CAE

PDE & Direct Stiffness Method by COMSOL

Computational Design Laboratory Department of Automotive Engineering Hanyang University, Seoul, Korea

Copyright © 2021 Computational Design Lab. All rights reserved.

OUTLINE

- Lecture Goals
 - ✓ COMSOL을 이용한 편미분방정식의 유한요소 해석 시뮬레이션
 및 후처리 과정 전반을 실습하고 직접 강성법 예제를 통해 유한
 요소 해석의 시스템 행렬과 벡터의 개념을 고찰한다.
- Content
 - ✓ PDE Examples
 - ✓ Direct Stiffness Method: Truss
 - ✓ Assignment

- PDE Examples
 - ✓ Laplace equation
 - ✓ Heat conduction equation

m + 1, n + 1

LAPLACE EQUATION

– PDE → algebraic difference equation

y4

0, n + 1

 $[K_{ij}]$: coefficient matrix, $\{T_i\}$: solution vector, $\{f_i\}$: force vector

CAE

SETTING

GEOMETRY CREATION

Geometry 1 메뉴를 마우스 우클릭 → Rectangle 선택

Width: 4, Height: 4 입력 후 Build Selected 클릭

GEOMETRY CREATION

COEFFICIENT INPUT

Copyright © 2021 Computational Design Lab. All rights reserved.

BOUNDARY CONDITION

MESH CREATION

COMPUTE

POST-PROCESSING

POST-PROCESSING

FURTHER CONSIDERATIONS

- Mesh Type (Free Triangular \rightarrow Free Quad)
- Solution Type

(Nodal Solution → Element-wise Solution)

CAE

MESH CREATION(FREE QUAD)

CAE

MESH CREATION(FREE QUAD)

POST PROCESSING(ELEMENT WISE)

POST PROCESSING(ELEMENT WISE)

후처리를 위한 지배방정식 절점 기반 솔루션 (u) =요소 기반 솔루션 (u2) 요소 기반 솔루션의 경우 한 요소당 하나의 값을 갖고, 요소 간에 불연속한 솔루션 을 갖는다.

- PDE Examples
 - ✓ Laplace equation
 - ✓ <u>Heat conduction equation</u>

HEAT CONDUCTION EQUATION

Hot

Cool

heat stored in the element over a unit time period $\Delta t = (In) - (Out)$

$$q(x)(\Delta y \Delta z) \Delta t - q(x + \Delta x)(\Delta y \Delta z) \Delta t = \rho C (\Delta x \Delta y \Delta z) \Delta T$$

$$\frac{q(x) - q(x + \Delta x)}{\Delta x} = \rho C \frac{\Delta T}{\Delta t} \xrightarrow{\text{taking the limit}} - \frac{\partial q}{\partial x} = \rho C \frac{\partial T}{\partial t} \xrightarrow{q=-k\rho C \frac{\partial T}{\partial x}} k \frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}$$

$$\begin{cases} k = 0.835 \text{ cal/}(\text{s} \cdot \text{cm} \cdot ^\circ \text{C}) \\ \Delta x = 2 \text{ cm} \\ \Delta t = 0.1 \text{ s} \end{cases}$$

$$\begin{cases} \text{Boundary condition} \\ T(0,t) = 100^\circ \text{C} \\ T(10,t) = 50^\circ \text{C} \end{cases} \begin{cases} \text{Initial condition} \\ T(i,t=0) = 0^\circ \text{C} \end{cases}$$

Copyright © 2021 Computational Design Lab. All rights reserved.

SETTING

GEOMETRY CREATION

Geometry 1 우클릭 → Interval 선택

Left: 0, Right: 10 입력 후 Build Selected 클릭

COEFFICIENT INPUT

BOUNDARY CONDITION

MESH CREATION

COMPUTE

POST-PROCESSING

POST-PROCESSING

- Direct Stiffness Method: Truss
 - ✓ <u>Geometry creation</u>
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

EXAMPLE TRUSS STRUCTURE

Physical structure

Idealization as a pin-jointed bar assemblage

Geometric, material and fabrication properties

Support conditions and applied loads

MODEL WIZARD

_													Model Wizard 산	1택
0	rile –	> 🔒 🛛	5 ¢ 🖬						Untitled.mph	COMSOL Multiphysics		I		
	File 🔻	Model	Definitions	Geometry	Materials	Physics	Mesh	Study	Results					
	Ne	9W												
	Mode	el										Ì		
	Mi Wi Blank	mph odel izard												
	Appli	ication												
	Appl W	A phapp lication izard												
	?	Help 🗙	Cancel <table-cell> S</table-cell>	Show on startup	p									
									4	94 MB 573 MB	 			

DIMENSION SELECTION

M ~.

PHYSICS SELECTION

		_ 🍟 Structural Mechanics 모
	Untitled.mph - COMSOL Multiphysics	I Truss physics 선택
Model Definitions Geometry Materials Select Physics P Chernical Species Transport P Acoustics P Acoustics P Electrochernistry P Electrochernistry P Heat Transfer P Optics P Plasma P Plasma P Plasma P Plate (plate) P Plate (plate) P Plate (plate) P NULLIDOUT OF Plate (plate) P Plate (plate) P Added physics interfaces: Added physics interfaces:	Physics Mesh Study Results Image: Search mark Search mark The Truss interface is used for modeling slender elements that can only sustain axial forces it can be used for analyzing truss works where the edges are straight, or to model sagging cables like the deformation of a wire exposed to gravity. It is available in 3D and 2D. Geometric nonlinearity can be taken into account. The material is assumed to be linearly elastic. Image: Mesh Study Results Image: Remove	Add 클릭
G Space Dimension	Study	
? Help 🗙 Cancel 🗹 Done		

PHYSICS SELECTION

🔨 🗅 📚 - Untitled.mph - COMSOL Multiphysics	¹ Added physics interfaces에 서 추가된 physics 확인
File Model Definitions Geometry Materials Physics Mesh Study Results Image: Comparison of the study Image: Comparison of the	
Select Physics Recently Used Control Species Transport Control Species T	▶ Study 클릭
548 MB 595 MB	

CAE

STUDY TYPE SELECTION

GEOMETRY CREATION

2 Bezier Polygon 클릭
GEOMETRY CREATION

GEOMETRY CREATION

Control points 시작점 (0,0) 끝나는 점 (10,0) 을 입력

옆의 숫자 1 은 시작점 좌표, 2는 끝나는 점을 의미

<mark>2</mark> Build Selected 클릭

GEOMETRY CREATION

같은 방식으로 총 3개의 직

ELEMENT ORDER CHANGING

Copyright © 2021 Computational Design Lab. All rights reserved

ELEMENT ORDER CHANGING

Truss physics 클릭

Displacement field 를 Linear 로 변경

- Direct Stiffness Method: Truss
 - ✓ Geometry creation
 - ✓ <u>Material property</u>
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

Geometric, material and fabrication properties

- Direct Stiffness Method: Truss
 - ✓ Geometry creation
 - ✓ Material property
 - ✓ Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

Geometric, material and fabrication properties

Geometric, material and fabrication properties

Geometric, material and fabrication properties

- Direct Stiffness Method: Truss
 - ✓ Geometry creation
 - ✓ Material property
 - Cross section property
 - ✓ **Boundary condition**
 - ✓ Nodal force
 - ✓ Analysis

Prescribed Displacement

Support conditions and applied loads

- Direct Stiffness Method: Truss
 - ✓ Geometry creation
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ <u>Nodal force</u>
 - ✓ Analysis

POINT LOAD

POINT LOAD

- Direct Stiffness Method: Truss
 - ✓ Geometry creation
 - ✓ Material property
 - Cross section property
 - ✓ Boundary condition
 - ✓ Nodal force
 - ✓ Analysis

COMPUTE

- Stiffness matrix
 - ✓ Global stiffness matrix by hand
 - ✓ Global stiffness matrix by COMSOL

Support conditions and applied loads

$\mathbf{f} = \mathbf{f}^{(1)} + \mathbf{f}^{(2)} + \mathbf{f}^{(3)} = \left(\mathbf{K}^{(1)} + \mathbf{K}^{(2)} + \mathbf{K}^{(3)}\right)\mathbf{u} = \mathbf{K}\mathbf{u}$								
Ŭ.								
f_{x1}		20	10	-10	0	-10	-10	<i>u</i> _{x1}
f_{y1}		10	10	0	0	-10	-10	u_{y1}
f_{x2}	_	-10	0	10	0	0	0	u_{x2}
f_{y2}	_	0	0	0	5	0	-5	u_{y2}
f_{x3}		-10	-10	0	0	10	10	<i>u</i> _{x3}
f_{y3}		10	-10	0	-5	10	15	<i>u</i> _{y3}

CAE

- Stiffness matrix confirm
 - ✓ Global stiffness matrix by hand
 - ✓ Global stiffness matrix by COMSOL

[[]Other에서 Assemble 클릭

SYSTEM MATRIX

SYSTEM MATRIX

COMPARISON

Support conditions and applied loads

$$\mathbf{f} = \mathbf{f}^{(1)} + \mathbf{f}^{(2)} + \mathbf{f}^{(3)} = \left(\mathbf{K}^{(1)} + \mathbf{K}^{(2)} + \mathbf{K}^{(3)}\right)\mathbf{u} = \mathbf{K}\mathbf{u}$$

$$\begin{bmatrix} f_{x1} \\ f_{y1} \\ f_{x2} \\ f_{y2} \\ f_{y2} \\ f_{x3} \\ f_{y3} \end{bmatrix} = \begin{bmatrix} 20 & 10 & -10 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & 0 & 0 \\ 0 & 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -5 \\ -10 & -10 & 0 & 0 & 10 & 10 \\ -10 & -10 & 0 & -5 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix}$$

COMSOL Result

Load Vector

Stiffness matrix

0	20.000	10.0000	-10.0000	0.0000	-10.0000	-10.0000
0	10.0000	10.0000	0.0000	0.0000	-10.0000	-10.0000
0	-10.0000	0.0000	10.0000	0.0000	0.0000	0.0000
0	0.0000	0.0000	0.0000	5.0000	0.0000	-5.0000
2	-10.0000	-10.0000	0.0000	0.0000	10.0000	10.0000
1	-10.0000	-10.0000	0.0000	-5.0000	10.0000	15.000

LOCAL STIFFNESS MATRIX

Stiffness matrix by COMSOL

10.0000	0.0000	-10.0000	0.0000
0.0000	0.0000	0.0000	0.0000
-10.0000	0.0000	10.0000	0.0000
0.0000	0.0000	0.0000	0.0000

0.0000	0.0000	0.0000	0.0000
0.0000	5.0000	0.0000	-5.0000
0.0000	0.0000	0.0000	0.0000
0.0000	-5.0000	0.0000	5.0000

10.0000	10.0000	-10.0000	-10.0000
10.0000	10.0000	-10.0000	-10.0000
-10.0000	-10.0000	10.0000	10.0000
-10.0000	-10.0000	10.0000	10.0000

CAE

LOCAL STIFFNESS MATRIX

LOCAL STIFFNESS MATRIX

	Stuo 하肯 Ass Stiff	dy em fnes	}목 ble ss	¦ 중 : -> mat	rix	체크	1		
	Re -> Ev	sult Sy alua	ts- ste	>De em r e 실험	eriv nat 행	red v trix0	/alu 네서	es	
	Tal Lo 다	ble ⁽ cal 른 ⁻	에, St Tru	서 iffne iss어	ess E	Mat 배해기	trix 너도	확입	2
	같		방 (.85	ᄪ	로 8.5 e-1	수 힌 850 850	y 0.85		
	10.0	000	10	000	-10	0.000	-10	000	
	10.0	000	10	.000	-10	0.000	-10.	000	-
	-10.	000	-10	0.000	10.	000	10.0	00	
į	-10.	000	-10	0.000	10.	000	10.0	00	

REDUCED STIFFNESS MATRIX

$$\begin{cases} \text{Displacement BCs: } u_{x1} = u_{y1} = u_{y2} = 0 \\ \text{Force BCs: } f_{x2} = 0, \ f_{x3} = 2, \ f_{y3} = 1 \end{cases}$$

$$\rightarrow \begin{bmatrix} 20 & 10 & -10 & 0 & -10 & -10 \\ 10 & 10 & 0 & 0 & -10 & -10 \\ -10 & 0 & 10 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -5 \\ -10 & -10 & 0 & 0 & 10 & 10 \\ -10 & -10 & 0 & -5 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} f_{x1} \\ f_{y1} \\ f_{x2} \\ f_{y2} \\ f_{x3} \\ f_{y3} \end{bmatrix}$$

Strike out rows and columns pertaining to known displacements:

$$\begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 10 \\ 0 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} f_{x2} \\ f_{x3} \\ f_{y3} \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} \Leftrightarrow \hat{\mathbf{K}}\hat{\mathbf{u}} = \hat{\mathbf{f}}$$

Solve by Gauss elimination for unknown node displacements

Eliminated Stiffness matrix

10.000	0.0000	0.0000
0.0000	10.000	10.000
0.0000	10.000	15.000

Eliminated Load vector

0	
2	
1	ſ

CAE

NODAL DISPLACEMENT

NODAL DISPLACEMENT

CAE

NODAL DISPLACEMENT

NODAL REACTION FORCE

NODAL REACTION FORCE

COMSOL의 Load벡터는 Reaction force와 B.C인 Point load를 구분해서 출력

Reaction force, x component (N), Point: 1	Reaction force, y component (N), Point: 1
-2.0000	-2.0000
Reaction force, x component (N), Point: 2	Reaction force, y component (N), Point: 2
0.0000	1.0000
Reaction force, x component (N), Point: 3	Reaction force, y component (N), Point: 3
0.0000	0.0000

Type filter text

- Component 1
 - Definitions
 - Geometry
 - Truss
 - Acceleration and velocity
 - Displacement
 - Energy and power
 - Geometry
 - Load
 - truss.FpMag Point load magnitude
 - Point load

truss.Fpx - Point load, x component truss.Fpy - Point load, y component

Point load, x component (N), Point: 3 Point load, y component (N), Point: 3 2.0000 1.0000

EXAMPLE TRUSS STRUCTURE

CAE

BOUNDARY CONDITION

기존 경계조건인 pinned 와 symmetry 조건 삭제 후 Prescribed Displacement 경계조건 2 개 생성

BOUNDARY CONDITION

CAE

BOUNDARY CONDITION

COMPUTE

RESULT

Transfer effect of known displacements to RHS, and delete columns:

$$\begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 10 \\ 0 & 10 & 15 \end{bmatrix} \begin{bmatrix} u_{x2} \\ u_{x3} \\ u_{y3} \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix} - \begin{bmatrix} (-10) \times 0 + 0 \times (-0.5) + 0 \times 0.4 \\ (-10) \times 0 + (-10) \times (-0.5) + 0 \times 0.4 \\ (-10) \times 0 + (-10) \times (-0.5) + (-5) \times 0.4 \end{bmatrix} = \begin{bmatrix} 0 \\ -3 \\ -2 \end{bmatrix}$$

Solving gives

In summary, the only changes to the SDM is in the application of displacement boundary conditions before solve

Nodal displacement by COMSOL

Displacement field, x component (m), Point: 1	Displacement field, x component (m), Point: 2	Displacement field, x component (m), Point: 3
0.0000	0.0000	-0.50000

Displacement field, y component (m), Point: 1	Displacement field, y component (m), Point: 2	Displacement field, y component (m), Point: 3
-0.50000	0.40000	0.20000

ASSIGNMENT

E = 210 GPa $A = 6 \times 10^{-4} \text{ m}^2$

 $\therefore d_{1y} = 0.0337 \text{ m}$

① derive K matrix

- 2 calculate y-displacement at node 1
- ③ compare with COMSOL result

CAE