

OPTISTRUCT FOR LINEAR ANALYSIS, V2019 CHAPTER 2: LINEAR STATIC ANALYSIS



## AGENDA

- 1. Introduction to Linear Analysis
  - Type of Analysis
  - Type of Elements and Materials
  - Type of Loads & Boundary Conditions
- 2. Linear Static Analysis
- 3. Inertia Relief Analysis
- 4. Modal Analysis
- 5. Linear Buckling Analysis
- 6. Thermal Stress Steady State Analysis

- 7. Advanced Topics
  - Debugging Guide
  - Parameters
  - Transitioning Elements
  - Introduction to Parallelization
  - Run Options
  - Output Management
- 8. Optimization in Linear Analysis
  - OptiStruct Optimization
  - DRCO Approach
  - Setting up Optimization
  - Optimization Responses for Linear Analysis

#### **CHAPTER 2: DETAILED AGENDA**

Linear Static Analysis

- Linear static analysis defined
- Model definition: input decks, structure, outputs, case control and bulk data statements
- Run options and result outputs
- Stress evaluation and averaging

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

## LINEAR STATIC ANALYSIS DEFINED

### LINEAR STATIC ANALYSIS DEFINED

In mechanics we can define **static state** as the state of a system that is in equilibrium under an action of balanced forces and moments so that they remain at rest (no velocity).

System is subjected to loads and boundary conditions like:

- Forces, Moments, Temperature
- SPCs (Single point constraints), MPCs (Multi point constraints), ...

Analysis has some assumptions like:

- Deformations are in the elastic range.
- Stresses are assumed to be linear functions of the strains.



### LINEAR STATIC ANALYSIS FUNDAMENTALS

Linear Static solvers produce solutions from the basic equation:

## $\mathbf{K}\mathbf{x} = \mathbf{f}$

- K global stiffness matrix
- x displacement vector response to be determined
- $f \quad \mbox{external forces vector applied to the structure}$

Example: a loaded bar





## LINEAR STATIC ANALYSIS EXAMPLE

We can break down the loaded bar setup computationally as follows:



1. FE Model

2. Element Matrix

 $\mathbf{K} = \begin{bmatrix} \frac{EA}{L} & -\frac{EA}{L} \\ -\frac{EA}{L} & \frac{EA}{L} \end{bmatrix}$ 

#### 3. Global Matrix

$$\mathbf{K}_{1} = \begin{bmatrix} \frac{210 * 314.16}{100} & -\frac{210 * 314.16}{100} \\ -\frac{210 * 314.16}{100} & \frac{210 * 314.16}{100} \end{bmatrix} = \begin{bmatrix} 659.74 & -659.74 \\ -659.74 & 659.74 \end{bmatrix} \qquad \mathbf{K}_{2} = \begin{bmatrix} \frac{210 * 78.54}{200} & -\frac{210 * 78.54}{200} \\ -\frac{210 * 78.54}{200} & \frac{210 * 78.54}{200} \end{bmatrix} = \begin{bmatrix} 82.47 & -82.47 \\ -82.47 & 82.47 \end{bmatrix} \qquad \mathbf{K}_{G} = \begin{bmatrix} 1 & 2 & 3 \\ 659.74 & -659.74 & 0 \\ -659.74 & 659.74 + 82.47 & -82.47 \\ 0 & -82.47 & 82.47 \end{bmatrix}$$

(...)

4. Forces and Displacements

$$\mathbf{f} = \begin{cases} \mathbf{0} \\ \mathbf{0} \\ -1\mathbf{0} \end{cases} \qquad \mathbf{x} = \begin{cases} x_1 \\ x_2 \\ x_3 \end{cases}$$



## LINEAR STATIC ANALYSIS EXAMPLE

By combining (5) the global system with (6) the prescribed DOF, (7) the system can be solved for strain, stress, and forces.

5. Global System  $\begin{bmatrix} 659.74 & -659.74 & 0 \\ -659.74 & 742.21 & -82.47 \\ 0 & -82.47 & 82.47 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ -10 \end{bmatrix}$ 

6. Eliminate the Prescribed DOF

$$\begin{bmatrix} 742.21 & -82.47 \\ -82.47 & 82.47 \end{bmatrix} \begin{cases} x_2 \\ x_3 \end{cases} = \begin{cases} 0 \\ -10 \end{cases}$$

7. Solving the system  $\begin{cases} x_2 \\ x_3 \end{cases} = \begin{cases} -0.0152 \\ -0.1364 \end{cases}$ 

364





© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

## MODEL DEFINITION



## MODEL DEFINITION: INPUT DECKS

OptiStruct uses a Nastran-style ASCII Input Format, e.g.

#### Elements

- 3D Shell: TRIA3, TRIA6, QUAD4, QUAD8
- **3D Solid**: TETRA4, TETRA10, PENTA6, PENTA15, PYRA5, PYRA13, HEXA8, HEX20
- 1-D Elastic: ROD, TUBE, BAR, BEAM, ELAS1, ELAS2, BUSH
- 1-D Rigid: RROD, RBAR, RBE2, RBE3
- Concentrated Mass : CONM, CMASS
- 1-D Connections: CWELD, CVISC, CDAMP, CGAP (Non-Linear gap element), CGAPG (node-patch nonlinear gap element)

#### Properties

- Shells: PSHELL, PCOMP(G), PCOMPP
- Solids: PSOLID
- ...

#### Loads

- Force: FORCE
- ...

## MODEL DEFINITION: STRUCTURE

Input/Output Section is used to define general information about the model.

#### **Subcase Information**

- Define Load Cases
  - Subcases
  - Load Steps
- Define Objective
- Define Constraint Reference

#### **Bulk Data Section**

- Optimization Problem
  - Design Variables
  - Responses
  - Constraints
- Optimization parameters
- Finite Element Model

| <pre>\$\$ Template: optist \$\$</pre>                                                                                     | truct       |           |      |              |             |                   |
|---------------------------------------------------------------------------------------------------------------------------|-------------|-----------|------|--------------|-------------|-------------------|
| \$\$<br>\$\$<br>\$\$                                                                                                      | Case Co     | ontrol Ca | ards |              |             |                   |
| \$<br>\$HMNAME LOADSTEP<br>\$<br>TITLE = Plate Model<br>ANALYSIS<br>FORMAT HM<br>FORMAT H3D<br>SCREEN NONE                |             | 1"Load"   |      | 3<br>Input/0 | Output \$   | Section           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =                                               | 3           |           |      | Subca        | se Infor    | mation            |
| <pre>S<br/>BEGIN BULK<br/>PARAM,AUTOSPC,YES<br/>PARAM,CHECKEL,YES<br/>\$ SYSTEM Data<br/>CORD2R 1<br/>+ -80.0 -20.0</pre> | 20.0<br>0.0 | -20.0     | 0.0  | 20.0         | Bu<br>-20.0 | Ik Data<br>-100.0 |

## MODEL DEFINITION: INPUT/OUTPUT SECTION

Defines the types and distribution of results requested

Types and functions include

- Run information (.out, .stat, .hist)
- Model-specific solutions

   (.sh,.desvar,.prop,.hgdatal,.grid,.oss)
- HyperMesh command files

   (.HM.comp.cmf, .HM.ent.cmf)
- HTML Reports

   (.html, \_frames.html, \_menu.html, \_shuf.html)
- Model results (.res, .h3d, \_des.h3d, \_s#.h3d)
- HV session file (.mvw, \_hist.mvw)

#### Result files may be ASCII or binary

| <pre>\$\$ Case Control Cards \$\$</pre>                                                                                                                                                                                                                                                                                     | <pre>\$\$ \$\$ Template: optist \$\$ \$\$</pre>                                                 | ruct        |           |      |         |        |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------|-----------|------|---------|--------|---------|
| <pre>\$\$</pre>                                                                                                                                                                                                                                                                                                             | \$\$                                                                                            | Case Co     | ontrol Ca | inds |         |        |         |
| <pre>\$HMNAME LOADSTEP 1"Load" 3 \$ TITLE = Plate Model ANALYSIS Input/Output Section FORMAT HM FORMAT H3D SCREEN NONE SUBCASE 1 LABEL Load ANALYSIS MODES SPC = 1 METHOD(STRUCTURE) = 3 \$ BEGIN BULK PARAM,AUTOSPC,YES PARAM,CHECKEL,YES \$ SYSTEM Data CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0 + -80.0 -20.0 0.0</pre> | \$\$<br>¢                                                                                       |             |           |      |         |        |         |
| TITLE = Plate Model<br>ANALYSIS<br>FORMAT HM<br>FORMAT HM<br>FORMAT H3D<br>SCREEN NONE<br>SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) = 3<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0<br>+ -80.0 -20.0 0.0   | \$HMNAME LOADSTEP                                                                               |             | 1"Load"   |      | 3       |        |         |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) = 3<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0<br>+ -80.0 -20.0 0.0                                                                                             | ><br>TITLE = Plate Model<br>ANALYSIS<br>FORMAT HM<br>FORMAT H3D<br>SCREEN NONE                  |             |           |      | Input/C | Output | Section |
| PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0<br>+ -80.0 -20.0 0.0                                                                                                                                                                                                  | SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK | 3           |           |      |         |        |         |
| CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0<br>+ -80.0 -20.0 0.0                                                                                                                                                                                                                                                              | PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data                                        |             |           |      |         |        |         |
| \$                                                                                                                                                                                                                                                                                                                          | CORD2R 1<br>+ -80.0 -20.0<br>\$                                                                 | 20.0<br>0.0 | -20.0     | 0.0  | 20.0    | -20.0  | -100.0  |

 $\bigtriangleup$ 

## MODEL DEFINITION: INPUT/OUTPUT SECTION

#### The I/O Options section controls:

- location and names of the input, output and scratch files,
- type of run (analysis, check or restart)
- overall running of the analysis or optimization, and,
- type, format and frequency of the output.

#### Some Categories of I/O Options:

- Output Format Controls: FORMAT, OUTPUT
- Run Controls: ANALYSIS, CHECK, CPU, NPROC, RESTART, SYSSSETTING
- File Names, Headers and Locations: EIGVNAME, INCLUDE, OUTFILE, ...
- Analysis Output: CSTRAIN, CSTRESS, DISPLACEMENT, ELFORCE, ...
- Optimization Output: DENSITY, DENSRES, DESHIS, PROPERTY, RESPRINT, ...
- Other Output Controllers: ECHO, ECHOON, ECHOOFF, DMIGNAME, MODEL, ...

OptiStruct > Reference Guide > Output Data: Files Created by OptiStruct amis singularity.cm nie .amses\_singularity.cmf file .bdst file .cntf file .contgap.fem file .cstr file .dens file .desvar file .dis.# file .disp file .dvarid file .echo file .els.# file .force file fsthick file .gpf file .arid file .h3d file .hgdata file .hist file .HM.auto.cmf file .HM.comp.cmf file .HM.conn.cmf file .HM.elcheck.cmf file .HM.elcheck.###.cmf file .HM.ent.cmf file .HM.gapstat.cmf file .html file interface file .k.op2 file load file .m.op2 file .mass file .mnf file .mpcf file .op2 file .oss file out file. .pch file .pcomp file .peak file .pret file .prop file

## MODEL DEFINITION: CASE CONTROL SECTION

#### Defines subcases by specifying load collectors

- Subcase labels and other information may be listed within a subcase block
- Subcase type is specified within each subcase block
- Information specific to an individual subcase will be listed under that block
- Each subcase must have an unique Integer ID
- HM comments carry subcase name and identification information
- HM comments in the Case Control section may also include set and tag information

| TT                                                                                                                                                                                             |                  |           |     |               |           |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|-----|---------------|-----------|------------------|
| \$\$ Template: optist                                                                                                                                                                          | ruct             |           |     |               |           |                  |
| \$\$                                                                                                                                                                                           |                  |           |     |               |           |                  |
| \$\$                                                                                                                                                                                           |                  |           |     |               |           |                  |
| \$\$                                                                                                                                                                                           | Case C           | ontrol Ca | rds |               |           |                  |
| \$\$                                                                                                                                                                                           |                  |           |     |               |           |                  |
| \$                                                                                                                                                                                             |                  |           |     |               |           |                  |
| \$HMNAME LOADSTEP                                                                                                                                                                              |                  | 1"Load"   |     | 3             |           |                  |
| \$                                                                                                                                                                                             |                  |           |     |               |           |                  |
| TITLE = Plate Model                                                                                                                                                                            |                  |           |     |               |           |                  |
| ANALYSIS                                                                                                                                                                                       |                  |           |     |               |           |                  |
| FORMAT HM                                                                                                                                                                                      |                  |           |     |               |           |                  |
| FORMAT H3D                                                                                                                                                                                     |                  |           |     |               |           |                  |
| SCREEN NONE                                                                                                                                                                                    |                  |           |     |               |           |                  |
|                                                                                                                                                                                                |                  |           |     |               |           |                  |
| SUBCASE 1                                                                                                                                                                                      |                  |           |     |               |           |                  |
| SUBCASE 1<br>LABEL Load                                                                                                                                                                        |                  |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES                                                                                                                                                      |                  |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1                                                                                                                                           |                  |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =                                                                                                                    | 3                |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$                                                                                                              | 3                |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK                                                                                                | 3                |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES                                                                           | 3                |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES                                                      | 3                |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data                                    | 3                |           |     | Subca         | ase Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1                        | 20.0             | -20.0     | 0.0 | Subca<br>20.0 | ase Infor | -100.0           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1<br>+ -80.0 -20.0       | 3<br>20.0<br>0.0 | -20.0     | 0.0 | Subca<br>20.0 | -20.0     | mation<br>-100.0 |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1<br>+ -80.0 -20.0<br>\$ | 3<br>20.0<br>0.0 | -20.0     | 0.0 | Subca<br>20.0 | -20.0     | mation<br>-100.0 |

## MODEL DEFINITION: CASE CONTROL SECTION

#### The Case Control section

- identifies which loads and boundary conditions are to be used in a subcase,
- controls output type and frequency, and,
- may contain objective and constraint information for optimization problems.

#### Some categories of Subcase Information:

- General: LABEL, SUBCASE
- **FE Analysis**: SPC, LOAD, METHOD, EIGVRETRIEVE, EIGVSAVE, ...
- MBD Analysis: INVEL, MBSIM, MLOAD, MOTION, SPC
- Optimization: DESGLB, DESOBJ, DESSUB, ...
- Component Mode Synthesis: CMSMETH, MPC

| 77                                                                                                                                                                                             |                  |           |      |       |           |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|------|-------|-----------|------------------|
| \$\$ Template: optistr                                                                                                                                                                         | uct              |           |      |       |           |                  |
| \$\$                                                                                                                                                                                           |                  |           |      |       |           |                  |
| \$\$                                                                                                                                                                                           |                  |           |      |       |           |                  |
| \$\$                                                                                                                                                                                           | Case C           | ontrol Ca | ards |       |           |                  |
| \$\$                                                                                                                                                                                           |                  |           |      |       |           |                  |
| \$                                                                                                                                                                                             |                  |           |      |       |           |                  |
| \$HMNAME LOADSTEP                                                                                                                                                                              |                  | 1"Load"   |      | 3     |           |                  |
| \$                                                                                                                                                                                             |                  |           |      |       |           |                  |
| TITLE = Plate Model                                                                                                                                                                            |                  |           |      |       |           |                  |
| ANALYSIS                                                                                                                                                                                       |                  |           |      |       |           |                  |
| FORMAT HM                                                                                                                                                                                      |                  |           |      |       |           |                  |
| FORMAT H3D                                                                                                                                                                                     |                  |           |      |       |           |                  |
| SCREEN NONE                                                                                                                                                                                    |                  |           |      |       |           |                  |
|                                                                                                                                                                                                |                  |           |      |       |           |                  |
| SUBCASE 1                                                                                                                                                                                      |                  |           |      |       |           |                  |
| SUBCASE 1<br>LABEL Load                                                                                                                                                                        |                  |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES                                                                                                                                                      |                  |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1                                                                                                                                           |                  |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =                                                                                                                    | 3                |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$                                                                                                              | 3                |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK                                                                                                | 3                |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES                                                                           | 3                |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES                                                      | 3                |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data                                    | 3                |           |      | Subca | ise Infor | mation           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1                        | 3                | -20.0     | 0.0  | Subca | -20.0     | -100.0           |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1<br>+ -80.0 -20.0       | 3<br>20.0<br>0.0 | -20.0     | 0.0  | Subca | -20.0     | mation<br>-100.0 |
| SUBCASE 1<br>LABEL Load<br>ANALYSIS MODES<br>SPC = 1<br>METHOD(STRUCTURE) =<br>\$<br>BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data<br>CORD2R 1<br>+ -80.0 -20.0<br>\$ | 3<br>20.0<br>0.0 | -20.0     | 0.0  | Subca | -20.0     | mation<br>-100.0 |

## MODEL DEFINITION: BULK DATA SECTION

# Comments and comment lines can be defined two ways

- All characters after \$ until the end of the line will be considered comments
- A line beginning with two slashes "//" or a pound "#" will be considered as comments

#### Keywords are the first word in a card

- Must start from the first column
- They must be all caps and abbreviations are not allowed
- Example: GRID, CQUAD4, PSHELL, MAT, LOAD, FORCE, SPC, ...

| \$\$                              |        |           |      |      |       |         |
|-----------------------------------|--------|-----------|------|------|-------|---------|
| <pre>\$\$ Template: optistr</pre> | uct    |           |      |      |       |         |
| \$\$                              |        |           |      |      |       |         |
| \$\$                              |        |           |      |      |       |         |
| \$\$                              | Case C | ontrol Ca | ards |      |       |         |
| \$\$                              |        |           |      |      |       |         |
| \$                                |        |           |      |      |       |         |
| \$HMNAME LOADSTEP                 |        | 1"Load"   |      | 3    |       |         |
| \$                                |        |           |      |      |       |         |
| TITLE = Plate Model               |        |           |      |      |       |         |
| ANALYSIS                          |        |           |      |      |       |         |
| FORMAT HM                         |        |           |      |      |       |         |
| FORMAT H3D                        |        |           |      |      |       |         |
| SCREEN NONE                       |        |           |      |      |       |         |
| SUBCASE 1                         |        |           |      |      |       |         |
| LABEL Load                        |        |           |      |      |       |         |
| ANALYSIS MODES                    |        |           |      |      |       |         |
| SPC = 1                           |        |           |      |      |       |         |
| METHOD(STRUCTURE) =               | 3      |           |      |      |       |         |
| \$                                |        |           |      |      |       |         |
| BEGIN BULK                        |        |           |      |      |       |         |
| PARAM, AUTOSPC, YES               |        |           |      |      |       |         |
| PARAM, CHECKEL, YES               |        |           |      |      | Bu    | lk Data |
| \$ SYSTEM Data                    |        |           |      |      |       |         |
| CORD2R 1                          | 20.0   | -20.0     | 0.0  | 20.0 | -20.0 | -100.0  |
| + -80.0 -20.0                     | 0.0    |           |      |      |       |         |
| \$                                |        |           |      |      |       |         |
| GRID 1                            | 50.0   | -50.0     | 0.0  |      |       |         |

#### MODEL DEFINITION: BULK DATA SECTION

Continuation cards extend the length of cards to successive lines

- Must follow the parent entries
- If 1st character of any entry is either a blank, "+", or "\*", it is treated as a continuation of the previous entry
- Content of 10<sup>th</sup> field in each card (with the exception of DTPG) and the 1<sup>st</sup> field in each continuation card is disregarded
- Do not have to be in the same format as the parent entries

Each entry can be placed anywhere within the field

- Blanks preceding and following an entry are ignored
- · Keyword entry is the exception: must be left justified in its field

#### MODEL DEFINITION: BULK DATA SECTION

The Bulk Data section begins with the BEGIN BULK statement and ends with the END DATA statement.

Data lines can contain a maximum of 80 characters (characters after the 80<sup>th</sup> will be ignored).

Each line of data contains up to nine fields in one of the three accepted formats:

| <ul> <li>Fixed Format</li> </ul>       | GRID    | 1                 | 24.0 | 24.0 | 0.0 |          |     |          |  |
|----------------------------------------|---------|-------------------|------|------|-----|----------|-----|----------|--|
| <ul> <li>Free Format</li> </ul>        | GRID, 1 | , , 24.0, 24.0, 0 | .0   |      |     |          |     |          |  |
| <ul> <li>Large Field Format</li> </ul> | GRID*   | 1                 |      |      | 24. | 00000000 | 24. | 00000000 |  |
|                                        | *       | 0.00000000        |      |      |     |          |     |          |  |

## MODEL DEFINITION: CARD ENTRY DETAILS

Character entries in OptiStruct cards have the following restrictions:

- Must start with a letter
- Can not contain blanks within the data
- Longer than 8 characters are truncated in large field and free field formats
  - Exception: file names on the  ${\tt INCLUDE}$  card
- Case insensitive (except user-provided labels)

Numeric entries in OptiStruct cards have the following restrictions:

- Must start with a digit, '+' or '-'
- Integer entries may not contain a decimal point or an exponent part
- Integer data placed in the field reserved for real valued data is accepted and converted to a double precision
- · Real must have a decimal can follow most formats within defined characters format

#### **BULK DATA SECTION**

## This section starts with BEGIN BULK and ends with END BULK.

#### Categories of Bulk Data include



| PARAM, A  | UTOSPC,YES  |        |           |          |         |         |        |
|-----------|-------------|--------|-----------|----------|---------|---------|--------|
| PARAM, CI | HECKEL, YES |        |           |          |         |         |        |
| \$ SYSTI  | EM Data     |        |           |          |         |         |        |
| CORD2R    | 1           | 20.0   | -20.0     | 0.0      | 20.0    | -20.0   | -100.0 |
| +         | -80.0 -20.  | 0 0.0  |           |          |         |         |        |
| \$        |             |        |           |          |         |         |        |
| GRID      | 1           | 50.0   | -50.0     | 0.0      |         |         |        |
| GRID      | 2           | 50.0   | -40.0     | 0.0      |         |         |        |
| \$        |             |        |           |          |         |         |        |
| CBEAM     | 101         | 1      | 94        | 550.0    | 1.0     | 0.0     |        |
| \$        |             |        |           |          |         |         |        |
| CQUAD4    | 1           | 1      | 55        | 58       | 59      | 54      |        |
| CQUAD4    | 2           | 1      | 54        | 59       | 50      | 51      |        |
| CQUAD4    | 3           | 1      | 58        | 43       | 44      | 59      |        |
| \$        |             |        |           |          |         |         |        |
| PSHELL    | 1           | 11.0   |           | 1        |         | 1       | 0.0    |
| \$        |             |        |           |          |         |         |        |
| PBEAM     | 1           | 178.53 | 8975490.8 | 734490.8 | 37340.0 | 981.746 | 9      |
| \$        |             |        |           |          |         |         |        |
| MAT1      | 12100       | 00.0   | 0.3       | 7.901    | E-09    |         |        |
| \$        |             |        |           |          |         |         |        |
| EIGRL     | 3           |        |           | 20       |         |         | MAS    |
| \$        |             |        |           |          |         |         |        |
| FORCE     | 2           | 11     | 01.0      | 0.0      | 0.0     | -100.0  |        |
| \$        |             |        |           |          |         |         |        |
| SPC       | 1           | 31 123 | 4560.0    |          |         |         |        |

#### **BULK DATA CARDS: PARAM**

PARAM cards define parameters used during the analysis

#### Some examples of parameter cards are:

• ALMS, AUTOSPC, CHECKEL, CHECKMAT, INREL, PRGPST, WTMASS

#### See also chapter 8.2 Parameters

| (1)   | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| PARAM | Ν   | v   |     |     |     |     |     |     |      |

| N | Name of Parameter  |
|---|--------------------|
| V | Value of Parameter |

| BEGIN B  | ULK        |       |            |         |         |         |        |
|----------|------------|-------|------------|---------|---------|---------|--------|
| PARAM, A | UTOSPC,YES |       |            |         |         |         |        |
| PARAM, C | HECKEL,YES |       |            |         |         |         |        |
| \$ SYST  | EM Data    |       |            |         |         |         |        |
| CORD2R   | 1          | 20.0  | 0 -20.0    | 0.0     | 20.0    | -20.0   | -100.0 |
| +        | -80.0 -20. | 0.0   |            |         |         |         |        |
| \$       |            |       |            |         |         |         |        |
| GRID     | 1          | 50.0  | -50.0      | 0.0     |         |         |        |
| GRID     | 2          | 50.0  | 0 -40.0    | 0.0     |         |         |        |
| \$       |            |       |            |         |         |         |        |
| CBEAM    | 101        | 1     | 94         | 550.0   | 1.0     | 0.0     |        |
| \$       |            |       |            |         |         |         |        |
| CQUAD4   | 1          | 1     | 55         | 58      | 59      | 54      |        |
| CQUAD4   | 2          | 1     | 54         | 59      | 50      | 51      |        |
| CQUAD4   | 3          | 1     | 58         | 43      | 44      | 59      |        |
| \$       |            |       |            |         |         |         |        |
| PSHELL   | 1          | 11.0  |            | 1       |         | 1       | 0.0    |
| \$       |            |       |            |         |         |         |        |
| PBEAM    | 1          | 178.  | 53975490.8 | 734490. | 87340.0 | 981.746 | 59     |
| \$       |            |       |            |         |         |         |        |
| MAT1     | 12100      | 00.0  | 0.3        | 7.901   | E-09    |         |        |
| \$       |            |       |            |         |         |         |        |
| EIGRL    | 3          |       |            | 20      |         |         | MASS   |
| \$       |            |       |            |         |         |         |        |
| FORCE    | 2          | 11    | 01.0       | 0.0     | 0.0     | -100.0  |        |
| Ş        |            |       |            |         |         |         |        |
| SPC      | 1          | 31 12 | 234560.0   |         |         |         |        |
| ENDDATA  |            |       |            |         |         |         |        |
| 1        |            |       |            |         |         |         |        |

#### BULK DATA CARDS: PARAM, AUTOSPC

OptiStruct checks the global stiffness matrix for degrees-of-freedom (DOF) with no stiffness.

The default setting PARAM, AUTOSPC, YES automatically constrains these DOF and helps to prevent undesired stops or failure runs. For example, if the model has an element unattached to the structure with no constraint applied to it, the run would stop complaining about a rigid body movement. With AUTOSPC, YES, OptiStruct would automatically fix this element and run the analysis.

The user should be aware of any DOF fixed by the AUTOSPC. Also, do not forget that in the end, if the run is made with activated AUTOSPC, to verify which DOF was fixed and if this has not affected the solution.

With PARAM, AUTOSPC, NO, the DOF with no stiffness are not automatically constrained.

### BULK DATA CARDS: LOCAL COORDINATE SYSTEMS

Local Coordinate Systems differ in location and/or orientation from the global

Local coordinate systems can define:

- Location/Orientation of Nodes
- Elements, Materials, Properties
- Loads, Constraints, Results

Types of local systems include:

Rectangular, Cylindrical & Spherical

Three non-collinear points define a local system

| BEGIN BULK<br>PARAM, AUTOSPC, YES<br>PARAM, CHECKEL, YES<br>\$ SYSTEM Data<br>CORD2P 1 20 0 -20 0 20 0 -20 0 -20 0 -100 0 |            |        |           |          |         |         |        |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|------------|--------|-----------|----------|---------|---------|--------|--|--|--|--|--|
| CORD2R                                                                                                                    | 1          | 20.0   | -20.0     | 0.0      | 20.0    | -20.0   | -100.0 |  |  |  |  |  |
| +                                                                                                                         | -80.0 -20. | 0.0    |           |          |         |         |        |  |  |  |  |  |
| Ş                                                                                                                         |            |        |           |          |         |         |        |  |  |  |  |  |
| GRID                                                                                                                      | 1          | 50.0   | -50.0     | 0.0      |         |         |        |  |  |  |  |  |
| GRID                                                                                                                      | 2          | 50.0   | -40.0     | 0.0      |         |         |        |  |  |  |  |  |
| Ş                                                                                                                         |            |        |           |          |         |         |        |  |  |  |  |  |
| CBEAM                                                                                                                     | 101        | 1      | 94        | 550.0    | 1.0     | 0.0     |        |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| CQUAD4                                                                                                                    | 1          | 1      | 55        | 58       | 59      | 54      |        |  |  |  |  |  |
| CQUAD4                                                                                                                    | 2          | 1      | 54        | 59       | 50      | 51      |        |  |  |  |  |  |
| CQUAD4                                                                                                                    | 3          | 1      | 58        | 43       | 44      | 59      |        |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| PSHELL                                                                                                                    | 1          | 11.0   |           | 1        |         | 1       | 0.0    |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| PBEAM                                                                                                                     | 1          | 178.53 | 8975490.8 | 734490.8 | 87340.0 | 981.746 | 9      |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| MAT1                                                                                                                      | 12100      | 00.0   | 0.3       | 7.901    | E-09    |         |        |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| EIGRL                                                                                                                     | 3          |        |           | 20       |         |         | MASS   |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| FORCE                                                                                                                     | 2          | 11     | 01.0      | 0.0      | 0.0     | -100.0  |        |  |  |  |  |  |
| \$                                                                                                                        |            |        |           |          |         |         |        |  |  |  |  |  |
| SPC                                                                                                                       | 1          | 31 123 | 84560.0   |          |         |         |        |  |  |  |  |  |
| ENDDATA                                                                                                                   |            |        |           |          |         |         |        |  |  |  |  |  |

## BULK DATA CARDS: LOCAL COORDINATE SYSTEMS

Local Coordinate Systems differ in location and/or orientation from the global

| (1)    | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CORD2R | CID | RID | A1  | A2  | A3  | B1  | B2  | B3  |      |
| +      | C1  | C2  | C3  |     |     |     |     |     |      |

| CID                              | System identification number. (Unique Integer > 0)                                     |
|----------------------------------|----------------------------------------------------------------------------------------|
| RID                              | ID of a system independently defined from this system (Optional, Default = 0, Integer) |
| A1,A2,A3<br>B1,B2,B3<br>C1,C2,C3 | Coordinates of three points in the global system                                       |

| BEGIN BULK<br>PARAM,AUTOSPC,YES<br>PARAM,CHECKEL,YES<br>\$ SYSTEM Data |       |         |      |             |         |         |        |        |
|------------------------------------------------------------------------|-------|---------|------|-------------|---------|---------|--------|--------|
| CORD2R                                                                 |       | 1       | 20   | .0 -20.0    | 0.0     | 20.0    | -20.0  | -100.0 |
| +                                                                      | -80.0 | -20.0   | 0.0  | )           |         |         |        |        |
| Ş                                                                      |       |         |      |             |         |         |        |        |
| GRID                                                                   |       | 1       | 50.  | .0 -50.0    | 0.0     |         |        |        |
| GRID                                                                   |       | 2       | 50.  | .0 -40.0    | 0.0     |         |        |        |
| Ş                                                                      |       |         |      |             |         |         |        |        |
| CBEAM                                                                  | 1     | 01      | 1    | 94          | 550.0   | 1.0     | 0.0    |        |
| \$                                                                     |       |         |      |             |         |         |        |        |
| CQUAD4                                                                 |       | 1       | 1    | 55          | 58      | 59      | 54     |        |
| CQUAD4                                                                 |       | 2       | 1    | 54          | 59      | 50      | 51     |        |
| CQUAD4                                                                 |       | 3       | 1    | 58          | 43      | 44      | 59     |        |
| \$                                                                     |       |         |      |             |         |         |        |        |
| PSHELL                                                                 |       | 1       | 11.( | )           | 1       |         | 1      | 0.0    |
| \$                                                                     |       |         |      |             |         |         |        |        |
| PBEAM                                                                  |       | 1       | 178. | .53975490.8 | 734490. | 87340.0 | 981.74 | 69     |
| \$                                                                     |       |         |      |             |         |         |        |        |
| MAT1                                                                   |       | 1210000 | 0.0  | 0.3         | 7.90    | E-09    |        |        |
| \$                                                                     |       |         |      |             |         |         |        |        |
| EIGRL                                                                  |       | 3       |      |             | 20      |         |        | MASS   |
| \$                                                                     |       |         |      |             |         |         |        |        |
| FORCE                                                                  |       | 2       | 11   | 01.0        | 0.0     | 0.0     | -100.0 |        |
| \$                                                                     |       |         |      |             |         |         |        |        |
| SPC                                                                    |       | 1       | 31 3 | L234560.0   |         |         |        |        |
| ENDDATA                                                                |       |         |      |             |         |         |        |        |
|                                                                        |       |         |      |             |         |         |        |        |



## **BULK DATA CARDS: GRID**

GRID cards are used to represent discrete locations in the model space

Girds are also referred to as "nodes"

Grids define the structural model and its boundary conditions

| (1)     | (2)                                                   | (3)                                                                                                                                                                                  | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|---------|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|------|
| GRID    | ID                                                    | СР                                                                                                                                                                                   | X1  | X2  | Х3  | CD  | PS  |     |      |
| ID      |                                                       | Unique grid point identification number. (Integer > 0)                                                                                                                               |     |     |     |     |     |     |      |
| СР      |                                                       | Identification number of coordinate system in which the location of the grid point is defined. (Integer > 0 or blank)                                                                |     |     |     |     |     |     |      |
| X1,X2,X | X3 Location of the grid point in coordinate system CP |                                                                                                                                                                                      |     |     |     |     |     |     |      |
| CD      |                                                       | Identification number of coordinate system in which the<br>displacements, degrees of freedom, constraints, and solution<br>vectors are defined at grid point. (Integer > 0 or blank) |     |     |     |     |     | on  |      |
| PS      |                                                       | Permanent single-point constraints associated with grid point.<br>Up to six unique digits may be placed in the field with no<br>embedded blanks. (Integer > 0 or blank)              |     |     |     |     |     |     |      |

| BEGIN BULK<br>PARAM, AUTOS<br>PARAM, CHECH<br>\$ SYSTEM I<br>CORD2R<br>+ -80<br>\$ | SPC,YES<br>KEL,YES<br>Data<br>1<br>D.0 -20.0 | 20.0<br>0.0 | -20.0     | 0.0      | 20.0    | -20.0   | -100.0 |
|------------------------------------------------------------------------------------|----------------------------------------------|-------------|-----------|----------|---------|---------|--------|
| GRID                                                                               | 1                                            | 50.0        | -50.0     | 0.0      |         |         |        |
| GRID                                                                               | 2                                            | 50.0        | -40.0     | 0.0      |         |         |        |
| \$<br>CBEAM<br>\$                                                                  | 101                                          | 1           | 94        | 550.0    | 1.0     | 0.0     |        |
| CQUAD4                                                                             | 1                                            | 1           | 55        | 58       | 59      | 54      |        |
| CQUAD4                                                                             | 2                                            | 1           | 54        | 59       | 50      | 51      |        |
| CQUAD4<br>\$                                                                       | 3                                            | 1           | 58        | 43       | 44      | 59      |        |
| PSHELL<br>\$                                                                       | 1                                            | 11.0        |           | 1        |         | 1       | 0.0    |
| PBEAM<br>\$                                                                        | 1                                            | 178.53      | 3975490.8 | 734490.8 | 37340.0 | 981.746 | 9      |
| MAT1<br>\$                                                                         | 1210000                                      | 0.0         | 0.3       | 7.901    | 5-09    |         |        |
| EIGRL<br>\$                                                                        | 3                                            |             |           | 20       |         |         | MASS   |
| FORCE<br>Ş                                                                         | 2                                            | 11          | 01.0      | 0.0      | 0.0     | -100.0  |        |
| SPC<br>ENDDATA                                                                     | 1                                            | 31 123      | 34560.0   |          |         |         |        |

## BULK DATA CARDS: ELEMENTS

The geometry of a model's structure is represented using elements

Elements can be 0-dimensional, 1dimensional, 2-dimensional, or 3-dimensional

#### Available elements include:

- **OD** CONM2, ...
- 1D CBEAM, CELAS2, CGAP, PLOTEL, RBE2, RBE3, ...
- 2D CQUAD8, CQUAD4, CTRIA6, CTRIA3, CSHEAR, ...
- **3D** CHEXA, CPENTA, CPYRA, CTETRA, ...

| BEGIN B<br>PARAM,A<br>PARAM,C | ULK<br>UTOSPC,YES<br>HECKEL,YES |        |           |         |         |         |        |
|-------------------------------|---------------------------------|--------|-----------|---------|---------|---------|--------|
| \$ SYST                       | EM Data                         |        |           |         |         |         |        |
| CORD2R                        | 1                               | 20.0   | -20.0     | 0.0     | 20.0    | -20.0   | -100.0 |
| +                             | -80.0 -20.                      | 0.0    |           |         |         |         |        |
| \$                            |                                 |        |           |         |         |         |        |
| GRID                          | 1                               | 50.0   | -50.0     | 0.0     |         |         |        |
| GRID                          | 2                               | 50.0   | -40.0     | 0.0     |         |         |        |
| \$                            |                                 |        |           |         |         |         |        |
| CBEAM                         | 101                             | 1      | 94        | 550.0   | 1.0     | 0.0     |        |
| \$                            |                                 |        |           |         |         |         |        |
| CQUAD4                        | 1                               | 1      | 55        | 58      | 59      | 54      |        |
| CQUAD4                        | 2                               | 1      | 54        | 59      | 50      | 51      |        |
| CQUAD4                        | 3                               | 1      | 58        | 43      | 44      | 59      |        |
| \$                            |                                 |        |           |         |         |         |        |
| PSHELL                        | 1                               | 11.0   |           | 1       |         | 1       | 0.0    |
| \$                            |                                 |        |           |         |         |         |        |
| PBEAM                         | 1                               | 178.53 | 3975490.8 | 734490. | 87340.0 | 981.746 | 59     |
| \$                            |                                 |        |           |         |         |         |        |
| MAT1                          | 12100                           | 0.00   | 0.3       | 7.90    | E-09    |         |        |
| \$                            |                                 |        |           |         |         |         |        |
| EIGRL                         | 3                               |        |           | 20      |         |         | MASS   |
| \$                            |                                 |        |           |         |         |         |        |
| FORCE                         | 2                               | 11     | 01.0      | 0.0     | 0.0     | -100.0  |        |
| \$                            |                                 |        |           |         |         |         |        |
| SPC                           | 1                               | 31 123 | 34560.0   |         |         |         |        |
| ENDDATA                       |                                 |        |           |         |         |         |        |
| 1                             |                                 |        |           |         |         |         |        |

## BULK DATA CARDS: ELEMENTS

The geometry of a model's structure is represented using elements

Models may contain elements of multiple dimensionality

| (1)    | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| CQUAD4 | EID | PID | G1  | G2  | G3  | G4  |     |     |      |

| EID         | Unique element identification number                      |
|-------------|-----------------------------------------------------------|
| PID         | Identification number of a PSHELL or PCOMP property entry |
| G1,G2,G3,G4 | Grid ID's of connection points (Integers > 0, all unique) |

| BEGIN B                                                                                                   | ULK                                   |                                          |                                           |                                           |                              |                              |                   |
|-----------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------|------------------------------|-------------------|
| PARAM, A                                                                                                  | UTUSPC, IES                           |                                          |                                           |                                           |                              |                              |                   |
| C CVCT                                                                                                    | ELCALL, ILS                           |                                          |                                           |                                           |                              |                              |                   |
| 9 5151<br>CODD2D                                                                                          | IM Data                               | 20.0                                     | 20.0                                      | 0 0                                       | 20.0                         | 20.0                         | 100 0             |
| CORDZR                                                                                                    | 90 0 20 0                             | 20.0                                     | -20.0                                     | 0.0                                       | 20.0                         | -20.0                        | -100.0            |
| т<br>с                                                                                                    | -80.0 -20.0                           | 0.0                                      |                                           |                                           |                              |                              |                   |
| CRID                                                                                                      | 1                                     | 50 0                                     | -50 0                                     | 0 0                                       |                              |                              |                   |
| GRID                                                                                                      | 2                                     | 50.0                                     | -40.0                                     | 0.0                                       |                              |                              |                   |
| S                                                                                                         | 2                                     | 50.0                                     | -0.0                                      | 0.0                                       |                              |                              |                   |
| CBEAM                                                                                                     | 101                                   | 1                                        | 94                                        | 550 0                                     | 1 0                          | 0 0                          |                   |
| s                                                                                                         | 101                                   | -                                        | 5.                                        | 000.0                                     |                              | 0.0                          |                   |
| COUAD4                                                                                                    | 1                                     | 1                                        | 55                                        | 58                                        | 59                           | 54                           |                   |
| COUAD4                                                                                                    | 2                                     | 1                                        | 54                                        | 59                                        | 50                           | 51                           |                   |
| · ~ ·                                                                                                     |                                       |                                          |                                           |                                           |                              |                              |                   |
| CQUAD4                                                                                                    | 3                                     | 1                                        | 58                                        | 43                                        | 44                           | 59                           |                   |
| CQUAD4<br>\$                                                                                              | 3                                     | 1                                        | 58                                        | 43                                        | 44                           | 59                           |                   |
| CQUAD4<br>\$<br>PSHELL                                                                                    | 3                                     | 1                                        | 58                                        | 43<br>1                                   | 44                           | 59<br>1                      | 0.0               |
| CQUAD4<br>\$<br>PSHELL<br>\$                                                                              | 3                                     | 1<br>11.0                                | 58                                        | 43                                        | 44                           | 59<br>1                      | 0.0               |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM                                                                     | 3                                     | 1<br>11.0<br>178.5                       | 58<br>3975490.8                           | 43<br>1<br>734490.8                       | 44                           | 59<br>1<br>981.746           | 0.0               |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$                                                               | 3<br>1<br>1                           | 1<br>11.0<br>178.5                       | 58<br>3975490.8                           | 43<br>1<br>734490.8                       | 44<br>37340.0                | 59<br>1<br>981.746           | 0.0               |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1                                                       | 3<br>1<br>1<br>1210000                | 1<br>11.0<br>178.5                       | 58<br>3975490.8<br>0.3                    | 43<br>1<br>734490.8<br>7.90E              | 44<br>37340.0<br>E-09        | 59<br>1<br>981.746           | 0.0               |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$                                                 | 3<br>1<br>1<br>1210000                | 1<br>11.0<br>178.5<br>0.0                | 58<br>3975490.8<br>0.3                    | 43<br>1<br>734490.8<br>7.90E              | 44<br>37340.0<br>2-09        | 59<br>1<br>981.746           | 0.0               |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$<br>EIGRL                                        | 3<br>1<br>1<br>1210000<br>3           | 1<br>11.0<br>178.5<br>0.0                | 58<br>3975490.8<br>0.3                    | 43<br>1<br>734490.8<br>7.90E<br>20        | 44<br>37340.0<br>E-09        | 59<br>1<br>981.74            | 0.0<br>59<br>MASS |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$<br>EIGRL<br>\$                                  | 3<br>1<br>1<br>1210000<br>3           | 1<br>11.0<br>178.5                       | 58<br>3975490.8<br>0.3                    | 43<br>1<br>734490.8<br>7.90E<br>20        | 44<br>37340.0<br>2-09        | 59<br>1<br>981.74            | 0.0<br>59<br>MASS |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$<br>EIGRL<br>\$<br>FORCE                         | 3<br>1<br>1<br>1210000<br>3<br>2      | 1<br>11.0<br>178.5<br>0.0                | 58<br>3975490.8<br>0.3<br>01.0            | 43<br>1<br>734490.8<br>7.90E<br>20<br>0.0 | 44<br>37340.0<br>2-09<br>0.0 | 59<br>1<br>981.746<br>-100.0 | 0.0<br>59<br>MASS |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$<br>EIGRL<br>\$<br>FORCE<br>\$                   | 3<br>1<br>1<br>1210000<br>3<br>2      | 1<br>11.0<br>178.5<br>0.0                | 58<br>3975490.8<br>0.3<br>01.0            | 43<br>1<br>734490.8<br>7.90F<br>20<br>0.0 | 44<br>37340.0<br>5-09<br>0.0 | 59<br>1<br>981.746<br>-100.0 | 0.0<br>59<br>Mass |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$<br>EIGRL<br>\$<br>FORCE<br>\$<br>SPC            | 3<br>1<br>1<br>1210000<br>3<br>2<br>1 | 1<br>11.0<br>178.5<br>0.0<br>11<br>31 12 | 58<br>3975490.8<br>0.3<br>01.0<br>34560.0 | 43<br>1<br>734490.8<br>7.90F<br>20<br>0.0 | 44<br>37340.0<br>2-09<br>0.0 | 59<br>1<br>981.746<br>-100.0 | 0.0<br>59<br>Mass |
| CQUAD4<br>\$<br>PSHELL<br>\$<br>PBEAM<br>\$<br>MAT1<br>\$<br>EIGRL<br>\$<br>FORCE<br>\$<br>SPC<br>ENDDATA | 3<br>1<br>1<br>1210000<br>3<br>2<br>1 | 1<br>11.0<br>178.5<br>0.0<br>11<br>31 12 | 58<br>3975490.8<br>0.3<br>01.0<br>34560.0 | 43<br>1<br>734490.8<br>7.90F<br>20<br>0.0 | 44<br>37340.0<br>5-09<br>0.0 | 59<br>1<br>981.746<br>-100.0 | 0.0<br>59<br>Mass |

## **BULK DATA CARDS: PROPERTIES**

Properties fill in geometric information needed to represent elements as 3D

Properties are specific to a single element type

#### Available properties include:

- 1D: PBEAM, PELAS2, PGAP, PBAR, PBEAM, ...
- 2D: PSHELL, ...
- 3D: PSOLID

| BEGIN B    | ULK         |        |           |          |         |         |        |
|------------|-------------|--------|-----------|----------|---------|---------|--------|
| DADAM CI   | UTOSPC, IES |        |           |          |         |         |        |
| Ś SVST     | EM Data     |        |           |          |         |         |        |
| CORD2R     | I Data      | 20 0   | -20 0     | 0 0      | 20 0    | -20 0   | -100 0 |
| +          | -80 0 -20 0 | 0.0    | 20.0      | 0.0      | 20.0    | 20.0    | 100.0  |
| Ş          | 20.0        | 0.0    |           |          |         |         |        |
| GRID       | 1           | 50.0   | -50.0     | 0.0      |         |         |        |
| GRID       | 2           | 50.0   | -40.0     | 0.0      |         |         |        |
| \$         |             |        |           |          |         |         |        |
| CBEAM      | 101         | 1      | 94        | 550.0    | 1.0     | 0.0     |        |
| \$         |             |        |           |          |         |         |        |
| CQUAD4     | 1           | 1      | 55        | 58       | 59      | 54      |        |
| CQUAD4     | 2           | 1      | 54        | 59       | 50      | 51      |        |
| CQUAD4     | 3           | 1      | 58        | 43       | 44      | 59      |        |
| \$         |             |        |           |          |         |         |        |
| PSHELL     | 1           | 11.0   |           | 1        |         | 1       | 0.0    |
| ş<br>      | _           |        |           |          |         |         |        |
| PBEAM      | 1           | 178.5  | 3975490.8 | 734490.8 | 87340.0 | 981.746 | 9      |
| Ş<br>M2/01 | 101000      | 0 0    | 0.2       | 7 0.01   | - 00    |         |        |
| MATI       | 121000      | J.U    | 0.3       | 7.901    | 5-09    |         |        |
| ₽<br>ETCDI | 2           |        |           | 2.0      |         |         | MACC   |
| é ÉLGRE    | 3           |        |           | 20       |         |         | MASS   |
| FORCE      | 2           | 11     | 01 0      | 0 0      | 0 0     | -100 0  |        |
| S          | 2           | ± ±    | 01.0      | 0.0      | 0.0     | -100.0  |        |
| SPC        | 1           | 31 12  | 34560 0   |          |         |         |        |
| ENDDATA    | Ŧ           | JT 12. | 51500.0   |          |         |         |        |
| BRODITA    |             |        |           |          |         |         |        |



## **BULK DATA CARDS: PROPERTIES**

Property cards are used to define element attributes like

- Element thickness
- ID of the material being used
- · Section properties for beams

#### Property cards are referenced by elements

- CHEXA, CPENTA, CPYRA, CTETRA  $\rightarrow$  PSOLID
- CQUAD8, CQUAD4, CTRIA6, CTRIA3 → PSHELL
   OF PCOMP
- CSHEAR  $\rightarrow$  PSHEAR
- CBEAM  $\rightarrow$  PBEAM

| BEGIN B   | ULK         |        |          |          |         |         |        |
|-----------|-------------|--------|----------|----------|---------|---------|--------|
| PARAM, A  | UTOSPC,YES  |        |          |          |         |         |        |
| PARAM, CI | HECKEL,YES  |        |          |          |         |         |        |
| \$ SYSTI  | EM Data     |        |          |          |         |         |        |
| CORD2R    | 1           | 20.0   | -20.0    | 0.0      | 20.0    | -20.0   | -100.0 |
| +         | -80.0 -20.0 | 0.0    |          |          |         |         |        |
| \$        |             |        |          |          |         |         |        |
| GRID      | 1           | 50.0   | -50.0    | 0.0      |         |         |        |
| GRID      | 2           | 50.0   | -40.0    | 0.0      |         |         |        |
| \$        |             | ~      |          |          |         |         |        |
| CBEAM     | 101         | (1)    | 94       | 550.0    | 1.0     | 0.0     |        |
| \$        |             | $\sim$ |          |          |         |         |        |
| CQUAD4    | 1           |        | 55       | 58       | 59      | 54      |        |
| CQUAD4    | 2           |        | 54       | 59       | 50      | 51      |        |
| CQUAD4    | 3           | (1)    | 58       | 43       | 44      | 59      |        |
| \$        |             |        |          |          |         |         |        |
| PSHELL    |             | 11.0   |          | 1        |         | 1       | 0.0    |
| Ş         |             |        |          |          |         |         |        |
| PBEAM     |             | 178.53 | 975490.8 | 734490.8 | 37340.0 | 981.746 | 59     |
| ş         |             |        |          |          |         |         |        |
| MAT1      | 1210000     | .0     | 0.3      | 7.901    | E-09    |         |        |
| Ş         |             |        |          |          |         |         |        |
| EIGRL     | 3           |        |          | 20       |         |         | MASS   |
| Ş         |             |        |          |          |         |         |        |
| FORCE     | 2           | ΤT     | 01.0     | 0.0      | 0.0     | -100.0  |        |
| ⇒<br>a⊐a  | 1           | 21 102 | 45.00 0  |          |         |         |        |
| SPC       | 1           | 31 123 | 4360.0   |          |         |         |        |
| ENDDATA   |             |        |          |          |         |         |        |

#### **BULK DATA CARDS: PROPERTIES**

| (1)    | (2) | (3)  | (4) | (5)  | (6)        | (7)  | (8)  | (9) | (10) |
|--------|-----|------|-----|------|------------|------|------|-----|------|
| PSHELL | PID | MID1 | т   | MID2 | 12I/T<br>3 | MID3 | TS/T | NSM |      |

| PID    | Unique shell element property identification number. (Integer > 0)                    |
|--------|---------------------------------------------------------------------------------------|
| MID1   | Material identification number for membrane. (Integer > 0)                            |
| т      | Default value for the membrane thickness                                              |
| MID2   | Material identification number for bending                                            |
| 12I/T3 | Bending stiffness parameter. (default = 1.0)                                          |
| MID3   | Material identification number for transverse shear                                   |
| TS/T   | Transverse shear thickness divided by the membrane thickness.<br>(default = 0.833333) |
| NSM    | Nonstructural mass per unit area                                                      |

| BEGIN BU   | LK          |        |           |          |         |         |        |
|------------|-------------|--------|-----------|----------|---------|---------|--------|
| PARAM, AU  | TOSPC,YES   |        |           |          |         |         |        |
| PARAM, CHI | ECKEL,YES   |        |           |          |         |         |        |
| \$ SYSTE   | M Data      |        |           |          |         |         |        |
| CORD2R     | 1           | 20.0   | -20.0     | 0.0      | 20.0    | -20.0   | -100.0 |
| + ·        | -80.0 -20.0 | 0.0    |           |          |         |         |        |
| Ş          |             |        |           |          |         |         |        |
| GRID       | 1           | 50.0   | -50.0     | 0.0      |         |         |        |
| GRID       | 2           | 50.0   | -40.0     | 0.0      |         |         |        |
| \$         |             |        |           |          |         |         |        |
| CBEAM      | 101         | 1      | 94        | 550.0    | 1.0     | 0.0     |        |
| \$         |             |        |           |          |         |         |        |
| CQUAD4     | 1           | 1      | 55        | 58       | 59      | 54      |        |
| CQUAD4     | 2           | 1      | 54        | 59       | 50      | 51      |        |
| CQUAD4     | 3           | 1      | 58        | 43       | 44      | 59      |        |
| \$         |             |        |           |          |         |         |        |
| PSHELL     | 1           | 11.0   |           | 1        |         | 1       | 0.0    |
| \$         |             |        |           |          |         |         |        |
| PBEAM      | 1           | 178.53 | 3975490.8 | 734490.8 | 37340.0 | 981.740 | 59     |
| \$         |             |        |           |          |         |         |        |
| MAT1       | 1210000     | .0     | 0.3       | 7.901    | E-09    |         |        |
| \$         |             |        |           |          |         |         |        |
| EIGRL      | 3           |        |           | 20       |         |         | MASS   |
| \$         |             |        |           |          |         |         |        |
| FORCE      | 2           | 11     | 01.0      | 0.0      | 0.0     | -100.0  |        |
| \$         |             |        |           |          |         |         |        |
| SPC        | 1           | 31 123 | 34560.0   |          |         |         |        |
| ENDDATA    |             |        |           |          |         |         |        |
|            |             |        |           |          |         |         |        |

## BULK DATA CARDS: MATERIALS

Material cards are available for a range of directionality and thermal behaviors

#### Linear temperature independent

- MAT1: isotropic
- MAT2: anisotropic (for 2D elements)
- MAT8: orthotropic (for 2D elements)
- MAT9: anisotropic (for 3D elements)
- MAT9ORT: orthotropic (for 3D elements)

#### Temperature dependent

- defined with the respective  $\ensuremath{\mathtt{MAT}}$  cards
- MATT1, MATT2, MATT8 **and** MATT9.

| BEGIN B | ULK      |         |      |            |          |         |         |        |
|---------|----------|---------|------|------------|----------|---------|---------|--------|
| PARAM,A | UTOSPC,Y | YES     |      |            |          |         |         |        |
| PARAM,C | HECKEL,Y | YES     |      |            |          |         |         |        |
| \$ SYST | EM Data  |         |      |            |          |         |         |        |
| CORD2R  |          | 1       | 20   | .0 -20.    | 0.0      | 20.0    | -20.0   | -100.0 |
| +       | -80.0    | -20.0   | 0.0  | 0          |          |         |         |        |
| \$      |          |         |      |            |          |         |         |        |
| GRID    |          | 1       | 50   | .0 -50.    | 0.0      |         |         |        |
| GRID    |          | 2       | 50   | .0 -40.    | 0.0      |         |         |        |
| \$      |          |         |      |            |          |         |         |        |
| CBEAM   | 10       | 01      | 1    | 94         | 550.0    | 1.0     | 0.0     |        |
| \$      |          |         |      |            |          |         |         |        |
| CQUAD4  |          | 1       | 1    | 55         | 58       | 59      | 54      |        |
| CQUAD4  |          | 2       | 1    | 54         | 59       | 50      | 51      |        |
| CQUAD4  |          | 3       | 1    | 58         | 43       | 44      | 59      |        |
| \$      |          |         |      |            |          |         |         |        |
| PSHELL  |          | 1       | 11.0 | 0          | 1        |         | 1       | 0.0    |
| \$      |          |         |      |            |          |         |         |        |
| PBEAM   |          | 1       | 178  | .53975490. | 8734490. | 87340.0 | 981.746 | 59     |
| \$      |          |         |      |            |          |         |         |        |
| MAT1    |          | 1210000 | 0.0  | 0.3        | 7.901    | E-09    |         |        |
| Ş       |          |         |      |            |          |         |         |        |
| EIGRL   |          | 3       |      |            | 20       |         |         | MASS   |
| Ş       |          |         |      |            |          |         |         |        |
| FORCE   |          | 2       | 11   | 01.0       | 0.0      | 0.0     | -100.0  |        |
| Ş       |          |         |      |            |          |         |         |        |
| SPC     |          | 1       | 31 3 | 1234560.0  |          |         |         |        |
| ENDDATA |          |         |      |            |          |         |         |        |
|         |          |         |      |            |          |         |         |        |

## BULK DATA CARDS: MATERIALS

Materials are referenced by properties to be used by elements.

Material assignment relationships show up in the deck as MID references in other cards

| (1)  | (   | 2)                                                  | (3)             | (4)   | (5)     | (6)       | (7)     | (8)  | (9) | (10) |
|------|-----|-----------------------------------------------------|-----------------|-------|---------|-----------|---------|------|-----|------|
| MAT1 | MID |                                                     | Е               | G     | NU      | RHO       | А       | TREF | GE  |      |
| MID  |     | Unique material identification number (Integer > 0) |                 |       |         |           |         |      |     |      |
| E    |     | Yo                                                  | Young's Modulus |       |         |           |         |      |     |      |
| G    |     | Shear Modulus                                       |                 |       |         |           |         |      |     |      |
| NU   |     | Po                                                  | isson's l       | Ratio |         |           |         |      |     |      |
| RHO  |     | Ma                                                  | iss dens        | ity   |         |           |         |      |     |      |
| А    |     | Th                                                  | ermal ex        | pansi | on coef | ficient   |         |      |     |      |
| TREF |     | Reference temperature for thermal loading           |                 |       |         |           |         |      |     |      |
| GE   |     | Str                                                 | uctural I       | Eleme | nt Dam  | ping coef | ficient |      |     |      |

| BEGIN B        | ULK         |          |          |          |           |          |        |
|----------------|-------------|----------|----------|----------|-----------|----------|--------|
| PARAM, A       | UTOSPC,YES  |          |          |          |           |          |        |
| PARAM, CI      | HECKEL, YES |          |          |          |           |          |        |
| \$ SYST        | EM Data     |          |          | 0.0      |           |          | 100.0  |
| CORD2R         | 1           | 20.0     | -20.0    | 0.0      | 20.0      | -20.0    | -100.0 |
| +              | -80.0 -20.0 | 0.0      |          |          |           |          |        |
| Ş              | -           | 50.0     | 50.0     | 0.0      |           |          |        |
| GRID           | 1           | 50.0     | -50.0    | 0.0      |           |          |        |
| GRID           | 2           | 50.0     | -40.0    | 0.0      |           |          |        |
| Ş              | 1.0.1       | 1        | 0.4      |          | 1 0       | 0.0      |        |
| CBEAM          | 101         | T        | 94       | 550.0    | 1.0       | 0.0      |        |
| 2<br>COULD D 4 | 1           | 1        |          | FO       | FO        | E 4      |        |
| CQUAD4         | 1           | 1        | 55       | 58       | 59        | 54       |        |
| CQUAD4         | 2           | 1        | 54       | 59       | 50        | 51       |        |
| CQUAD4         | 3           | 1        | 28       | 43       | 44        | 59       |        |
| Ş<br>DOUDT I   | 1           |          |          | 1        |           | 1        | 0 0    |
| C              | ± /         | <u> </u> |          | T        |           | Ţ        | 0.0    |
| PDEAM          | 1           | 10 53    | 075400 0 | 724400 0 | 0 0 0 224 | 0.01 746 | 0      |
| C              | 1           | J        | 9/3490.0 | /34490.0 | 5/340.0   | 901.740  | 9      |
|                | 1310000     |          | 0.2      | 7 0.01   | - 00      |          |        |
| MAII<br>¢      |             |          | 0.5      | 7.901    | 2-09      |          |        |
| PICDI          | 2           |          |          | 20       |           |          | MACC   |
| EIGRL C        | 5           |          |          | 20       |           |          | MASS   |
| FORCE          | 2           | 11       | 01 0     | 0 0      | 0 0       | -100 0   |        |
| ¢ rokce        | 2           | ± ±      | 01.0     | 0.0      | 0.0       | -100.0   |        |
| SPC            | 1           | 31 123   | 4560 0   |          |           |          |        |
| FNDDAWA        | 1           | JI 123   |          |          |           |          |        |
| BNUDAIA        |             |          |          |          |           |          |        |

Loads and boundary conditions are applied to FEM and geometric entities

The types of loads applied are dependent on several factors such as the desired solution type, elements available, and type or form of results desired

#### Available static load types include:

- point forces (FORCE, FORCE1)
- gravity loads (GRAV)
- moments (MOMENT, MOMENT1)
- pressures (PLOAD, PLOAD1, PLOAD2, PLOAD4)
- rotational forces (RFORCE)
- enforced displacements (SPCD)
- temperature gradients (TEMP, TEMPD)

| BEGIN B  | ULK         |        |           |          |         |         |        |
|----------|-------------|--------|-----------|----------|---------|---------|--------|
| PARAM, A | UTOSPC,YES  |        |           |          |         |         |        |
| PARAM, C | HECKEL,YES  |        |           |          |         |         |        |
| \$ SYST  | EM Data     |        |           |          |         |         |        |
| CORD2R   | 1           | 20.0   | -20.0     | 0.0      | 20.0    | -20.0   | -100.0 |
| +        | -80.0 -20.0 | 0.0    |           |          |         |         |        |
| \$       |             |        |           |          |         |         |        |
| GRID     | 1           | 50.0   | -50.0     | 0.0      |         |         |        |
| GRID     | 2           | 50.0   | -40.0     | 0.0      |         |         |        |
| Ş        |             |        |           |          |         |         |        |
| CBEAM    | 101         | 1      | 94        | 550.0    | 1.0     | 0.0     |        |
| \$       |             |        |           |          |         |         |        |
| CQUAD4   | 1           | 1      | 55        | 58       | 59      | 54      |        |
| CQUAD4   | 2           | 1      | 54        | 59       | 50      | 51      |        |
| CQUAD4   | 3           | 1      | 58        | 43       | 44      | 59      |        |
| \$       |             |        |           |          |         |         |        |
| PSHELL   | 1           | 11.0   |           | 1        |         | 1       | 0.0    |
| \$       |             |        |           |          |         |         |        |
| PBEAM    | 1           | 178.53 | 3975490.8 | 734490.8 | 37340.0 | 981.746 | 59     |
| ş        |             |        |           |          |         |         |        |
| MAT1     | 121000      | 0.0    | 0.3       | 7.901    | E-09    |         |        |
| Ś        |             |        |           |          |         |         |        |
| EIGRI    | З           |        |           | 20       |         |         | MASS   |
| Ś        |             |        |           |          |         |         |        |
| FORCE    | 2           | 11     | 01.0      | 0.0      | 0.0     | -100.0  |        |
| Ş        |             |        |           |          |         |         |        |
| SPC      | 1           | 31 123 | 34560.0   |          |         |         |        |
| ENDDATA  |             |        |           |          |         |         |        |
| 2        |             |        |           |          |         |         |        |

| (1)   | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|------|
| FORCE | SID | G   | CID | F   | N1  | N2  | N3  |     |      |

| SID        | Load set identification number. (Integer > 0)           |
|------------|---------------------------------------------------------|
| G          | Grid point identification number                        |
| CID        | Coordinate system identification number                 |
| F          | Scale factor                                            |
| N1, N2, N3 | Components of vector measured in coordinate system CID. |

| BEGIN B<br>PARAM,A | ULK<br>UTOSPC,YES |       |           |          |         |        |        |
|--------------------|-------------------|-------|-----------|----------|---------|--------|--------|
| PARAM, C           | HECKEL,YES        |       |           |          |         |        |        |
| \$ SYST            | EM Data           |       |           |          |         |        |        |
| CORD2R             | 1                 | 20.0  | -20.0     | 0.0      | 20.0    | -20.0  | -100.0 |
| +                  | -80.0 -20.0       | 0.0   |           |          |         |        |        |
| \$                 |                   |       |           |          |         |        |        |
| GRID               | 1                 | 50.0  | -50.0     | 0.0      |         |        |        |
| GRID               | 2                 | 50.0  | -40.0     | 0.0      |         |        |        |
| Ş                  |                   |       |           |          |         |        |        |
| CBEAM              | 101               | 1     | 94        | 550.0    | 1.0     | 0.0    |        |
| \$                 |                   |       |           |          |         |        |        |
| CQUAD4             | 1                 | 1     | 55        | 58       | 59      | 54     |        |
| CQUAD4             | 2                 | 1     | 54        | 59       | 50      | 51     |        |
| CQUAD4             | 3                 | 1     | 58        | 43       | 44      | 59     |        |
| \$                 |                   |       |           |          |         |        |        |
| PSHELL             | 1                 | 11.0  |           | 1        |         | 1      | 0.0    |
| \$                 |                   |       |           |          |         |        |        |
| PBEAM              | 1                 | 178.5 | 3975490.8 | 734490.8 | 87340.0 | 981.74 | 69     |
| \$                 |                   |       |           |          |         |        |        |
| MAT1               | 1210000           | 0.0   | 0.3       | 7.901    | E-09    |        |        |
| \$                 |                   |       |           |          |         |        |        |
| EIGRL              | 3                 |       |           | 20       |         |        | MASS   |
| \$                 |                   |       |           |          |         |        |        |
| FORCE              | 2                 | 11    | 01.0      | 0.0      | 0.0     | -100.0 |        |
| \$                 |                   |       |           |          |         |        |        |
| SPC                | 1                 | 31 12 | 34560.0   |          |         |        |        |
| ENDDATA            |                   |       |           |          |         |        |        |
|                    |                   |       |           |          |         |        |        |

Boundary conditions are generally used to reduce or constrain FE structure

The types of loads applied are dependent on several factors such as the desired solution type, elements available, and type or form of results desired

OptiStruct allows the following boundary conditions to be applied at nodal locations on the structure:

single-point constraint (SPC, SPC1)

multi-point constraint (MPC)

fictitious support (SUPORT, SUPORT1)

| BEGIN B     | ULK         |        |          |          |         |         |        |
|-------------|-------------|--------|----------|----------|---------|---------|--------|
| PARAM, A    | UTOSPC,YES  |        |          |          |         |         |        |
| PARAM, C    | HECKEL,YES  |        |          |          |         |         |        |
| \$ SYST     | EM Data     |        |          |          |         |         |        |
| CORD2R      | 1           | 20.0   | -20.0    | 0.0      | 20.0    | -20.0   | -100.0 |
| +           | -80.0 -20.0 | 0.0    |          |          |         |         |        |
| \$          |             |        |          |          |         |         |        |
| GRID        | 1           | 50.0   | -50.0    | 0.0      |         |         |        |
| GRID        | 2           | 50.0   | -40.0    | 0.0      |         |         |        |
| \$          |             |        |          |          |         |         |        |
| CBEAM       | 101         | 1      | 94       | 550.0    | 1.0     | 0.0     |        |
| \$          |             |        |          |          |         |         |        |
| CQUAD4      | 1           | 1      | 55       | 58       | 59      | 54      |        |
| CQUAD4      | 2           | 1      | 54       | 59       | 50      | 51      |        |
| CQUAD4      | 3           | 1      | 58       | 43       | 44      | 59      |        |
| Ş           |             |        |          |          |         |         |        |
| PSHELL      | 1           | 11.0   |          | 1        |         | 1       | 0.0    |
| \$          |             |        |          |          |         |         |        |
| PBEAM       | 1           | 178.53 | 975490.8 | 734490.8 | 37340.0 | 981.740 | 59     |
| \$          |             |        |          |          |         |         |        |
| MAT1        | 121000      | 0.0    | 0.3      | 7.901    | E-09    |         |        |
| \$          |             |        |          |          |         |         |        |
| EIGRL       | 3           |        |          | 20       |         |         | MASS   |
| Ş           |             |        |          |          |         |         |        |
| FORCE       | 2           | 11     | 01.0     | 0.0      | 0.0     | -100.0  |        |
| ş           | 1           | 21 102 |          |          |         |         |        |
| SPC ENDDAWA | 1           | 51 123 | 4360.0   |          |         |         |        |
| ENDDATA     |             |        |          |          |         |         |        |

| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|
| SPC | SID | G   | С   | D   | G   | с   | D   |     |      |

| SID | Identification number of single-point constraint set. (Integer > 0)                                                                       |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|
| G   | Grid or scalar point identification number. (Integer > 0)                                                                                 |
| с   | Component numbers.<br>Scalar points: Integer, zero or blank<br>Grid points: Up to six unique digits (0 thru 6) with no<br>embedded blanks |
| D   | Value of enforced displacement for all coordinates designated by G and C                                                                  |

| BEGIN B  | ULK<br>UTOSPC,YES |          |             |          |         |         |        |
|----------|-------------------|----------|-------------|----------|---------|---------|--------|
| PARAM, C | HECKEL, YES       |          |             |          |         |         |        |
| Ś SYST   | EM Data           |          |             |          |         |         |        |
| CORD2R   | 1                 | 20       | 0 -20 0     | 0 0      | 20.0    | -20 0   | -100.0 |
| +        | -80 0 -3          | 20.0 0.0 | 20.0        | 0.0      | 20.0    | 2010    | 100.0  |
| s        |                   |          |             |          |         |         |        |
| GRID     | 1                 | 50.      | 0 -50.0     | 0.0      |         |         |        |
| GRID     | 2                 | 50.      | 0 -40.0     | 0.0      |         |         |        |
| \$       |                   |          |             |          |         |         |        |
| CBEAM    | 101               | 1        | 94          | 550.0    | 1.0     | 0.0     |        |
| \$       |                   |          |             |          |         |         |        |
| CQUAD4   | 1                 | 1        | 55          | 58       | 59      | 54      |        |
| CQUAD4   | 2                 | 1        | 54          | 59       | 50      | 51      |        |
| CQUAD4   | 3                 | 1        | 58          | 43       | 44      | 59      |        |
| \$       |                   |          |             |          |         |         |        |
| PSHELL   | 1                 | 11.0     |             | 1        |         | 1       | 0.0    |
| \$       |                   |          |             |          |         |         |        |
| PBEAM    | 1                 | 178.     | 53975490.87 | 734490.8 | 37340.0 | 981.746 | 9      |
| Ş        |                   |          |             |          |         |         |        |
| MAT1     | 123               | L0000.0  | 0.3         | 7.901    | E-09    |         |        |
| \$       |                   |          |             |          |         |         |        |
| EIGRL    | 3                 |          |             | 20       |         |         | MASS   |
| \$       |                   |          |             |          |         |         |        |
| FORCE    | 2                 | 11       | 01.0        | 0.0      | 0.0     | -100.0  |        |
| Ş        |                   |          |             |          |         |         |        |
| SPC      | 1                 | 31 1     | 234560.0    |          |         |         |        |
| ENDDATA  |                   |          |             |          |         |         |        |
### **CONSISTENT UNITS**

All internal calculations in OptiStruct are unit-less

- It is the responsibility of the user to create the model using a consistent set of units.
- The equations that governs consistent units are:
  - Force = Mass × Acceleration
  - Mass = Density × Volume
  - Acceleration = Length / Time<sup>2</sup>
- As an illustration:

| Mass | Length | Young' s<br>Modulus | Density            | Force | Stress | Time |
|------|--------|---------------------|--------------------|-------|--------|------|
| kg   | m      | Ра                  | kg/m³              | Ν     | Ра     | S    |
| kg   | mm     | GPa                 | kg/mm <sup>3</sup> | kN    | GPa    | ms   |
| t    | mm     | MPa                 | t/mm <sup>3</sup>  | Ν     | MPa    | S    |

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

# **RUN OPTIONS AND OUTPUT FILES**



## TYPE OF FILES OUTPUTTED BY OPTISTRUCT

| File Extension | Files Format | File Generation | Details                                                                                                                                                                   |
|----------------|--------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUT            | ASCII        | Automatically   | The OptiStruct OUT file is a general and specific run information and output results file generated after every OptiStruct run.                                           |
| H3D            | Binary       | By Request      | The H3D file is a compressed binary file containing both model and output data                                                                                            |
| OP2            | Binary       | Request         | The OP2 file is a binary file containing both model and output data.                                                                                                      |
| RES            | Binary       | Request         | The RES file is a HyperMesh results file containing both model and output data                                                                                            |
| PCH            | ASCII        | Request         | The PCH file is a general output results file generated after an OptiStruct run                                                                                           |
| STAT           | ASCII        | Automatically   | This file provides details on CPU and elapsed time for each solver module. Settings modified or updated in any configuration file will be written out in this file.       |
| HTML           | ASCII        | Automatically   | The .html file is a HyperText Markup Language file. This file contains a problem summary and results summary of the run                                                   |
| M∨W            | ASCII        | Automatically   | This file is a HyperView session file that is linked with the .h3d result file and can be open directly from HyperMesh using the HyperView button on the OptiStruct panel |

# **OUTPUT RESULT TYPES**

|                            | H3D | НМ | OP2 | РСН | OPT | PAT | Controlling I/O Option |
|----------------------------|-----|----|-----|-----|-----|-----|------------------------|
| Nodal Displacements        | •   | •  | •   | •   | •   | •   | DISPLACEMENT           |
| Element Strain Energy      | •   | •  | •   | •   | 0   | 0   | ESE                    |
| Element Stresses           | •   | •  | •   | •   | •   | •   | STRESS / ELSTRESS      |
| Element Strains            | •   | •  | •   | •   | •   | 0   | STRAIN                 |
| Ply Stresses               | •   | •  | •   | •   | •   | 0   | <u>CSTRESS</u>         |
| Composite Failure Indices  | •   | •  | •   | 0   | •   | 0   | <u>CFAILURE</u>        |
| Ply Strains                | •   | •  | •   | •   | •   | 0   | <u>CSTRAIN</u>         |
| Element Forces             | •   | •  | •   | •   | •   | 0   | FORCE / ELFORCE        |
| Grid Point Stresses        | •   | •  | •   | •   | 0   | 0   | GPSTRESS / GSTRESS     |
| SPC Forces                 | •   | •  | •   | •   | •   | 0   | SPCFORCE               |
| MPC Forces                 | 0   | 0  | •   | •   | •   | 0   | MPCFORCE               |
| Grid Point Forces          | •   | 0  | •   | •   | •   | 0   | <u>GPFORCE</u>         |
| Applied Loads              | •   | 0  | •   | •   | •   | 0   | <u>OLOAD</u>           |
| Contact Force and Pressure | •   | 0  | ٠   | 0   | 0   | 0   | CONTE                  |

### OUTPUT: .OUT FILE DETAILS

The OptiStruct OUT ASCII file is a general and specific run information and output results file generated after every OptiStruct run. This file provides a process commentary and log of the solution. The contents of the OUT file depends on the output factors. Since this is an ASCII file, its contents can be viewed on any simple Text Editor.

There is only one type of OUT file generated regardless of the factors controlling output from OptiStruct. Only the contents of the OUT file varies depending on the model and run process. And here is the list of sections printed in the out file:

- General Analysis Information
- User Information (Messages/Warnings)
- Optional Diagnostic Information
- FE-Model Information
- Memory Estimation Information
- Disk Space Estimation Information
- Analysis Results or Optimization History Information

### OUTPUT: \*.\*H3D FILE DETAILS

The H3D binary file is a compressed binary file containing both model and output data. It can be utilized to post-process results in HyperView, HyperView Player, and HyperGraph.

There are multiple types of H3D files output depending on the factors controlling output from OptiStruct, as shown in the table.

The availability of results sorted by Solution Sequence in H3D format is listed in the <u>Results Output by OptiStruct</u> page

| H3D File                       | File Documentation |
|--------------------------------|--------------------|
| General/Default H3D file       | .h3d file          |
| BYITER and Optimization        | .#.h3d file        |
| Design Optimization H3D        | _des.h3d file      |
| Multi-body Dynamics H3D        | _mbd.h3d file      |
| Topology Sensitivity H3D       | _topol.h3d file    |
| Gauge Sensitivity H3D          | _gauge.h3d file    |
| Linear Static Optimization H3D | _s#.h3d file       |

## OUTPUT: .H3D FILE CONTOUR PLOT AND ANIMATION

| Result       | Description                                                                                                                                                                      |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Displacement | Displacement results from static, frequency response, acoustic, transient response,<br>and multi-body dynamics analyses.<br>Output is controlled by the I/O Option DISPLACEMENT. |
| Eigenvector  | Eigenvector results from normal modes and linear buckling analyses.<br>Output is controlled by the I/O Option DISPLACEMENT.                                                      |
| Stress       | Stress results from static, frequency response, acoustic, transient response, and multi-body dynamics analyses.<br>Output is controlled by the I/O Option STRESS (or ELSTRESS).  |

### **RUN OPTIONS FOR OPTISTRUCT**

#### Selected Run Options for OptiStruct (see Altair OptiStruct User's Guide for more)

- -analysis Submit an analysis run. This option will also check the optimization data; the job will be terminated if any errors exist.
- -optskip Submit an analysis run without performing check on optimization data (skip reading all optimization related cards).
- -check Submit a check job through the command line.
- -nt X Number of threads/cores (X) to be used for SMP solution.
- -np X Number of processors (X) to be used for SPMD analysis.
- -len X Preferred upper bound on dynamic memory allocation (with X in RAM MBytes)
- -maxlen X Hard limit on the upper bound of dynamic memory allocation (with X in RAM MBytes). OptiStruct will not exceed this limit.
- -core X The solver assigns the appropriate memory required. If there is not enough memory available, OptiStruct will error out. (in incore solution is forced, out out-of-core solution, min minimum core solution)
- -out Echoes the output file to the screen.

### LINEAR STATIC ANALYSIS SETUP

Linear static analyses can be defined in 10 steps

- Step 1 Define the material
- Step 2 Define the properties and associate it with the appropriate material
- Step 3 Define the components and associate it with its property
- Step 4 Create the Finite element mesh
- Step 5 Define the constraint load collector and apply the model constraints
- Step 6 Define the force load collector and apply the loads
- Step 7 Define the load step
- Step 8 Define the extra parameters to your analysis (optional)
- Step 9 Run the analysis
- Step 10 Post-process the results

© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.

# STRESS EVALUATION & AVERAGING



## STRESS EVALUATION: EXTRAPOLATION TO NODES

Stresses are always numerically **calculated** at the (Gauss) Integration Points (IP).

In OptiStruct by default, element stresses for shell and solid elements are **output** at the element centroid only.



x Integration Points (IP)

o Centroid

- Element nodes
- "Corner data" = nodal results (participation of element to a node)

Stress output at nodes is an extrapolation, the most simple option to archive this is bilinear extrapolation. This is equivalent to using shape functions of 1<sup>st</sup>-order shells.

This can be requested with:

STRESS(H3D, CORNER) = YES Or STRESS(H3D, BILIN) = YES



## STRESS EVALUATION: EXTRAPOLATION TO NODES – SHELLS

| Location                       | Method                                                                    | Comment                                                                                                                                                                                | Request example                                        |
|--------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Center                         | integration points<br>stresses are<br>averaged to the<br>center           | <ul> <li>"correct" stresses in term of the used FE-model</li> <li>most stable regards to element quality</li> </ul>                                                                    | default                                                |
| Gauss<br>Integration<br>Points | output integration<br>point results to<br>corner                          | - "correct" stresses in term of the used FE-model                                                                                                                                      | STRESS(H3D,GAUSS)=YES                                  |
| corner,<br>bilin               | bilinear<br>extrapolation from<br>integration points<br>stresses to nodes | <ul> <li>good results for in-plane bending</li> <li>can not capture out of plane bending effects</li> <li>can be very oscillatory particular with bad element quality</li> </ul>       | STRESS(H3D,CORNER)=YES<br>or<br>STRESS(H3D, BILIN)=YES |
| cubic                          | strain gauge<br>method with cubic<br>bending correction                   | <ul> <li>good results for out of plane bending</li> <li>less oscillatory then bilin on complex stress distributions</li> <li>can overestimate stresses for in-plane bending</li> </ul> | STRESS(H3D,CUBIC)=YES                                  |
| sgage                          | strain gauge<br>method                                                    | <ul> <li>kind of obsolete</li> <li>cubic should provide more accurate results</li> </ul>                                                                                               | STRESS(H3D,SGAGE)=YES                                  |

## STRESS EVALUATION: EXTRAPOLATION TO NODES – SOLIDS

| Location                            | Method                                                                                        | Comment                                                                                                                                                                               | Request example                                                                                   |
|-------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Center                              | integration points<br>stresses are averaged<br>to the center                                  | <ul> <li>- "correct" stresses in term of the used FE-Model</li> <li>- most stable regards to element quality</li> </ul>                                                               | default                                                                                           |
| Gauss<br>Integration<br>Points      | output integration point results to corner                                                    | - "correct" stresses in term of the used FE-Model                                                                                                                                     | STRESS(H3D,GAUSS)=YES                                                                             |
| corner,<br>bilin,<br>sage,<br>cubic | bilinear extrapolation<br>from integration points<br>stresses to nodes                        | <ul> <li>extrapolation for solid-elements will always be<br/>bilinear</li> <li>keywords sage and cubic are allowed, to support<br/>cubic stresses for shells in same model</li> </ul> | STRESS(H3D,CORNER)=YES<br>STRESS(H3D,BILIN)=YES<br>STRESS(H3D,CUBIC)=YES<br>STRESS(H3D,SGAGE)=YES |
| GPS – grid<br>point stress          | Bilinear extrapolation<br>from integration points<br>stresses to nodes and<br>average at node | <ul> <li>1 value per node, whereas the others give 1 nodal value per element</li> <li>Global average or average by property can be requested</li> </ul>                               | GPSTRESS(H3D)=YES                                                                                 |
| surface                             | membrane applied<br>automatically for post<br>processing only                                 | <ul> <li>"correct" surface stresses in term of the used FE-model</li> <li>can be used for fatigue</li> </ul>                                                                          | STRESS(H3D,SURF)=YES                                                                              |



### STRESS AVERAGING AT NODES IN HYPERVIEW



- x Integration Points (IP)
- o Centroid
- Element nodes



"Corner data" = nodal results (participation of element to a node)

| Location   | Method                                                         | Comment                                                                          |
|------------|----------------------------------------------------------------|----------------------------------------------------------------------------------|
| simple     | Averaging of the stress invariants                             | Advanced should provide more accurate results                                    |
| advanced   | Averaging the stress tensor and calculate invariants from this |                                                                                  |
| difference | Max-min nodal value                                            | Good to find areas with large with stress discontinuous $\rightarrow$ remeshing? |
| max/min    | Max/min value                                                  |                                                                                  |

## ALTERNATIVE METHODS FOR STRESS CALCULATION

#### Rods on the edge of shells

- Use same Material as shell material
- Rod should be thin, but not to thin to jeopardies numerical stability
- Use HyperBeam to get reasonable A and J

#### Membrane on the surface of solids

- Thickness should be small, but not to small
- Remove transverse shear and bending stiffness by leave MID2 and MID 3 blank
- Use same Material as solid material
- STRESS (H3D, SURF) = YES creates that automatically



© 2019 Altair Engineering, Inc. Proprietary and Confidential. All rights reserved.





#### File Name and Location

#### ...\STUDENT-EXERCISE\2a\_Torsion\_Link\torsion\_link.hm

Objectives (1/2)

In this exercise, a structural analysis is performed on a bracket modeled with solid elements. The objective is to set up an linear static analysis from scratch starting just with the meshed model.

- 1. Open the model in HyperMesh Desktop with OptiStruct user profile selected
- 2. Review the model and check the dimensions of the model
- 3. Create a MAT1 material alu for aluminum with the properties: Young's modulus 70000 MPa, Poisson's ratio 0.33
- 4. Create a PSOLID property bracket referencing material alu and assign it to the torsion link component
- 5. Create a load collector Support (no card image) with the following SPC load type constraint
  - Node 4830: DOFs 1-6
  - Node 4831: DOFs 1, 3-6

Objectives (2/2)

- 6. Create a load collector force (no card image) containing a force on node 1 with constant components {12000, 12000, -20000}
- 7. Create a load step Load of type Linear Static using Support as SPC and force as LOAD entry
- 8. Export the model as solver deck
- 9. Review the .fem file in a text editor and understand the references
- 10. Run the analysis with OptiStruct
- 11. Add output requests in order to
  - \* echo .  ${\tt out}$  file on the screen
  - get results only in H3D format and suppress the html file output
- 12. Rerun the analysis with OptiStruct
- 13. Review the .out file wrt warnings, errors and Auto-SPC
- 14. Add parameter to deactivate automatic constraining
- 15. Rerun the analysis with OptiStruct and review the .out file again
- 16. Review the displacements and stresses in HyperView

### Hints (1/9)

2. The length system is reasonable to be millimeter, the consistent units are mm, MPa, N. The mesh size is about 10 mm.

🖹 alu

📩 🦳 Titlas (1) .

Name

Name

Color

Defined

Include File

Card Image

ID.

Ε

G

NU

סנוח

- There are three components:
- torsion link for tetra elements
- RBE2 for RBE2 elements for two supports
- RBE3 for a RBE3 element to apply the force. • A RBE2 would include a rigid condition that doesn't exist.
- 3. Click right mouse button in the model browser, select Create → Material or

use HyperMesh's Quick Access Tool (Crtl+f) to create according MAT1

material card

| mat1  | Q |
|-------|---|
| MAT1  |   |
| MAT10 |   |
|       |   |
|       |   |



### Hints (2/9)

Click right mouse button in the model browser, select *Create* → *Property* or

use HyperMesh's Quick Access Tool (Crtl+f) to create according PSOLID property card

and

assign property to torsion link component by right mouse click on the component, select Assign

| Entities  |                 | ID 📀   | Inclu | ıde                                  |      |                       |
|-----------|-----------------|--------|-------|--------------------------------------|------|-----------------------|
| 🕀 즳 Ass   | embly Hierarchy |        |       |                                      | ſ    | 🖹 💫 Prop              |
| 🕂 🍋 Con   | nponents (3)    |        |       |                                      |      | i 🕹                   |
| 💋         | 🛃 torsion link  | 1 🔲    |       | 0                                    |      | :                     |
| 💋         | 🛃 RBE2          | 2 📘    |       | 0                                    | 1    | lame                  |
|           | 🛃 RBE3          | 3 📒    |       | 0                                    |      | Solverk               |
| 🕂 🙀 Mat   | erials (1)      |        |       |                                      |      | Name                  |
| 2         | alu             | 1 📘    |       | 0                                    |      | ID                    |
| 🗄 🎁 Title | es (1)          |        |       |                                      |      | Color                 |
|           | - ·             | _      |       | 4 11                                 |      | Include               |
|           | Lreate          |        |       | Assembly<br>Deven Continue Collector |      | Defined               |
|           | Expand All      |        |       | Deam Section Collector               |      | Card Im               |
|           | Collapse All    |        |       | Black                                |      | Materia               |
|           | Configure Br    | oweer  | 1     | Component                            |      |                       |
| Name Varu | coningate bi    | 011301 |       | Contact                              | 100  |                       |
|           |                 |        |       | Contact Surface                      |      |                       |
|           |                 |        |       | Cross Section                        |      |                       |
|           |                 |        |       | Curve                                |      |                       |
|           |                 |        |       | Feature                              | 100  |                       |
|           |                 |        | _     | Field                                |      |                       |
|           |                 |        |       | Group                                | 100  |                       |
|           |                 |        | -     | Include File                         | 100  |                       |
|           |                 |        |       | Laminate                             |      | . <b>₽</b> - <b>1</b> |
|           |                 |        |       | Load Collector                       | 100  |                       |
|           |                 |        |       | Load Step                            | 100  |                       |
|           |                 |        |       | Material                             | 100  |                       |
|           |                 |        |       | Multibody                            |      | Nam                   |
|           |                 |        |       | Output Block                         |      |                       |
|           |                 |        |       | Parameter                            |      |                       |
|           |                 |        |       | Plot                                 |      |                       |
|           |                 |        |       | Ply                                  |      |                       |
|           |                 |        |       | Property                             | - 10 |                       |
|           |                 | _      |       | neyion                               |      |                       |
|           |                 |        |       |                                      |      |                       |
|           |                 |        |       |                                      |      |                       |

| 📸 Properties (1) |                |
|------------------|----------------|
| 😓 bracket        | 1 🚺 0          |
|                  |                |
| ame              | Value          |
| Solver Keyword   | PSOLID         |
| Name             | bracket        |
| ID               | 1              |
| Color            |                |
| Include          | [Master Model] |
| Defined          |                |
| Card Image       | PSOLID         |
| Material         | (1) alu        |



#### Hints (3/9)

- Click right mouse button in the model browser, select Create → Load Collector and create the two SPCs
- Click right mouse button in the model browser, select Create → Load Collector and create the force



| Beam Section Collector                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Beamsection Block Component Contact Contact Surface Cross Section Curve Feature Field Group Include File Laminate Load Collector Load Step |
|                                                                                                                                            |



### Hints (4/9)

- Click right mouse buttor in the model browser, select *Create* → *Load Step*
- 8. Click on button Solver Export Deck, choose file name and hit *Export*

| Create 🕨 🕨        | Assembly               |                    | 0                           |                                 |
|-------------------|------------------------|--------------------|-----------------------------|---------------------------------|
| Expand All        | Beam Section Collector | 🕀 ॡ Materials (1)  |                             | Session Model Export X          |
| Collanse All      | Beamsection            |                    |                             |                                 |
| Collapse All      | Block                  | Name               | Value                       |                                 |
| Configure Browser | Component              | Solver Keyword     | SUBCASE                     | File selection                  |
|                   | Contact                | Name               | Load                        | File type: OptiStruct           |
|                   | Contact Surface        | ID                 | 1                           |                                 |
|                   | Cross Section          | Include            | [Master Model]              | Template: Standard format 💌     |
|                   | Curve                  | User Comments      | Hide In Menu/Export         | The Institute Fill And the form |
|                   | Feature                | Subcase Definition |                             | File: torsion_link_training.rem |
|                   | Field                  | 🗧 Analysis type    | Linear Static               | l v Export options              |
|                   | Group                  | SPC                | (1) Support                 | Europh Custom - Select Entition |
|                   | Include File           | LOAD               | (2) force                   |                                 |
|                   | Laminate               | SUPORT1            | <unspecified></unspecified> | Solver options: Select Options  |
|                   | Load Collector         | PRETENSION         | <unspecified></unspecified> |                                 |
|                   | Load Step              | MPC                | <unspecified></unspecified> | Comments:                       |
|                   | Material               | DEFORM             | <unspecified></unspecified> | 🗖 HyperMesh                     |
|                   | ka hit i               | STATSUB (PRELOAD)  | <unspecified></unspecified> | Connector                       |
|                   |                        | STATSUB (PRETENS)  | <unspecified></unspecified> | Part Assemblies /Parts          |
|                   |                        | SUBCASE OPTIONS    |                             |                                 |
|                   |                        | LABEL              |                             | Include files: Merge 👻          |
|                   |                        | SUBTITLE           |                             |                                 |
|                   |                        | ANALYSIS           |                             | I✓ ID Rules                     |
|                   |                        | TYPE               | STATICS                     | Prompt to save invalid elements |
|                   |                        | ASSIGN             |                             | Prompt before overwrite         |

#### Hints (5/9)

#### 9. Exported . fem file without HyperMesh comments

- Constraint reference
- Load reference
- Property reference
- Material reference



#### Hints (6/9)

10. Use the HyperWorks Solver Run Manager to run the exported . fem file, make sure that OptiStruct states "ANALYSIS COMPLETED" and review the created files.

torsion\_link\_training.fem torsion\_link\_training.h3d torsion\_link\_training.html torsion\_link\_training.mvw torsion\_link\_training.out torsion\_link\_training.res torsion\_link\_training.stat torsion\_link\_training\_frames.html torsion\_link\_training\_menu.html

| HyperWorks S   | olver Run Manag    | er (@DEWLT257)  |                    |      |
|----------------|--------------------|-----------------|--------------------|------|
| File Edit View | / Logs Solver      | HyperWorks Help |                    |      |
| Input file(s): | torsion_link_train | ning.fem        |                    | Ž    |
| Options:       | -ncpu 4 -core in   |                 |                    |      |
| 🥮 🗆 L          | Jse SMP: -nt 2     | Use MPI options | Use solver control | Sche |
|                |                    |                 | Run C              | lose |

| Sel              |                            | 2.2                     |                         | 1                      |                |                      |              |          |      |    |
|------------------|----------------------------|-------------------------|-------------------------|------------------------|----------------|----------------------|--------------|----------|------|----|
| oiver:           | optistruct_2017            | 2.3_winb4.exe           |                         |                        |                |                      |              |          |      |    |
| nput file:       | torsion_link_tra           | ining.fem               |                         | Job compl              | eted           |                      |              |          |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
| tun comm         | hand:/hwsolve              | r.tcl/torsion_          | ink_training.fe         | m -screen -ncj         | ou 4 -ce       | ore in -dir -si      | olver OS     |          | _    | _  |
| /lessage lo      | og:                        |                         |                         |                        | Optin          | nization sum         | imary:       |          | Grap | bh |
| lessage.         | s for the ]                | : 00                    |                         | <u> </u>               | ple            | Grid/El              | em ID        | Value    |      | ^  |
| ANALYS           | IS COMPLETE                | Π.                      |                         |                        |                |                      | 742_Z        | -1.04148 |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
| (                |                            |                         |                         |                        | •              |                      |              | III      | F    |    |
| lun summ         | iary:                      |                         |                         |                        |                |                      |              |          |      |    |
| *****            | *******                    | ******                  | ********                | ******                 | *****          | ***** Fin            | id:          |          |      | 4  |
| **               |                            |                         |                         |                        |                |                      |              | **       |      |    |
| **               |                            | 0                       | ptiStruct               | 2017.2.3               |                |                      |              | **       |      |    |
| **               | Ad                         | vanced Eng              | ineering J              | analysis, 1            | Desig          | n and                |              | **       |      |    |
| **               | Optimiz                    | ation Soft              | ware from               | Altair En              | ginee          | ring, In             | c.           | **       |      |    |
| **               |                            |                         |                         |                        |                |                      |              | **       |      |    |
| **               |                            | Windows 7               | SP1 (Buil               | d 7601)                | DEWLT          | 257                  |              | **       |      |    |
| **               | 8 CPU:                     | Intel(R)<br>24554       | Core(TM)<br>MB RAM,     | 17-4800MQ<br>65396 MB  | CPU            | @ 2.70GH             | z            | **       |      |    |
| **               |                            |                         | ,                       |                        |                |                      |              | **       |      | Ξ  |
| ** Bui           | 1d tag: 090                | 0751_9433x              | xx_Ce64RBW              | 8UH14M:13              | 8991-<br>***** | -2 40000             | 200060       | *******  |      |    |
| ** CO            | PYRIGHT (C)                | 1996-2017               |                         | Al                     | tair           | Engineer             | ing, I       | inc. **  |      |    |
| ** All           | Rights Res<br>Contai       | erved. Co               | pyright no<br>ecrets of | tice does<br>Altair En | not            | imply pu<br>ring. In | blicat<br>c. | ion. **  |      |    |
| ** Dec           | ompilation                 | or disasse              | mbly of th              | is softwa              | re st          | rictly p             | rohibi       | .ted. ** |      |    |
| *****            | *********                  | *******                 | ********                | ******                 | *****          | ******               | *****        | ******   |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
| The am<br>This r | ount of men<br>un will use | ory alloca<br>in-core p | ted for th<br>rocessing | in the so              | 115 M<br>lver. | 1B.                  |              |          |      |    |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |
| ANALYS           | 15 COMPLETE                | .D.                     |                         |                        |                |                      |              |          |      |    |
| 7.               | nd of sol                  |                         |                         |                        |                |                      |              |          |      |    |
| E                | nu or solve                | i screen o              | ucput -200              |                        |                |                      |              |          | h    | *  |
|                  |                            |                         |                         |                        | _              |                      |              |          |      | _  |
|                  |                            |                         |                         |                        |                |                      |              |          |      |    |

### Hints (7/9)

11. Use HyperMesh's Quick Access Tool (Crtl+f)



| 🖨 🗑 Cards (2)           |                |
|-------------------------|----------------|
| CREEN                   | 1 0            |
| 🖉 OUTPUT                | 2 0            |
| 🕀 🛜 Components (3)      |                |
| 🛱 📭 Load Collectors (2) |                |
| Name                    | Value          |
| Include File            | [Master Model] |
| Status                  |                |
| number_of_outputs =     | 2              |
| OUTPUT 1                |                |
| KEYWORD                 | H3D            |
| FREQ                    | ALL            |
| OPTION                  |                |
| OUTPUT 2                |                |
| KEYWORD                 | HTML           |
| OPTION                  | NO             |
|                         |                |
|                         |                |

12. Review the created files and note the additional output in the HyperWorks Solver View

torsion\_link\_done.fem torsion\_link\_done.h3d torsion\_link\_done.mvw torsion\_link\_done.out torsion\_link\_done.stat

| oher: optistruct_2017.2.3_win64.exe paut file tersion_link_done.fem Job completed un command: _/hwsolver.tcl _/torsion_link_done.fem -screen -ncpu 4 -core in -dir -solver OS tersage log: Optimization summary: Complete essages for the job: ANALYSIS COMPLETED. ANALYSIS COMPLETED. Un summary: Execution = Residual Strain Energy Ratio. ANALYSIS COMPLETED. ESOURCE USAGE INFORMATION EXECUTION STARTED COMPLETED.                                                                                                                                                                                                                                                                                                                         | n_ink_done.rem - nyperworks solver view                                            |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|
| un command:       Job completed         an command:       ./hwsolver.td/torsion_link_done.fem -screen -ncpu 4 -core in -dir -solver OS         lessage log:       Optimization summary:         seaagues for the job:       Image: screen -ncpu 4 -core in -dir -solver OS         ansLYSIS COMPLETED.       Image: screen -ncpu 4 -core in -dir -solver OS         ansummary:       Optimization summary:         Running in-core solution)       Image: screen -ncpu 4 -core in -dir -solver OS         olume       -9.01016E-006         1 9.456442F.03 4.947119E-13         ote: Epsilon = Residual Strain Energy Ratio.         scource USAGE INFORMATION         HAXIMUM DEMORY USED       115 MB         MAXIMUM MEMORY USED       115 MB         MAXIMUM MEMORY USED       115 MB         MAXIMUM MEMORY USED       Tue Feb 06 08:29:30 2018         CMUCIE TIME INFORMATION       O0:00:04         CHUTINE       O0:00:07         CHUTINE       O0:00:07         CHUTINE       OO:00:07         CHUTINE       OO:00:07         CHUTINE       Chut         CHUTINE       Chut         CHUTINE       OF REPORT *****         For Useful OptiStruct Tips and Tricks, go to the URL:         http://www.altarkhyperworks.com/tips.aspx <th>optistruct_2017.2.3_win64.exe</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | optistruct_2017.2.3_win64.exe                                                      |      |
| un command: _/hwsolver.td/torsion_link_done.fem -screen -ncpu 4 -core in -dir -solver OS  terage log:     Optimization summary:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e: torsion_link_done.fem Job completed                                             |      |
| un command:/hwsolvertd/torsion_link_done.fem -screen -ncpu 4 -core in -dir -solver OS tetasge log essages for the job: ANALYSIS COMPLETED. ANALYSIS COMPLETED. ANALYSIS COMPLETED.  un summany: Emming in-core solution) olume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |      |
| Hessge log:     Optimization summary:     Graph       descages for the job:     1     1     Value     742_Z -1.09148       aNALYSIS COMPLETED.     742_Z -1.09148     742_Z -1.09148     742_Z -1.09148       un summary:     = 9.01016E+006     Mass Find       subcase     Completed     1     9.456644E+03     4.347119E-13       oce:     Epsilon     1     9.456644E+03     4.347119E-13       oce:     Epsilon     115 MB     27 MB       ESOURCE USAGE INFORMATION     115 MB     27 MB       MAXIMUM MEMORY USED     115 MB     20106       MAXIMUM MEMORY USED     115 MB     0010004       CHUTHE INFORMATION     The Feb 06 08:29:30 2018     00100104       CHUTHE INFORMATION     002:00:03     002:00:04       CHUTHE INFORMATION     The Feb 06 08:29:30 2018     002:00:04       CHUTHE     Feb 06 08:29:34 2028     002:00:04       CHUTHE     CHUTHE     002:00:04       CHUTHE     CHUTHE     002:00:04       CHUTHE     CHUTHE     002:00:04       CHUTHE <t< td=""><td>nmand:/hwsolver.tcl/torsion_link_done.fem -screen -ncpu 4 -core in -dir -solver OS</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nmand:/hwsolver.tcl/torsion_link_done.fem -screen -ncpu 4 -core in -dir -solver OS |      |
| ANRLYSIS COMPLETED.<br>ansames for the job:<br>ansames for the job:<br>a                                                                                                                               |                                                                                    | anh  |
| ANALYSIS COMPLETED.<br>Unsummary:<br>Running in-core solution)<br>olume = 9.01016E+006 Mass Find<br>Subcase Compliance Epsilon<br>1 9.456644E+03 4.97119E-13<br>ore : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>ESOURCE USAGE INFORMATION<br>ESOURCE USAGE INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION COMPLETED.<br>EXECUTION COMPLETED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION COMPLETED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED TUE Feb 06 08:29:30 2018<br>EXECUTI                                                                                                                                                                                                                   | ges for the job:                                                                   | apri |
| ANALYSIS COMPLETED.<br>742_Z -1.09148<br>742_Z -1.                                                           | Jie Gild/Elem ib Value                                                             | - 1  |
| ANALYSIS CONTRILLS.<br>Wun summany:<br>Running in-core solution)<br>1 9.95644Er03 4.347119E-13<br>ore : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ANALYSIS COMPLETED.<br>ANALYSIS COMPLETED.<br>MAXIMUM MEMORY USED 115 MB<br>MAXIMUM MEMORY USED 27 MB<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | YSTS COMPLETED 742_Z -1.04148                                                      |      |
| un summany:<br>Running in-core solution)<br>olume = 9.01016E+006 Mass Find<br>Subcase Compliance Epsilon<br>1 9.45644E+03 4.347119E-13<br>ore : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>ESOURCE USAGE INFORMATION<br>ESOURCE USAGE INFORMATION<br>MAXIMUM DISK SPACE USED 115 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>COMPUTE INFORMATION<br>EXECUTION COMPLETED.<br>EXECUTION COMPLETED Tue Feb 06 08:29:30 2018<br>COMPUTE INFORMATION<br>EXECUTION COMPLETED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 001:00:01<br>CONTINUE 000:00:07<br>CONTINUE 000:00:07<br>CONTINUE 000:00:07<br>CONTINUE 000:001<br>CONTINUE                                                                                                             | ISIS COMPLETED.                                                                    |      |
| <pre>w summary:<br/>w summary:<br/>Nunning in-core solution)<br/>Subcase Compliance Epsilon<br/>1 9.45644E+03 4.347119E-13<br/>ote : Epsilon = Residual Strain Energy Ratio.<br/>ANALYSIS COMPLETED.<br/>ESOURCE USAGE INFORMATION<br/>MAXIMUM DESORY USED 115 MB<br/>MAXIMUM DESORY USED 27 MB<br/>COMPUTE TIME INFORMATION<br/>EXECUTION CONFLICTED Tue Feb 06 08:29:30 2018<br/>ELAPSED TIME 00:00:01<br/>CUU TIME 00:00:00:01<br/>CUU TIME 00:00:00:01<br/>CUU TIME 00:00:00:00<br/>CUU TIME 00:00:00:00<br/>CUU TIME 00:00:00:00<br/>CUU TIME 00:00:00<br/>CUU TIME 00:00:00<br/>CUU TIME 00:00:00:00<br/>CUU TIME 00:00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00<br/>CUU TIME 00:00<br/>CUU</pre> |                                                                                    |      |
| <pre>wsummary:<br/>Running in-core solution)<br/>olume = 9.01016E+006 Mass End<br/>Subcase Compliance Epsilon = 9.01016E+006 Mass End<br/>Subcase Compliance Epsilon = 1.9.00016E+006 Mass End<br/>Escurce UsAde INFORMATION<br/>ESCURCE USAde INFORMATION<br/>MAXIMUM MEMORY USED 115 MB<br/>MAXIMUM MEMORY USED 2.7 MB<br/>Compose Information<br/>Execution Completed USED Tue Feb 06 08:29:30 2018<br/>ELAPSED TIME 00:00:00<br/>CONTINUE OF REPORT *****<br/>For Useful OptiStruct Tips and Tricks, go to the URL:<br/>http://www.altairhyperworks.com/tips.aspx<br/>==== End of solver screen output ====<br/>==== Job completed =====</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |      |
| <pre>mmuning in-core solution) Subcase Compliance Epsilon 1 9.486448+03 4.347119E-13 Over : Desilon - Residual Strain Energy Ratio. ANALYSIS COMPLETED. ESOURCE USAGE INFORMATION EXCURNE USAGE INFORMATION EXCURNE INFORMATION EXECUTION STARTED EXECUTION COMPLETED Twe Feb 06 08:29:30 2018 ELABSED TIME O0:00:01 Commented Strain Energy Ratio CFU TIME O0:00:01 Commented Strain Energy Ratio CFU TIME CFU Definition CFU Definition</pre>                                                                                                                                                                                                                                                                                                                    |                                                                                    |      |
| wsummany:<br>Summing in-core solution)<br>Subcase Compliance Epsilon<br>1 9.4566442+03 4.347119E-13<br>ote : Epsilon - Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM DENGRU USED 115 MB<br>MAXIMUM DENGRU USED 27 MB<br>COMPUTE TIME INFORMATION<br>EXECUTION CONFLICED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:07<br>CUT TIME 00:00:07<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altain/perworks.com/tips.aspx<br>==== End of solver screen output ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |      |
| usummary:         Running in-core solution)         0lume       = 9.01016E+006         Mass         Subcase       Compliance         Epsilon       = Residual Strain Energy Ratio.         ANALYSIS COMPLETED.         ESOURCE       USAGE         MAXIMUM MEMORY USED       115 MB         MAXIMUM MEMORY USED       27 MB         MAXIMUM DISK SPACE USED       27 MB         MAXIMUM DISK SPACE USED       27 MB         MAXIMUM MEMORY USED       115 MB         MAXIMUM DISK SPACE USED       27 MB         MAXIMUM DISK SPACE USED       27 MB         MAXIMUM DISK SPACE USED       00:00:04         CONFUTE TIME       WO:00:04         CUTIME       00:00:07         FLAPSED TIME       00:00:07         CUTIME       00:00:07         For Useful OptiStruct Tips and Tricks, go to the URL:         http://www.altairhyperworks.com/tips.aspx         ==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |      |
| UNSUMMARY:<br>Running in-core solution) = 9.01016E+006 Mass Find<br>1 9.456644E+03 4.347119E-13<br>occ : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED 115 MB<br>NAXIMUM DISK SPACE USED 27 MB<br>COMPUTE TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>COMPUTE TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>CONFUTE TIME INFORMATION<br>EXECUTION COMPLETED Tue Feb 06 08:29:34 2018<br>CONFUTE TIME 00:00:01<br>From Started Time Conference Confer                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                              |      |
| AMINING INFORMATION<br>Subcase Compliance Epsilon = 9.01016E+006 Mass Find<br>1 9.456442F.03 4.347119E-13<br>Ote : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ANALYSIS COMPLETED.<br>MAXIMUM MEMORY USED 115 MB<br>MAXIMUM MEMORY USED 27 MB<br>MAXIMUM MEMORY USED 27 MB<br>MAXIMUM MEMORY USED 27 MB<br>MAXIMUM MEMORY USED 27 MB<br>MAXIMUM MEMORY USED 2018<br>EXECUTION CONFLETED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:07<br>CUT TIME 00:00:07<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altainbygerworks.com/tips.aspx<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | imary:                                                                             |      |
| Subcase Compliance Epsilon in 9, 936644E-03, 4.97(1)82-13<br>ore : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED 115 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>MAXIMUM DISK SPACE USED 2010<br>EXECUTION COMPLETED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:07<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 9.01016E+006 Mass                                                                | Î    |
| 1 9.456644F-03 4.347119E-13<br>Ore : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM DISK SPACE USED 115 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ase Compliance Epsilon                                                             |      |
| ote : Epsilon = Residual Strain Energy Ratio.<br>ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED 115 MB<br>MAXIMUM DISK SFACE USED 27 MB<br>MAXIMUM DISK SFACE USED 2018<br>EXECUTION COMPLETED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:01<br>CUE TIME 00:00:01<br>CUE TIME 00:00:07<br>CUE TIME 00:07<br>CUE TIME 00:07                                                                                                               | 1 9.456644E+03 4.347119E-13                                                        |      |
| ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED 115 MB<br>27 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>MAXIMUM DISK SPACE USED 2018<br>The Feb 06 08:29:34 2018<br>DOI:00.010<br>The Feb 06 08:29:34 2018<br>The Feb 06 08:29:34 2018<br>The Feb 06 08:29:34 2018<br>The Feb                                                                                                         | : Epsilon = Residual Strain Energy Ratio.                                          |      |
| ANALYSIS COMPLETED.<br>ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED<br>MAXIMUM MEMORY USED<br>MAXIMUM MEMORY USED<br>MAXIMUM DISK SPACE USED<br>MAXIMUM DISK SPACE USED<br>MAXIMUM DISK SPACE USED<br>Tue Feb 06 08:29:30 2018<br>ELAPSED TIME<br>ELAPSED TIME<br>CONVENTION<br>From END OF REPORT *****<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altain/uperworks.com/tips.aspx<br>==== End of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***************************************                                            |      |
| ESOURCE USAGE INFORMATION<br>ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED 115 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>CMFUTE INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:01<br>CU TIME 00:00:01<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== Ich of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YSIS COMPLETED.                                                                    |      |
| ESOURCE USAGE INFORMATION<br>MAXIMUM MEMORY USED 115 MB<br>MAXIMUM DISK SPACE USED 27 MB<br>COMPUTE TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>EXECUTION COMPLETED Tue Feb 06 08:29:34 2018<br>CONTRACT ON CONTRACT                                                                                                                                                                                                                                         |                                                                                    |      |
| SOURCE USAGE INFORMATION<br>HAXIMUM MEMORY USED 115 MB<br>MAXIMUM DISK SFACE USED 27 MB<br><br>CMFUTE TIME INFORMATION<br><br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:01<br>CUU TIME 00:00:07<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>End of solver screen output ====<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ************************                                                           |      |
| NALIMUM MEMORY USED 115 MB 27 MB<br>NALIMUM DISK SPACE USED 27 MB<br>COMPUTE TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>EXECUTION COMPLETED 00:00:00<br>CHU TIME 00:00:00<br>CHU TIME 00:00:00<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== End of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RCE USAGE INFORMATION                                                              |      |
| ANNINGE DISK SPACE USED 27 MB<br>27 MB<br>COMPUTE TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION STARTED Tue Feb 06 08:29:34 2018<br>00:00:04<br>00:00:04<br>00:00:07<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhygerworks.com/tips.aspx<br>End of solver screen output<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhygerworks.com/tips.aspx<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VIII MEMORY USED 115 MB                                                            |      |
| CMEUTE TIME INFORMATION<br>EXECUTION STARTED<br>EXECUTION CONFLICTED<br>Tue Feb 06 08:29:30 2018<br>ELAPSED TIME<br>COUTINE<br>COUTINE<br>COUTINE<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== End of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MUM DISK SPACE USED 27 MB                                                          |      |
| OMFORE TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>EXECUTION COMPLETED Tue Feb 06 08:29:34 2018<br>ELAPSED TIME 00:00:01<br>CFU TIME 00:00:01<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***********                                                                        |      |
| OMPORT TIME INFORMATION<br>EXECUTION STARTED Tue Feb 06 08:29:30 2018<br>ELAPSED TIME 00:00:01<br>CUU TIME 00:00:07<br>THE END OF REPORT *****<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== End of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***************************************                                            |      |
| EXECUTION STARTED Tue Feb 06 08:29:30 2018 EXECUTION COMPLETED Tue Feb 06 08:29:30 2018 Tue Feb 06 08:29:34 2018 00:00:01 CFU TIME 00:00:01  For Useful OptiStruct Tips and Tricks, go to the URL: http://www.altairhyperworks.com/tip.aspx End of solver screen output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TE TIME INFORMATION                                                                |      |
| EXECUTION COMPLETED<br>THE FE 06 08:29:34 2018<br>00:00:04<br>00:00:05<br>THE FE 06 08:29:34 2018<br>00:00:04<br>00:00:07<br>THE FE 06 08:29:34 2018<br>00:00:07<br>THE FE 06 08:29:34 2018<br>00:00:07<br>THE FE 06 08:29:34 2018<br>00:00:04<br>THE FE 06 08:29:34 2018<br>00:00:04<br>THE FE 06 08:29:34 2018<br>THE FE 06 08:29:34 2                                                                                                                                             | THE Feb 06 08:20:30 2018                                                           |      |
| ELAPSED TIME 00:00:04<br>CFU TIME 00:00:07<br>END OF REPORT<br>For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== End of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | UTION COMPLETED Tue Feb 06 08:29:34 2018                                           |      |
| CFU TIME 00:00:07  END OF REPORT For Useful OptiStruct Tips and Tricks, go to the URL: http://www.altairhyperworks.com/tips.aspx End of solver screen output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SED TIME 00:00:04                                                                  |      |
| END OF REPORT For Useful OptiStruct Tips and Tricks, go to the URL: http://www.altairhyperworks.com/tips.aspx ==== End of solver screen output ==== ==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FIME 00:00:07                                                                      |      |
| For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx     For d solver screen output ====     Job completed ====     Pande View a Chee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ***************************************                                            |      |
| For Useful OptiStruct Tips and Tricks, go to the URL:<br>http://www.altairhyperworks.com/tips.aspx<br>==== End of solver screen output ====<br>==== Job completed ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ***** END OF REPORT *****                                                          |      |
| <pre>ror userul optistruct isps and iricks, go to the UKL:<br/>http://www.blaithypervorks.com/tips.aspx<br/>==== End of solver screen output ====<br/>==== Job completed ====</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                    |      |
| ==== End of solver screen output ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Jerui optistruct lips and fricks, go to the URL:                                   |      |
| ==== End of solver screen output ====                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                    |      |
| Job completed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | //www.arcarrayperworks.com/crps.aspk                                               |      |
| Bandko View z Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | End of solver screen output ====                                                   |      |
| Bank View - Clas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | End of solver screen output ====                                                   | 100  |
| Pandro View - Chre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | End of solver screen output ====                                                   |      |
| Pavalter View - Class                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Job completed ====                                                                 | E    |
| Parulta View - Clara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Job completed ====                                                                 |      |
| Parultz View - Clara                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Job completed ====                                                                 |      |
| Results View + Close                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Job completed ====                                                                 | H +  |

Name AUTOSPC

> V1 AUTOSPRT BUSHRLMT

0

0

Π

Value

NO

2

3

#### Hints (8/9)

13. There are 19 elements that exceeded recommended range (warning) for the element quality check.

OptiStruct auto-SPCed 1344 degrees-of-freedom (DOF).

14. Use HyperMesh's Quick Access Tool (Crtl+f) to add control card PARAM, AUTOSPC, NO Note that this card will be added in the bulk section.

| NOTE : other similar error/warning messages were suppressed,<br>use PARAM, CHECKEL, FULL to obtain full report<br>Element Quality Check Summary<br>Total # of elements that exceeded recommended range (warning) = 19<br>Note: Only element with the highest violation of each check is listed bel<br>Recommended range violations:<br>                                                                                                     | low.  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Element Quality Check Summary<br>Total # of elements that exceeded recommended range (warning) = 19<br>Note: Only element with the highest violation of each check is listed bel<br>Recommended range violations:<br>                                                                                                                                                                                                                       | low.  |
| Element Quality Check Summary Total # of elements that exceeded recommended range (warning) = 19 Note: Only element with the highest violation of each check is listed bel Recommended range violations: Element Property # of Recommended Range Max. Viol. Uiol. Lower Upper Value type TETRA Face Vertex Angle 19 15.00 165.00 11.95 L List of Auto-SPC d.o.f.s for loadcase 1 Total number of Auto-SPC d.o.f.s = 1344 Grid No. Component | low.  |
| Total # of elements that exceeded recommended range (warning) = 19<br>Note: Only element with the highest violation of each check is listed bel<br>Recommended range violations:<br>Element Property # of Recommended Range Max. Viol.<br>Viol. Lower Upper Value type<br>TETRA Face Vertex Angle 19 15.00 165.00 11.95 L<br>List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br>Grid No. Component       | low.  |
| Total # of elements that exceeded recommended range (warning) = 19<br>Note: Only element with the highest violation of each check is listed bel<br>Recommended range violations:<br><br>Element Property # of Recommended Range Max. Viol.<br>Viol. Lower Upper Value type<br>                                                                                                                                                              | low.  |
| Recommended range violations:<br>Element Property # of Recommended Range Max. Viol.<br>Viol. Lower Upper Value type<br>TETRA Face Vertex Angle 19 15.00 165.00 11.95 L<br>List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br>                                                                                                                                                                            |       |
| Element Property # of Recommended Range Max. Viol.<br>Viol. Lower Upper Value type<br>TETRA Face Vertex Angle 19 15.00 165.00 11.95 L<br>List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br>Grid No. Component                                                                                                                                                                                           |       |
| Viol. Lower Upper Value type<br>TETRA Face Vertex Angle 19 15.00 165.00 11.95 L<br>List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br>Grid No. Component                                                                                                                                                                                                                                                 | Elem. |
| TETRA Face Vertex Angle 19 15.00 165.00 11.95 L<br>List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br>                                                                                                                                                                                                                                                                                                   | No.   |
| List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br><br>Grid No. Component                                                                                                                                                                                                                                                                                                                                | 15597 |
| List of Auto-SPC d.o.f.s for loadcase 1<br>Total number of Auto-SPC d.o.f.s = 1344<br><br>Grid No. Component                                                                                                                                                                                                                                                                                                                                |       |
| Total number of Auto-SPC d.o.f.s = 1344<br><br>Grid No. Component                                                                                                                                                                                                                                                                                                                                                                           |       |
| Grid No. Component                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| dila No. Component                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 3870 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3871 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3872 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3873 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3874 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3875 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3876 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3877 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3878 4 5 6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3879 456                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |
| 2000 4.5.6                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |

#### Hints (9/9)

16. Click on Results in the HyperWorks Solver View and HyperView will directly open the according .mvw session file created by OptiStruct.



17. In the displacement contour plot the deformed shape is scaled by 100. In the stress contour plot it is easy to notice that the stress results are not ideal due to discontinuities in the mesh. The next step would be to rerun this model with a refined mesh.



### CONVERGENCE STUDY

A finer mesh results on the one hand typically in a more accurate solution, one the other hand increases the computation time.

In order to get an idea of a finite element model that is good enough to predict an accurate solution for a problem with a reasonable model size, a convergence study can be performed:

- Create a mesh using low, but reasonable number of elements and do an analysis
- Refine the mesh, do a reanalysis and compare the results for the first mesh.
- Keep refining the mesh and reanalyzing until the results like max. stress and max. displacement converge.



### **CONVERGENCE STUDY – EXAMPLE SOLID BRACKET**













| Element Size<br>(mm) | Von Mises<br>(MPa) | Displace-<br>ment (mm) |
|----------------------|--------------------|------------------------|
| 10                   | 60.2               | 1.06                   |
| 6.5                  | 63.3               | 1.08                   |
| 5                    | 69.5               | 1.09                   |
| 3                    | 73.0               | 1.10                   |
| 2                    | 80.0               | 1.10                   |
| 0.55                 | 84.4               | 1.09                   |
| 0.17                 | 89.3               | 1.09                   |



#### File Name and Location

...\STUDENT-EXERCISE\2b\_Simple\_Beam\beam.hm

Objectives (1/3)

In this exercise, a structural analysis is performed on a simply supported beam:

- Beam modelled by shell elements, length = 1000 mm, height = 20 mm, width = 10 mm
- Material steel (Young's modulus 210000 MPa, Poisson's ratio 0.3, density 7.85e-9 t/mm<sup>3</sup>)
- Force of 1000 N in the center of the beam

The objective is to compare the results of the finite element model with the theoretical solution.

- 1. Open the model in HyperMesh Desktop with OptiStruct user profile selected
- 2. Review the model and check the dimensions of the model
- 3. Create a MAT1 material steel for steel with the given properties
- 4. Create a PSHELL property shell with a thickness of 10 mm referencing material steel and assign it to the beam component



Objectives (2/3)

- 5. Create a load collector SPC (no card image) with the following SPC load type constraint
  - Node 205: DOFs 1-5
  - Node 1: DOFs 2-3
- 6. Create a load collector FORCE (no card image) containing a force on node 53 with constant components {0, -1000, 0}
- 7. Create a load step Load of type Linear Static using SPC as SPC and FORCE as LOAD entry
- 8. Add output requests in order to
  - echo .out file on the screen
  - get results only in  $\tt H3D$  format and suppress the  $\tt html$  file output
- 9. Run the analysis with OptiStruct
- 10. Review the .out file wrt warnings, errors and Auto-SPC
- 11. Review the displacements and stresses in HyperView and check
  - max. displacement in y-direction
  - max. stress in (global) xx-direction

Objectives (3/3)

- 12. Calculate the theoretical results for
  - max. displacement in y-direction
  - max. stress in xx-direction
- 13. Add the global output request STRESS (H3D, CORNER) = YES
- 14. Rerun the analysis with OptiStruct
- 15. Review the stresses in HyperView and check
  - max. displacement in y-direction max. stress in (global) xx-direction





🗄 🔁 Components (1)

🗜 beam

1 0

ID

Color

Π

0

-> 14

Card Ima

PSHELL

## EXERCISE 2B: STATIC ANALYSIS OF A SIMPLY SUPPORTED BEAM

#### Hints (1/6)

- The length system is reasonable to be millimeter, the consistent units are mm, MPa, N. 2. The mesh size is 10 mm. There is one components beam containing elements and surfaces
- 3. Use HyperMesh's Quick Access Tool (Crtl+f) to create according MAT1 material card

mat1

Use HyperMesh's Quick Access 4. Tool (Crtl+f) to create according PSHELL property card and assign property to beam component

in the entity editor

🗄 🙀 Materials (1) MAT10 👔 steel 1 🗄 🌇 Properties (1) 🗄 🙀 Materials (1) 📩 shell 🗄 🚵 Properties (1) 1 🔲 🗄 间 Titles (1) 🖹 steel 0 🖢 shell 1 🔲 0 Name Value Value Value Name Name Solver Keyword PSHELL Name beam Solver Keyword MAT1 ID. 1 Name shell Name steel Color ID. ID. 1 Include File [Master Model] Color Color Property Include [Master Model] Include [Master Model] Material <Unspecified> Defined  $\checkmark$ Defined  $\checkmark$ Card Image PSHELL Select Property Card Image MAT1 Material (1) steel User Comments Hide In Menu/Export User Comments Hide In Menu/Export Enter Search String. 210000.0 G Т 10.0 Name NU 0.33 shell RHO 7.85e-009

pshell

#### Hints (2/6)

- 5. Use HyperMesh's Quick Access Tool (Crtl+f) with SPC to create the two SPCs
- 6. Use HyperMesh's Quick Access Tool (Crtl+f) with LOAD to create the load

Be aware, that loads and constraints can generate singularities. These can lead to a very high stress that is not physical, and appears only in the mathematical model

 Click right mouse button in the model browser, select Create → Load Step and set Analysis type to Linear Static



hing

Create

Edit

\$

4

#### Hints (3/6)

input file:

•

export options:

include connectors

custom

8. Use HyperMesh's Quick Access Tool (Crtl+f)

to add control cards SCREEN OUT OUTPUT, H3D, ALL OUTPUT, HTML, , NO

9. Run the model in OptiStruct using e.g. the OptiStruct panel via pull-down menu Optimization → OptiStruct

M3c\_Simple\_Beam\beam\_done

•

run options:

options

optimization

- n c p u



### Hints (4/6)

11. In the contour plots the deformed shapes are scaled by 10. The maximum displacement is 14.895 mm, the maximum stress is ±185.751 MPa (both in the center of the beam).


# EXERCISE 2B: STATIC ANALYSIS OF A SIMPLY SUPPORTED BEAM

Hints (5/6)

2. 
$$u_{\text{max}} = \frac{F l^3}{48 E l} = \frac{F l^3}{48 E \frac{t h^3}{12}} = \frac{F l^3}{4 E t h^3} = \frac{-1000 \cdot 1000^3}{4 \cdot 210000 \cdot 10 \cdot 20^3} = 14.881 \text{ mm}$$
 versus 14.895 mm

 $\sigma_{\max} = \frac{M_{\max} z_{\max}}{I} = \frac{\frac{Fl}{4} \left( \pm \frac{h}{2} \right)}{\frac{t h^3}{12}} = \pm \frac{3 Fl}{2 th^2} = \pm \frac{3 \cdot 1000 \cdot 1000}{2 \cdot 10 \cdot 20^2} = \pm 375 \text{ MPa versus } \pm 185.751 \text{ MPa}$ 

The displacement result of the analysis is very good with an error  $\sim 0.5\%$ . However, the stress results look not good with an error superior to 50%.

But as in OptiStruct element stresses for shell (and solid) elements are output at the element center only, you may not compare OptiStruct's stress result with  $\sigma$  at ± h/2, but ± h/4:

$$\sigma = \frac{M_{\max}\left(\pm\frac{h}{4}\right)}{I} = \pm \frac{3 F l}{4 th^2} = \pm \frac{3 \cdot 1000 \cdot 1000}{4 \cdot 10 \cdot 20^2} = \pm 187.5 \text{ MPa versus } \pm 185.751 \text{ MPa}$$



 $\sigma_{
m max}$ 

0

0

Π

Value

H3D

YES

CORNER

stress

🗇 🏀 Cards (3)

C SCREEN

Components (1)
 Generation (1)
 Generation (1)

GLOBAL OUTPUT REQUEST 3

# EXERCISE 2B: STATIC ANALYSIS OF A SIMPLY SUPPORTED BEAM

#### Hints (6/6)

- 13. Use HyperMesh's Quick Access Tool (Crtl+f) with STRESS to add this control card/global output request STRESS (H3D, CORNER) = YES
- 15. The maximum stress is ±370 MPa versus ±375 MPa (theoretical result). Do not forget to set activate use corner data. 
  ✓ Use corner data



### **QUESTIONS & ANSWERS**

- 1. Which of the following is the most common reason for refining a linear static model's mesh?
  - a) To lower the solution time to be able to get more runs within a project deadline
  - b) To decrease the required memory to fit the solution cluster or analysis machine
  - c) To more accurately capture part behavior at critical features or locations
  - d) To reduce the size of the output files requested from the control cards
- 2. What will the results show as models are properly remeshed with finer elements?
  - a) Lower and lower solution times down to less than ten seconds
  - b) Smaller and smaller memory footprints per job leading to more jobs per machine
  - c) Stresses, displacements, etc. will converge on the solution for that model setup
  - d) The output files will have less data allowing you to archive whole projects on a flash drive



### **QUESTIONS & ANSWERS**

- 3. Which property type would you expect to use in a model only containing solid elements?
  - a) prod
  - b) PSOLID
  - c) PSHELL
  - d) a) and c)
  - e) All of the above



