Exercises with Matlab codes

- Problem 1: Test influence of discretization, filter size, penalization power, filter type and the run time on the topology of the MBB-beam (default example) using the following three Matlab codes.
 - top(nelx, nely, volfac, penal, rmin)
 - top88(nelx, nely, volfac, penal, rmin, ft)
 - top99neo(nelx, nely, volfac, penal, rmin, ft, ftBC, eta, beta, move, maxit)

Exercises with '99 line Matlab code' (1)

- Problem 2: Implement other boundary conditions
 - Change boundary and support conditions in order to solve the optimization problems sketched in the figure. Does the direction of the forces change the design?

Exercises with '99 line Matlab code' (2)

- Problem 3: Implement multiple load cases
 - Extend the algorithm such that it can solve the two-load case problem shown in the figure. Discuss the difference in topology compared to the one-load case solution.

Exercises with '99 line Matlab code' (3)

- Problem 4: Implement passive elements
 - In some cases, some areas may be required to take the minimum density value (e.g. a hole for a pipe). Add the necessary lines to the program such that the problem shown in the figure can be solved. What is the difference in compliance compared to Problem 2 (left)?

