

OPTISTRUCT FOR LINEAR ANALYSIS, V2019 CHAPTER 4: MODAL ANALYSIS

AGENDA

- 1. Introduction to Linear Analysis
 - Type of Analysis
 - Type of Elements and Materials
 - Type of Loads & Boundary Conditions
- 2. Linear Static Analysis
- 3. Inertia Relief Analysis
- 4. Modal Analysis
- 5. Linear Buckling Analysis
- 6. Thermal Stress Steady State Analysis

- 7. Advanced Topics
 - Debugging Guide
 - Parameters
 - Transitioning Elements
 - Introduction to Parallelization
 - Run Options
 - Output Management
- 8. Optimization in Linear Analysis
 - OptiStruct Optimization
 - DRCO Approach
 - Setting up Optimization
 - Optimization Responses for Linear Analysis

NORMAL MODES ANALYSIS

Normal Modes analysis is performed when you are interested in the natural frequencies and the mode shapes of the structure.

Tacoma Narrows Bridge in Washington

DEFINITIONS

Modal analysis calculates the **frequency modes** or **natural frequencies** of a given system, but not necessarily its full time history response to a given input.

The natural frequency of a system is dependent only on the stiffness of the structure, and the mass which participates with the structure (including self-weight) and the boundary conditions.

WHY MODAL ANALYSIS IS IMPORTANT

For any kind of structural simulation, a modal analysis will help the engineer to understand the global behavior of the system.

An initial modal analysis helps analysts to

- identify the natural frequencies and modal shapes of the system
- verify if there are rigid modes on the system, and the link between components
- understand if the BCs applied to the system are correct
- determine where the part should be reworked to improve the performance (if strain energy results are requested/available)
- help predict the dynamic responses that this system will have, then all the other dynamic simulations should be done only after a modal analysis

WHY MODAL ANALYSIS IS IMPORTANT

Questions that illustrate the importance of modal analysis:

- Is there resonance in the structure?
- Is the issue a static or a dynamic problem?
- If it is dynamic, which type of analysis should I do?
- How can I calibrate my CAE model with a test?

The modal analysis is designed to determine the normal modes and normal shapes, but can also help with characterizing the system and guide other dynamic analysis.

EIGENVALUE SOLUTION METHODS

There are several mathematical methods for extracting eigenvalues:

- Vector Iteration Methods
- Transformation Methods
- Polynomial Iterations Methods
- Lanczos Iteration Method
- Subspace Iteration Method

OptiStruct offers two options to solve eigenvalue problems

- * Lanczos Iteration Method $\rightarrow \texttt{EIGRL}$ card
- Automatic Multi-level Sub-structuring Eigensolver Solution (AMSES) \rightarrow EIGRA card

EIGENVALUE SOLUTION METHODS

EIGRL (Lanczos)

- · No approximation of the eigenvectors
- Full eigenvector calculation
- · Leads to large run times for large problems
- · Limited to about 2000 modes

EIGRA (AMSES)

- Approximate solution
- Accurate enough for NVH
- Partial eigenvector calculation
- Efficient reduction to modal space
- No additional cost over EIGRL (both are 25 HyperWorks Units)

BULK DATA CARDS: MODAL ANALYSIS

The EIGRL card is the main card used in solving normal modes analyses.

For normal modes analysis, a number of frequencies or a frequency range is required

For linear buckling analysis, a number of eigenvalues or an eigenvalue range is required

Both requirements are met through the use of the real eigenvalue extraction (EIGRL) card

DECIN DU	V						
DARAM AU	NOSDC VES						
PARAM CHE	CKEL YES						
Ś SYSTEM	/ Data						
CORD2R	1 Daca	20.0	-20 0	0 0	20.0	-20 0	-100 0
L	-90 0 -20 0	20.0	-20.0	0.0	20.0	-20.0	-100.0
ċ	-20.0	0.0					
CRID	1	50 0	-50 0	0 0			
CRID	1	50.0	-10.0	0.0			
GRID	2	50.0	-40.0	0.0			
S S S S S S S S S S S S S S S S S S S	1.0.1	1	0.4	FFO 0	1 0	0 0	
CBAR	101	Ţ	94	550.0	1.0	0.0	
2	1	1	F F	5.0	5.0	E 4	
CQUAD4	1	1	55	58	59	54	
CQUAD4	2	1	54	59	50	51	
CQUAD4	3	1	58	43	44	59	
Ş	_			_			
PSHELL	1	11.0		1		1	0.0
ş							
PBEAM	1	178.53	975490.8	734490.8	37340.0	981.746	9
ş							
MAT1	121000	0.0	0.3	7.901	E-09		
Ş							
EIGRL	3			20			MASS
ş							
FORCE	2	11	01.0	0.0	0.0	-100.0	
ş							
SPC	1	31 123	4560.0				
ENDDATA							

BULK DATA CARDS: MODAL ANALYSIS

(1)	(2)	(3)	(4)	(5)	(6) (7)		(8)	(9)	(10)
EIGRL	SID	V1	V2	ND	MSGLVL	MAXSET	SHFSCL	NORM	

SID	Unique set identification number. No default (Integer > 0)
V1,V2	For vibration analysis: Frequency range of interest For buckling analysis: Eigenvalue range of interest See comments 3, 4, and 10. Default = blank (V1 < V2, Real, or blank)
ND	Number of roots desired. See comments 3 and 4. No default (Integer > 0 or blank)
MSGLVL	Diagnostic level. Default = 0 (Integer 0 through 4 or blank)
MAXSET	Number of vectors in block or set. Default = 8 (Integer 1 through 16 or blank)
SHFSCL	Vibration: Estimate of the frequency of the first flexible mode. Buckling: Estimate of the first eigenvalue. Default = blank (Real or blank)
NORM	Method used for eigenvector normalization. See OptiStruct Reference Guide for more information

PARAM, AUTOSPC, YES PARAM, CHECKEL, YES \$ SYSTEM Data CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0 + -80.0 -20.0 0.0 \$ GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
PARAM, CHECKEL, YES \$ SYSTEM Data CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0 + -80.0 -20.0 0.0 \$ GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
<pre>\$ SYSTEM Data CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0 + -80.0 -20.0 0.0 \$ GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$</pre>
CORD2R 1 20.0 -20.0 0.0 20.0 -20.0 -100.0 + -80.0 -20.0 0.0 \$ GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
+ -80.0 -20.0 0.0 \$ GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
\$ GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
GRID 1 50.0 -50.0 0.0 GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
GRID 2 50.0 -40.0 0.0 \$ CBAR 101 1 94 550.0 1.0 0.0 \$
\$ CBAR 101 1 94 550.0 1.0 0.0 \$
CBAR 101 1 94 550.0 1.0 0.0 \$
\$
CQUAD4 1 1 55 58 59 54
CQUAD4 2 1 54 59 50 51
CQUAD4 3 1 58 43 44 59
\$
PSHELL 1 11.0 1 1 0.0
Ş
PBEAM 1 178.53975490.8734490.87340.0 981.7469
\$
MAT1 1210000.0 0.3 7.90E-09
\$
EIGRL 3 20 MASS
Ş
FORCE 2 11 01.0 0.0 0.0 -100.0
\$
SPC 1 31 1234560.0
ENDDATA

HOW TO SETUP A MODAL ANALYSIS

Normal modes analyses can be defined in six steps:

- Step 1 Generate a FEM model
- Step 2 Set up material and properties
- Step 3 Define the constraint load collector and the boundary conditions.
- Step 4 Define the EIGRL card
- Step 5 Define the normal modes load step
- Step 6 Run and post process the results

Name	Value
Name	SPC
ID	1
Color	
Include File	[Master Model]
Card Image	<none></none>

Na	me	Value	
	Solver Keyword	SUBCASE	
	Name	Normal Modes	
	ID	1	
	Include File	[Master Model]	
	User Comments	Hide In Menu/Export	
	Subcase Definition		
-	Analysis type	Normal modes	_
	SPC	SPC (1)	k
	MPC	<unspecified></unspecified>	k
	METHOD (STRUCT)	EIGRL (2)	R
	METHOD (FLUID)	<unspecified></unspecified>	R
	STATSUB (PRELOAD)	<unspecified></unspecified>	8
	Subcase Options		
	LABEL		
	SUBTITLE		
-	ANALYSIS		
	TYPE	MODES	
	EIGVRETRIEVE		
	EIGVSAVE		
	EXCLUDE		
	RADSND		
	RESVEC		
	OUTPUT		
	SUBCASE_UNSUPPORTED		

File Name and Location

...\STUDENT-EXERCISE\4a_Bracket_Compressor\bracket_compressor_2nd.hm

Objectives (1/2)

This exercise runs a modal analysis on a compressor system. This is very common problem for an engine designer, who needs to find the best way to link the compressor with the engine. To make this system viable the vibration produced by the engine can't have resonance with the compressor system, and then the key to the project is to develop a bracket that makes the frequencies higher than excitations. Suppose that our 4-cycle engine can work up to 8000 RPM, and then the excitations from the second order (2 explosions per cycle) are up to ~266 Hz.

Then the objective of this project is to have a Bracket with the first frequency higher than 350 Hz.

- 1. Open the model in HyperMesh Desktop
- 2. Review the model
- 3. Create a MAT1 material steel for steel with the properties: Young's modulus 210000 MPa, density 7.85E⁻⁹ t/mm³, Poisson's ratio 0.3

Objectives (2/2)

- 4. Create a PSOLID property bracket referencing material steel and assign it to the bracket component
- 5. Create a mass element at node 6 (dependent node of the RBE3 element) with value 0.003
- 6. Create a load collector SPC (no card image) and with constraints to all five bolt locations RBE2 independent nodes (1-5) for DOF 1-3 each
- 7. Create a load collector modal (card image EIGRL) and set the number of desired roots (ND) to 6
- 8. Create a load step normal modes and reference the two local collectors accordingly
- 9. Set common control cards requests
- 10. Request the strain energy results using global output request ESE
- 11. Run the analysis with OptiStruct
- 12. Review the .out file wrt warnings and errors and check if
 - f₁ > 350 Hz
- 13. Review contours of the mode shapes and strain energy in HyperView 13.

Hints (1/6)

- 2. The length system is reasonable to be millimeter.
 - There is no representation for the bolts and the compressor. To do this kind of simplification the analyst needs to have know-how about the system behavior, in general we can assume that the bolt is strong enough to not change the modal result. But the compressor geometry needs to be studied before any simplification. In this case we will add a mass element to represent the compressor.
- 3. Use HyperMesh's Quick Access Tool (Crtl+f) to add according MAT1 material card

1	titles (1)	
10	Name	Value
	Solver Keyword	MAT1
	Name	steel
	ID	1
	Color	
	Include File	[Master Model]
	Defined	
	Card Image	MAT1
	User Comments	Hide In Menu/Export
	E	210000.0
	G	
	NU	0.3
	RHO	7.85e-009

Hints (2/6)

4. Use HyperMesh's Quick Access Tool (Crtl+f) to create property PSOLID and assign it to the bracket component with the right mouse menu

BB bra-4	Duplicate Rename	Ctrl + D F2	0	Property: bracket 💌 👻
Materials (1	Make Current Assign		0	Dracket
Vame	Card Edit			
Name	Replace			Apply OK Cancel

5. Check that mass is the active collector (marked in bold in the model browser), and create a CONM2 element (Concentrated Mass Element Connection, Rigid Body Form). You can reach the panel with HM's Quick Access Tool or with the pull-down menu Mesh → Create → Masses

create C update	nodes	14	mass = 0 . 0 0 3 property =	create reject
			system	review
			elem types = CONM 2	return

Hints (3/6)

5. Note that a RBE3 element is used to link the mass element to the bracket.

A RBE2 would include a rigid condition between the compressor links that doesn't exist.

As optional exercise you can rerun the model with an RBE2 instead and compare the results.

- 6. Use HyperMesh's Quick Access Tool (Crtl+f) with SPC Note that with these five constraints (DOF 1-3) the engine all is considered to be rigid. It might be that the engine all is thin on the region where the bracket is fixed, and it can be very important on the modal behavior. Here the analyst needs to study the region to make the right assumption.
- 7. Use HyperMesh's Quick Access Tool (Crtl+f) with EIGRL and set ND to 6

SPL			
SPC[CC]			
SPCADD			
SPCD			
SPCF[OR]			
aiarl			0
aigii			
EIGRL			
-			
🛛 📢 Load Collectors	; (2)		
P B SPC			0
→ → H SPC	I	2	0
ame	Value	2	0
ame Solver Keyword	Value EIGRL	2	0
ame Solver Keyword Name	Value EIGRL modal	2	0
ame Solver Keyword ID	Value EIGRL modal 2	2	0
ame Solver Keyword Name ID Color	Value EIGRL modal 2	2	0
Solver Keyword Name ID Color Include File	Value EIGRL modal 2 [Master Model]	2	0
ame Solver Keyword Name ID Color Include File Card Image	Value EIGRL modal 2 [Master Model] EIGRL	2	0
ame Solver Keyword Name ID Color Include File Card Image User Comments	Value EIGRL modal 2 [Master Model] EIGRL Hide In Menu/Ex	2	0
ame Solver Keyword Name ID Color Include File Card Image User Comments	Value EIGRL modal 2 [Master Model] EIGRL Hide In Menu/Ex	2	0
ame Solver Keyword Name ID Color Include File Card Image User Comments V1 V2	Value EIGRL 2 [Master Model] EIGRL Hide In Menu/Ex	port	0
ame Solver Keyword Name ID Color Include File Card Image User Comments V1 V2 ND	Value EIGRL modal 2 [Master Model] EIGRL Hide In Menu/Ex	port	0
ame Solver Keyword Name ID Color Include File Card Image User Comments V1 V2 ND MSGLVL	Value EIGRL modal 2 [Master Model] EIGRL Hide In Menu/Ex	port	0
ame Solver Keyword Name ID Color Include File Card Image User Comments V1 V2 ND MSGLVL MAXSET	Value EIGRL modal 2 [Master Model] EIGRL Hide In Menu/Ex	port	0
ame Solver Keyword Name ID Color Include File Card Image User Comments V1 V2 ND ND MSGLVL MAXSET SHFSCL	Value EIGRL modal 2 [Master Model] EIGRL Hide In Menu/Ex 6	port	0

Hints (4/6)

- 8. Set Analysis type to Normal modes in order to reduce the number of Subcase Information Entries
- 9. Use HyperMesh's Quick Access Tool (Crtl+f) to add control cards SCREEN OUT OUTPUT, H3D, ALL OUTPUT, HTML,, NO
- 10. Do the same for ESE
- 11. Run the model in OptiStruct using e.g. the OptiStruct panel via pull-down menu Optimization → OptiStruct

Optimization) Pi
Create	•
Edit	۲.
Assign	• 📳
Delete	• I.
Card Edit	
Organize	•
Renumber	۰II
OptiStruct	1
OSSmooth	

🖨 🔂 Load Steps (1)					
🚽 👍 normal modes 🛛 1		0			
±					
Name		Value			
Solver Keyword		SUBC	AS	ε	
Name		norma	al m	odes	
ID		1			
Include		[Mast	erN	/lodel]	
User Comments		Hide	ln M	tenu/E>	φo
Subcase Definition					_
Analysis type		Norm	aln	nodes	
SPC		(1) SF	°C		
MPC		<unsp< td=""><td>oec</td><td>:ified></td><td></td></unsp<>	oec	:ified>	
	_	(2) mc	oda	10 In	
		<unsp< td=""><td>oec</td><td>ified></td><td></td></unsp<>	oec	ified>	
STATSOB (PRELOAD)	-	Cons	Jec	illeu>	-
🖨 🐻 Cards (3)			1		
CREEN	1		0		
- 🍘 OUTPUT	2		0		
GLOBAL_OUTPUT_REQUEST	3		0		
🕀 🛜 Components (4)			-1		
🗄 🙀 Load Collectors (2)					
🖶 🙀 Load Steps (1)					
Name		Value			
E ESE					
ESE_NUM =		1			
GLOBAL_OUTPUT_REQUES	i T	1			
FORMAT		H3D			
TYPE					
DMIG			_		
PEAKOUT					
RTHRESH					
ESE_V1		ALL			<
FLUX	_		-		

Hints (5/6)

12. There are 22 elements that exceeded recommended range (warning) for the element quality check.

 $f_1 = 398 \text{ Hz} > 350 \text{ Hz}$, so the constraint is fulfilled.

13. Screenshot shows mode shapes 1 and 2

				Generalized	Generalized
Subcase	Mode	Frequency	Eigenvalue	Stiffness	Mass
1	1	3.982029E+02	6.259916E+06	6.259916E+06	1.000000E+00
1	2	5.387327E+02	1.145794E+07	1.145794E+07	1.000000E+00
1	3	1.142351E+03	5.151795E+07	5.151795E+07	1.000000E+00
1	4	1.540108E+03	9.364018E+07	9.364018E+07	1.000000E+00
1	5	2.053619E+03	1.664943E+08	1.664943E+08	1.000000E+00
1	6	2.363966E+03	2.206186E+08	2.206186E+08	1.000000E+00

Hints (6/6)

13. Strain energy can give to the analyst a very good indication if the mode is well refined or there is need for a mesh refinement. It works like the stress for a static analysis.

File Name and Location

...\STUDENT-EXERCISE\4b_Simple_Beam\beam_modal.hm

In this exercise, a modal analysis is performed on the simple supported beam from example 3c:

- Beam modelled by shell elements, length = 1000 mm, height = 20 mm, width = 10 mm
- Material steel (Young's modulus 210000 MPa, Poisson's ratio 0.3, density 7.85e-9 t/mm³)

The objective is to compare the results of the first three eigen frequencies of the finite element model with the theoretical solution.

- 1. Open the model in HyperMesh Desktop
- 2. Review the model
- 3. Constrain all nodes additionally in the z-direction in order to get only the shapes in xy-plane.

Objectives (2/2)

- 4. Create a load collector modal (card image EIGRL) and set the number of desired roots (ND) to 3
- 5. Create a load step Modal and reference the two local collectors accordingly
- 6. Run the analysis with OptiStruct
- 7. Review the .out file wrt warnings and errors and check f_1 , f_2 and f_3
- 8. Calculate the theoretical results for f_1 , f_2 and f_3
- 9. Review contours of the three mode shapes HyperView

eiarl

Hints (1/3)

- 4. Use HyperMesh's Quick Access Tool (Crtl+f) with EIGRL and set ND to 3
- Set Analysis type to Normal modes in order to reduce the number of Subcase Information Entries
- 7. from the .out file:

Subcase	Mode	Frequency
1	1	4.682963E+01
1	2	1.863840E+02
1	3	4.155289E+02

EIGRL				
🗄 强 Load Collectors (;	2)			
🚽 🗗 modal	2 🚺 0			
DE SPC	1 🚺 0			
🖻 🎏 Load Stens (1)				
Name	Value			
Solver Keyword	EIGRL			
Name	modal			
ID	2			
Color				
Include	[Master Model]			
Card Image	EIGRL			
User Comments	Hide In Menu/Exp	ort		
V1				
∨2				
ND	3			
MSGLVL				
MAXSET				
SHFSCL				
NORM	MASS			

🖶 🔂 Load Steps (1)						
📥 📥 normal modes	1	0				
±			,			
Name	Value	Value				
Solver Keyword	SUBCASE	SUBCASE				
Name	normal modes	normal modes				
ID	1	1				
Include	[Master Model]	[Master Model]				
User Comments	Hide In Menu/Exp	ort				
Subcase Definition						
🖃 Analysis type	🗖 Analysis type					
SPC	(1) SPC					
MPC	<unspecified></unspecified>					
METHOD (STRUC	D	(2) modal				
METHOD (FLUID)	<unspecified></unspecified>	<unspecified></unspecified>				
STATSUB (PRELO	<unspecified></unspecified>	<unspecified></unspecified>				

Hints (2/3)

8.
$$f_j = \frac{j^2 \pi}{2} \sqrt{\frac{EI}{\rho t h l^4}} = \frac{j^2 \pi}{2} \sqrt{\frac{E h^2}{12 \rho l^4}} = \frac{j^2 h \pi}{4 l^2} \sqrt{\frac{E}{3 \rho}}$$
 for a simply supported beam

 $f_j = \frac{j^2 \cdot 20 \pi}{4 \cdot 10000^2} \sqrt{\frac{210000}{3 \cdot 0,0000000785}}$ Hz = 46,9 j^2 Hz for this example

 $f_1 = 46,9 \text{ Hz}$ versus 46.8 Hz

 $f_2 = 187,6 \text{ Hz}$ versus 186.4 Hz

 $f_3 = 422,2 \text{ Hz}$ versus 415.5 Hz

Hints (3/3)

9. In the contour plots the deformed shapes are scaled by 2.

QUESTIONS & ANSWERS

- 1. Which of the following describes the expected result of a modal analysis?
 - a) Determining the natural frequency values of a structure undergoing vibration.
 - b) Determining the shape of a structure under long-term point loads.
 - c) Determining the mode shapes of a structure undergoing vibration.
 - d) Determining the operational lifetime (total number of load cycles) of a part undergoing cyclic loading.
 - e) a) and c)
- 2. What role does element length play in modal analysis?
 - a) Lower element lengths allow more exact calculation of frequencies and mode shapes.
 - b) Lower element lengths allow higher frequencies and mode shapes to be captured
 - c) Element length plays no role in modal analysis
 - d) a) and b)

QUESTIONS & ANSWERS

- 3. Which load collector card type was used in this chapter to specify natural frequency analysis information?
 - a) EIGRL
 - b) MAT1
 - c) PSHELL
 - d) PSOLID
 - e) a) and c)
 - f) All of the above

