
Name	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	Mass (kg)	Piece Cost (\$)	
B-Pillar Inner, Outer + Reinforcement	3.99	\$8.32	x	x	x	x	2.94	\$20.82	x	x	NA	NA	
B-Pillar Inner	NA	NA	x	x	x	х	NA	NA	х	x	2.71	\$27.42	
B-Pillar Reinforcement	NA	NA	x	x	x	x	NA	NA	x	x	0.39	\$8.56	
B-Pillar Outer	2.19	\$7.08	x	x	x	x	2.19	\$7.08	x	x	1.59	\$22.97	
Total	6.18	\$15.40	x	x	x	x	5.13	\$27.91	x	x	4.69	\$58.95	

Total Life Cycle Assessment

- metric CO₂e: typical greenhouse gases and their Global Warming Potential
 - Carbon dioxide has a GWP of 1
 - Methane has a GWP of 21
 - Nitrous oxide has a GWP of 310
 - Perfluorocarbons (HFC) has a GWP range of 140 to 11,700
 - Sulphur Hexafluoride has a GWP of 23.90

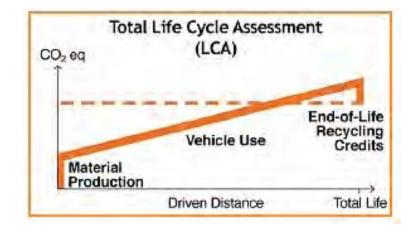
40 - 45

 Material production
 greenhouse gas (GHG) emissions:

 GHG from Production (in kg CO2eq/kg of material)

 Steel
 2.0 - 2.5

 AHSS
 2.0 - 2.5


 Current Average GHG Emissions

 Primary Production

 Aluminium

18 - 24.8

21 - 23

Magnesium

(electrolysis)

Magnesium

Carbon FRP

(pigeon)

Total vehicle life cycle emissions: Rocker

FSV Sub-system	Material CO ₂ e	Manufacturing CO ₂ e	Use CO ₂ e	Recycling CO ₂ e	Total Vehicle Life Cycle CO2e
Rocker, Baseline	2290.8	5.7	14640.2	(956.8)	15980.0
Solution 1 - Stamping	2299.4	6.1	14688.3	(960.6)	16033.2
Solution 1 - Stamping TRB	2292.9	6.0	14654.8	(957.6)	15996.1
Solution 1 - Stamping LWB	2292.3	16.9	14658.1	(957.3)	16010.0
Solution 2 - Hot Stamping	2272.9	9.7	14608.1	(947.7)	15942.9
Solution 2 - Hot Stamping TRB	2271.7	9.7	14598.5	(947.2)	15932.7
Solution 2 - Hot Stamping LWB	2271.7	20.4	14598.5	(947.2)	15943.4
Solution 3 - Closed Roll Form	2246.0	5.1	14481.6	(935.3)	15797.4
Solution 3 - Closed Roll Form (TRB)	2238.4	4.8	14479.5	(931.3)	15791.5
Solution 3 - Closed Roll Form (TWC)	2245.5	4.8	14487.9	(934.9)	15803.3
Solution 5 - Hydroform	2223.3	15.9	14416.8	(924.2)	15731.9
Solution 5 - Hydroform LWT	2223.1	25.6	14410.6	(924.2)	15735.1
Solution 5 - Hydroform TRT	2222.5	15.9	14410.6	(923.9)	15725.1
Aluminium Extrusion	2350.8	8.6	14425.1	(1008.5)	15775.9