Homework Solutions

EXERCISE 2.3 Start from (2.9), which 1s reproduced here:
F=fy=—fa  d=iiy—iy, (E2.5)

in which F and d are connected by (2.8), namely F = (E A /L)d. Express the foregoing two equations in matrix
form bringing up also the y nodal displacements by introducing zeros as appropriate in the vectors:

'xi _I _1 Ex!'
S 0 EA| 0 2, % i,
,f;, = 1 = T 1 d. d= Uxj — Uxi = [—I g i 0] &z . (E26)
F 0 0 uy;
L Jyy - 3
and combine theses two as matrix product:
5] -1 i, 1 0 -1 07 [,
Syi EA| o it EA| 0 0 0 0]]a,,
¢ ol .. P x ;
Gl apf*?* M=~ 8 & el &2
L. 0 "y, 00 00 uy;

which 1s equation (2.10). This “Mechanics of Matenials” matrix-flavored technique 1s used in Chapter 5 to derive
other structural elements.

EXERCISE 2.7 From (E2.2) one gets e = du/dx = (ux; — tixj)/L = d/L. Hooke’s law gives ¢ = Ee =
Ed/L. Both e and o do not depend on X. Substitution into (E2.3) gives

N =1 ’ EAdzd' Fd = EAd3 ’ dx — Fd = EAd3 Fd (E2.12)
T e B ' .
Applying the MPE yields
aM EA
—_— — — — 2
S d—F=0, (E2.13)

whence F = (EA/L)d follows.
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EXERCISE 3.3 For the example truss, joint forces may be also recovered from consideration of joint equi-
librium, because the structure 1s statically determunate. Once the joint displacements (3.17) are known, the
joint forces in the Jocal system of member e and the internal (axial) force f¢ may be recovered from the
generic-member equilibrium relation

?:

Carrying out the operations for the example truss we get

0

=) o

£ =

0
B
0_

-
? £ =K' =K'T"u’ (E3.3)
0

1 =2
0 =(3) 0

= = ,. (E3.4)
0 0

from which it follows that the member axial forces FV, F@ and F® are 0, —1 (compression) and +2/2
(tension), respectively. See Figure E3.3 for physical interpretation. This method is applicable only to statically

determinate structures.
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EXERCISE 3.6

(a) Recall that the generic member stiffness matrix in global coordinates 1s

2 2
¢  s¢ = —sc
E°A* |- s¢  s* —sc —sl-l
K‘ = - 5 (E39)
Le —-c* =85¢ c* sc
—s¢ —s* sc¢ st

where ¢ = cosg®, s = sing®, E¢, A° and L? are the elastic modulus, cross-section area and length,
respectively. For member (element) (1): EV = 1000, 4V = 2, LD = /42 +37 = 5 ¢V =

arctan (3/4), c =4/5 = 0.8, s = 3/5 = 0.6. Therefore

0.64 048 —0.64 —048 256 192 —256 —192
g _ 1000x2 | 048 036 —048 —036 192 144 —192 —144
- 3 —0.64 -—-048 0.64 0.48 =256 =192 256

048 —036 048 0.36 —192 —144 192

(E3.10)

For member (element) (2): E® = 1000, A? = 4, L® = /8 + (=3) = 5, ¢@ = arctan (—3/4),
c=4/5=08, s = —3/5 = —0.6. Therefore

0.64 —048 —0.64 0.48 512 —384 -—512
@ _ 1000x4 | 048 036 048 —036 | | -384 288 384 288
5 —0.64 048 0.64 —0.48 -512 384 512 -—384

048 —036 —048 0.36 384 -—288 —384

(E3.11)

Next the member stiffness equations are augmented by adding zero rows and columns as appropriate to
complete the force and displacement vectors. Compatibility 1s used to drop the member index on the

displacements. For member (1):

-_f:i'- [ 256 192 -256 —192 0 07 [uy ]

b i 192 144 —192 144 0 O || u,

15 —-256 —192 256 192 0 0 || «,

)T 192 -144 192 144 0 0 o
»2 —4iJs = = N."I

J5 0 0 0 0 0 0] u,

L 0 0 0 0 0 0] [u;]

For member (2):

- ;i'- [0 0 0 0 0 0 JuaT

b i 00 o0 0 0 0 tyy

P oo 0 0 512 -384 -512 384 || u,

& | = (E3.13)
£ 0 0 —384 288 384 —288 || uy,

= 0 0 —512 384 512 —384 || u,

Lfy4 Lo o 384 -288 -384 288 | | u |

Adding the two equations and using the force equilibrium condition f = U412 = (KY+K%)u = Ku.

we arrive at the master stiffness equations

256

192

—256

—192

0

0

fxl Uxl
£ 192 144 —192 —144 0 0 1
= 256 —192 768 —192 —512 384 || uy R
S —192 —144 -—192 432 384 288 1y
S 0 0 —-512 384 512 -—384 Uy3
S 0 0 384 288 -—384 288 Uy3

AUE3028 CAE



Homework Solutions

(b) We apply the displacement boundary conditions:
Uxl = Uyl = U3 =Uy3 =0, fro=P =12, and f,5 =0, (E3.16)

by removing equations 1. 2. 5. and 6 from the system. This is done by deleting rows and columns 1. 2,
5.and 6 from K, and the corresponding components from f and u. The reduced two-equation system is

768 —-192 Uga | _ fxl A 12
[—192 432 ][u.‘,:]_[f_‘_:]_ [ 0 ] (E3.17)
Solving this linear system by any method gives

1
Upy = —— and Uy = —. (E3.18)

512 128

(c) Torecoverallthe joint forces note that the complete displacementvectoris u = [0 0 9/512 1/128 0 0 17
Using the original master stiffness equations (E3.14):

Ja 256 192 =256 -—192 0 0 0 —6
I 192 144 -192 -14 0 0 0 -9/2
f= S e — —-256 —192 768 —192 512 384 9/512 _ 12
S —192 —144 -—192 432 384 288 1/128 0
fe3 0 0 —512 384 512 384 0 -6
fi3 0 0 384 288 -—384 288 0 9/2
(E3.19)

Overall equilibrium 1s verified by summing the forces in the {x. y} directions and taking z-moments
about any joint:

Y Ao fatfotfa=—6+12-6=0,

9 9
Zf:}v=>_f_;-1+_f:‘.1+f;_3 = —;+0+5 =0
Za wrel = 4f\2 — 3f;1 + 8}:‘3 =0—-36+36=0, {E320)

ZJ w2 = —3fa+4f1 —3f+4f3=—18+18—18+18=0,
ZM.,.,,; =8f,—4f—3f2=36—-0-36=0.

(d) Using the method described 1n §3.4.2 we proceed as follows. For member (1). ¢ = 4/5. s = 3/5.
u'd = [0 0O 9/512 1/128 ]T. The local joint displacements are recovered by

—1)
Uy 4/5 3/5 0 0 0 0
— _ | % | _| 3/5 4/5 0 0 0 . 0 S
CELED T o o a5 3ys|fos2 T 3/160 (E3.21)
w0, 0 0 -3/5 4/5][1/128 ~11/2560

The elongation is d'¥ = 3/160 — 0 = 3/160, from which F* = 1000 x 2 x (3/160)/5 = 15/2 = 7.5.
The positive sign indicates that member (1) is in tension.

For member (2). ¢ =4/5.5s = —=3/5.u¥ =[9/512 1/128 0 0]. The local joint displacements
are recovered by

—2)

ifi, 4/5 =3/5 0 0 9/512 3/320

32 = f{‘._'.; 135 45 0 0 1/128 | _ | 43/2560 (E3.22)
Fi;.’ 0 0 4/5 =3/5 0 0 i
Eﬁ_’ 0 0 3/5 4/5 0 0

The elongation is d® = 0—3/320 = —3/320. from which F® = 1000 x 4 x (—=3/320)/5 = —-15/2 =
—7.5. The negative sign indicates that member (2) 1s 1n compression.
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EXERCISE 3.7
(a) The master stiffness matrix 1s the same as in the previous Exercise:
256 192 =256 -—192 0 0
192 144 —-192 -144 0 0
=256 -—192 768 -—192 -512 384
— 2
K —192 —-144 -—192 432 384 288 (E3.23)
0 0 —-512 384 512 384
0 0 384 288 -—-384 288
However. now we have a prescribed displacement, 1,3 = ——-;-:
256 192 =256 -192 0 0 0 fa
192 144 =192 -—144 0 0 0 M
—-256 -—192 768 —192 -—512 384 e | | 12
~192 —144 -192 432 384 288 ||upn [~ | © )
0 0 —512 384 512 -—384 0 fa
0 0 384 —288 —384 288 —% h3

®)

(©

For hand computation, reduce the system by removing rows 1, 2, 5 and 6 that pertain to the prescribed
displacements:

0
0
[—256 —192 768 —192 -512 384] Ux2 [

12
192 -144 —192 432 384 —288 0] (E3.25)

Uy
0

-

Next, columns 1, 2, 5 and 6 are removed by tranferring all known terms :‘mm the left to the right hand
side:

[ 768 —192] [n,g] _ [12] | [{—255)(0)+(—192n0)+(—512)(0)+ (384){—%)] (E3.26)

—192 432 Uy 0 (—192)(0) + (—144)(0) + (384)(0) + (—288)(—{;)
which gives
768 —1927[ux 204
1= 2
[—192 432 ]l:n_\-g] [-144] (E3:20)
Solution by Gausss elimination yields
Uy = ﬁ and 5= —i (E3.28)
512 * 128

To recover all the joint forces we complete the node displacement vector with the known values:

w'=[0 0 5F —f 0 -3 (E3.29)
and use f = Ku to get

fa 256 192 =256 —192 0 0 0 7 '—3‘
fn 192 144 -192 -144 0 0 0 -
faol | —256 —192 768 -—192 -512 384 m || 12 —p
fo | | -192 -144 192 432 384 288 || i | T | :
fas 0 0 -512 384 512 -384 0 &
S 0 0 384 288 -384 288 J| _1 | | 2 |

Horizontal force equilibrium 1s verified by

Satfotfia=—6+12—-6=0 (E3.31)

and likewise for y-force and moment equilibrium.
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EXERCISE 7.7 Symmetry and antisymmetry lines are 1dentified on Figure E7.11. Problem domains may be
reduced to the darker regions. Approprnate supports to realize these symmetry and antisymmetry conditions
as well as actual supports (if given) are depicted in Figure E7.11.

Partial credit for

finding only the two
symmetry lines if

BCs & loads are correctly
treated (see next figure)

5

Ficure E7.11. Symmetry and antisymmetry lines in problems
of Exercise 7.4.
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