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Computational Model2| &

 Point Model : =X|E B2 = 2AR)

e Curve Model : 2X|& SM2E HY

« Surface Model : =4S HO = Mo

« Solid Model : =48] XA &= HO

. Hybrid Model : 8Ll RE=Z N oM ZH QAN E
25 0l&
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=% (non-parametric equation)
implicit form): f(x,y) = 0
explicit form): y = f(x)

. Of7 =4l (parametric equation)
— P(u) =[x(u), y(u), z(u) ]
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= (explicit form) | (implicit form) (parametric form)
O|X+&
HOo 2N y=f(x) f(x,9)=0 r(?) = (x(2), y(1))
SPNET z=f(x,) f(x,y,2)=0
1) = (x(2), v(¢), z(t
32 24 { - g(x,) {g@c,y,z) =g OTFOX00)
r(u,v)=
2o _ _
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Curve, Surfacel| ¥ & 2t

 [w@iyad g@ed ze | Ol dsy ao
Ay
(acos 8,bsin 6)
b y:b\/l—xz/az x_2 y_z_ _ r(e): ac.osé’
| AWR —— 2+b 1=0 bsin 6
X X y=—b\/1—x /a a
5 0<0<2rx
e 7 cos @ cosd
xry oz o= r(0,¢)=| rcos¢@sin O
¥ sin @
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Curve Equations

[ L TTTT—
parametric form: x = Rcos @, y = Rsin6, z=0(0< 0 <27x)

implicit form: x* + y° —R* =0, z=0

explicit form: y = +/R> —x°, z=0

circley

nonparametric {

« Parametric form

— Points can be generated in sequence along the curve by
substituting small increments of the parametric values

* Nonparametric explicit form

— Not sure which variable to choose as the independent
variable and to increment at each evaluation

— Two values (+/-) for the dependent variable, which one?

* Nonparametric implicit form

— Same inherent problem even though it differentiates the
independent variable from the dependent variable
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Parametric Curve

x| {xm:(l—r)xwtxl 1
y(t) ==y, +1, P, i
=>r()=(1-1)P, +1P, t=0

Lt-M (helix):

r(f)=(acosf,asin H,iﬁ)
27
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Conic Section Curves (1)

0| KO
B o
Kk o
O A

ks
A
K- 41

o
oFl
11

H

=
o

Ofl R At

ol 2
= O

NAFE L

L

ofl o of K

=0

ax’ +by* +c+2fx+2gy+2hxy

Bd
3 <
S 2 =
¥ 9 P
R <0
= 2 =
VN
o o o
e -
S S S LS
R -
fzhzhzh\w__._

Hyperbola r

A

&

Ellipse

Circle

S
A}

Ef

[all

I

<

=)
ol

X

X
Hr

—t

<0

weoumetry - 10

CAD



Conic Section Curves (2)

A AR

Triangle  Section Plane Ellipse
Through Generators

Section Plane
Through Apex

g
S
&
qQ

Section Plane Parallel
to end generator.
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./ ./ e
+f' N, X
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Cylinder through Sq. Pyramid through
generators. all slant edges
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Conic Section Curves (3)

i ad | ol se

/A= 5 , (xzrcos«9+xc
(circle/ (x_xc) +(J’—J’c) - ) — rsing+
circular arc) Y= e
Et2l/EtR 2 F (x-x,) (y=».) (x=acosf+x,
(ellipse/ ——— ——=1 _ bsing
elliptic arc) & b |y =08smo+y,
npy x_z_y_zzl ;x = g coshu
(hyperbola) a b’ |y =bsinhu
L= 2 x=cu’
= 3
(parabola) A= y=u
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Conic Section Curves (4)

ax” +by’ +c+2fc+2gy+2hxy =0
— x> +by’ +c'+ fx+g'v+h'xy =0 (5 unknowns)

. 3PTS (PO, P1, QO) F-0|
— Two end points + Two tangents £= 0, - 0|
— Fullness factor p p >0.75 : hyperbola
+ 5PTS (PO, P1, P2, P3, P4) p=0.75 : parabola
— Two end points + Three intermediate points p <0.75 : ellipse
— Is it a hyperbola, parabola, or ellipse ?

Q
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CATIA V5: Sketcher Profile / Conic (1)

“SketcherProfile

e Elli p Se  http/icatiadoc.free.frionline/cfyugdys_C2/cfyugdys0306.htm

— Center->Major Semi-Axis Endpoint [Radius(+Angle)]-=>Minor
Semi-Axis Endpoint

° ParabOIa by FOCUS http://catiadoc.free.fr/online/cfyugdys _C2/cfyugdys0316.htm
— Focus—>Apex—>Start Point>End Point

axis of symmetry directrix (y = —p) , focus (O, p)

y+p=\/x2 +(y—p)2 —x’ =4py
origin(h,k)—)(x—h)2 =4p(y—k)

~ > y=ax’+bx+c

vertex 1

H y=ax2—>x2:X(<—>x2=4py),F=—
a 4a
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CAD

CATIA V5: Sketcher Profile / Conic (2)

Sowrarors BN cov.
NN mE ]

« Hyperbola by Focus
— Focus—>Center->Apex—> Start Point->End Point
— Eccentricity e = (center to focus) / (center to apex)

http://catiadoc.free.fr/online/cfyugdys C2/cfyugdys0317.htm

Xy a0
2 b2 anotl;(e)igsogl)lgﬁ)j)lg)fp )
2 2
|PE| N \/(XP -X.) +%, _X,
|PD| v X X,
P
)(F
XY’
> X, = | X +—L
XP _XA
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CATIA V5: Sketcher Profile / Conic (3)

lgO¢ 20

sketcherprofie JNNNes)  Conic
|

oWk

« Conic
— Two Points (parameter)

« Start and End Tangent
« Tangent Intersection Point

— Four Points
« Tangent at Passing Point

— Five Points

CAD

0 < parameter < 0.5: ellipse
0.5 < parameter < 1.0: hyperbola

parameter = 0.5: parabola

oM

P ter = —
arameter OT
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Splines: Background (1)
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Splines: Background (2)

 Flexure: 2
M =Er%Y
dx
* Moment:
M (x)=P(I-x)

« Displacement:
— Cubic polynomial in x
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Spline (2)

+ SPLINE: €#HO| =55 X[Lte= =

~ ZtH ALOIE oj2] o] FMZZto R 0|2 A

— 4 3MZEZH (ARC) : 3K} (or 5At) =M

— O|X]==: 47l (or671)

— two points, two tangents, (two 2"d order derivatives)
S Z240] 4K} 64+ SO| ArEE[X| = 0|7 2

* Cubic splines
“Control

Points” =~—__ ()

« Refinements / /ﬁu)
— B-spines 7

— Non-Uniform Rational B-splines (NURBS) ‘-(g)_/
()
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« Spline
— Control points: solid square points
— Large number of control points?
» Create construction points that are constrained first
» Modify? Recreate better than edit
« Connect with a spline
— Continuity in Point (C9)
— Continuity in Tangent (C"): tension at each endpoint
— Continuity in Curvature (C?): tension at each endpoint
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CAD

CATIA: Sketcher—-> Constraint

Modification of geometric
models through variational

geometry

Robert Light and David Gossard*

Systemns for computer-ided mechanical design use geo-
metric models for drafting, analysis and programming of
NC machines. Because design is iterative in nature, the
topology, geometry or dimensioning of a geometric model
must be modified many times during the design cycle.

The effectiveness of future CAD systems will depend in
large part upon the ease with which geometric models

can be created and modified.

This paper presents the results of a research effort to
dewveiop flexible procedures for the definition and modifi-
cation of geometric models. A central idea of this effort is
that dimensions, such as appear on @ mechanical drawing,
are @ natural descriptor of geometry and provide the most
appropriate means for altering o geometric model.

A procedure is described by-which geometry Is deter-
mined from a set of dimensions. The geometry correspond-
ing to an aitered dimension is found through the si

cant reduction of the number of constraint equations to
be solved and the effect of sparse matrix metheds in
reducing the time required to solve the eguations.

BACKGROUND

The use of constraints to define geometry can be seen in
Sutherland's early work." Sutherland made use of con-
straints as a design aid in the creation of a part, but did
not use geometric constraints for definition and modifica-
tion of part geometry. Requicha® used directed graphs to
represent the relationship between dimensions and geo-
metry. Three graphs were constructed to show the dimen-
sional relations in the x, y and z directions, Hence, this
approach is limited to geometries consisting of rectilinear
segments. Gopin® made the first use of directed-graphs to
define and modify geometry in an interactive CAD system.
This CAD system restn:led the part geametries to

eous solution of the set of constraint equations. Presented
in this paper are the basic approach to medifications of
geometric models, a procedure for significant reduction of
the number of constraint equations to be solved, and the
effect of sparse matrix methods in reducing the time
required to solve the equations.

@ ded design, modei, ionai geometry

In this paper a procedure is described by which geometry
is derermined from a set of dimensions. A geometric
model is defined with respect to a set of characteristic
points in 3-space. Dumnsbns are treated as constraints

fimiting the p tions of these ch
points.. Each dimensional constraint is described by a
equation | ing the of iated

characteristic points. A givm dimensioning scheme i Js
by a set of such equations. The
wnaspendin; man altered dimension is fnund ﬁmough the
of the set of

These techniques were incorporated into a prototype
2D CAD system. This system allows freenand sketch
mput to define the general shape of the part. The user

ively defines the di ving scheme and the

desired values of the dimensions. By solving the system of
constraint equations, the geometry of the part is updated
10 be consistent with the new set of dimensionai vaiues.

Presented in this paper are the basic approach to
madification of geometric models, a procedure for signifi-

Oeere anad Campany Technical Center, Moline, IL, USA
“Computer-Aided Desian Laboratory, Department of Mechanical
institute of » Cambridge,

WA, USA

and d

Mare recantly, Hillyard and Braid®® showed that small
variations in geometry could be related to variations in
dimensions by a ‘rigidity matrix’, Light® and Lin et al’
showed that generalized dimensional constraints could be
used to modify geometry through large shape variations, and
that geometric properties could be used to constrain geo-
metry. This was demonstrated on prototype 2D and 3D
CAD systems.

GEOMETRY

As shown in Figure 1, the geometry of an object is defined
by a set of NV characteristic points. This set includes points

ih A%

et L]

Figure |. Shape definition points

volume 14 number 4 i1 1092 0010 4495727/040209—0€6 $07.00 © 1982 Butt.iworth & Co (Publishers) Lid 209
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Geometry

* Defined by a set of N characteristic points

x={X, ¥ 7z .. X, Y, Z,}
T

Xz{x1 X, X3 ... X, 5, X, xn}

where n=3N

 (Generalized dimensional constraints
— Implicit: right angles
— Explicit distance between two points \1

> A 1

d : vector of dimensional values
F(x,d)=0 i=1, 2,..., m where <x:geometry vector
m : number of constraints

6 : to prevent 3D rigid body translation and rotation

constraint equations , _ , _ _
(m—6): designer's specific choice of dimensions
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Geometric Constraints

. . Entities
Dimension name .
constrained

Horizontal distance A, B, X -X,-D=0
Vertical distance B, B, 1 -Y,-D=0
2 2
Linear distance B, P, (X,-X,) +(¥,-Y,) -D*=0
Distance f int t U= )
"r:zance rom point to P. BP UxV|-D=0 - PR |PP]
V=(X,-X)i+(%,-Y)j

- RP,x PP,

Angular dimension PP, PP, — —tan(4)=0
BELRE,
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Distaace from pr A
+o line containing
Band C is

B l ac
Amzs’:llﬁ—ﬂ’r'ﬂ?ll-bm'hfa"" '?ié%l :

I| B4 xBC |l = |ZC |l height
- Il B4 x&C |

T : w ¥ ||
cos = . Sinfd = —=
]l o[ [|ev]
|4 =
tan & =
T
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Area of an N-sided 2D polygon

The area of a polygon (vector geometry)
+ The triangle

1
A= ;\{p; — )X (3= 1)

« A plane polygon with n vertices (n>=4)

Z{.}}m = D) Pa —B)

i=l

d=1
=

A=%;{Z(XZY,-H —YZXI-H)}

i

i=12,..., number of points in contour

j=12,..., number of contours
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CAD

1 N p a ) (j_
A:_Z Z(XiYiH_K‘XHI)_'_ZSjRj aj_ .
24 - 2R

i J
i=1,2,...,a a:number of points, point indices are sequential around contour
j=12,...,p p:number of arcs in contour

n=12,....,N N :number of contours

C, : chord of arc j, Cz\/(X1 ~X, ) +(Y, -

o<
N——"
NS}

J

. {+1 if defining a hole

—1 if defining an exterior boundary
(X,.Y,) and (X,,Y,) end points of the arc
(X,.Y,) center of the arc
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Solving for Geometry

E(x,d)=0—>E(x0,d)+aE Ax=0—>JAx =r

Ox;
S S S
J= f.21 f.22 f?" wherefl.j:aFi
: : . Ox;
St S S
Ax={Ay, Ax, ... Ax)
r={-F -F, .. -F)

m : number of constraint equations

n : number of degrees of freedom (coordinates)

o , m > n: shape is overdimensioned (too many or redundant dimensions)
m # n: Jacobian is structurally singular _ ] . _ _
m < n: shape is underdimensioned (too few dimensions)

m =n: Jacobian can be singular satisfying a redundant dimensioning scheme

— necessary and sufficient condition for a valid dimensiong scheme: non-singular Jacobian
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CAD

Implementation

* Define approximate geometry
» Assign dimensional constraints

T
J‘-_,,/'--' 4 )
.‘ h/,/
L
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Example

27. 28 27. 28 ! —E5. 00 R
— rsmR
Selection of a dimensional constraint Modified geometry
ABICIDIEIFIGIHIT] 111213 PERIMETER = 171 34733
JIKILIMINIOIPIQIR! '4[516 o p T L
SITIUIVIWIX[YZleal 718]8] - 1338 7e0e7
el [T 1171110l Seem 7z Calculation of
! IXY = -gl84, 47559 . .
1 « = s Geometric properties

L

=

— &

J

BENENEEE NN

5 SAYE Z0OM VIEW INSP ™"
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