4.5 True value: A3)=554.

zero order:
—(-8D
fO=fO=-6 & =22, 100%=111.191%
554
first order:
f3)=-62+ '(HB-1)=-62+70(2)=78 £, =85921%
second order:
f(3)=?8+f O —G3- l)“ -?8+-w—84 354 £, =36.101%
third order:
(3)
f(3)=354+f ()(3 1) -354+%I—8 554 g, =0%

Thus, the third-order result 1s perfect because the original function 1s a third-order polynonual.
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4.6 True value:
f1(x)=75x"-12x+7
£(2Q)=752)* -12(2) + 7 =283

function values:
Yi=18 fxit) = 50.96
x=2 fx) =102
Xy =22 Rx)) = 164.56
forward:
=102 ¥ -— ¥ .
I sl L VO g, =122 3128 100% =10.53%
02 283
backward:
2 -5 ¥ — P
Fye =00 _assy g, =222 100% =9.823%
0.2 283
centered:
56-50. 283-284
P 2200 oy g, =222 284 100% =0.353%
2(0.2) 283

Both the forward and backward have errors that can be approximated by (recall Eq. 4.15),

|E| a@h

f"(2)=150x—12=150(2)_12 =288

2|~ 2202288

Thus 1s very close to the actual error that occurred mn the approximations

forward:  |E,|~[283-312.8 =298
backward:  |E,|~|283-255.2| =27.8

The centered approximation has an error that can be approximated by.

6}
E, =~ _f_(_’ﬁ;,l s -mo_gl ]
6 6

which 1s exact: E, = 283 — 284 = —1. Thus result occurs because the original function is a cubic equation
which has zero fourth and higher denivatives.
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4.7 True value:

S"(x)=150x-12
f(2)=150(2)-12=288

h=0,

J(2.25)=-2f(D)+ f(1.75) _182.1406-2(102) + 39.85938 ~ 788

"Q2)= 3

4 0.25° 0.25°

h=0.125:

)= £(2.125)-2 _f(22 +£(1.875) 139.6738- 2(1022 +68.82617 o0
0.125° 0.125-

Both results are exact because the errors are a function of 4% and higher denivatives which are zero for

a 3 order polynomial.
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25.19 The two differential equations to be solved are

dv Cd .2
—_— g ——=
dr m
dx

—_— -y

dt

(a) Here are the first few steps of Euler’'s method with a step size of 1 =0.2.

t X v dx/dt dvidt
0 1000 0 0 9.81
0.2 1000 1.962 -1.962 9.800376

04 9996076 3.922075 -3.92208 9.771543
06 998.8232 5.876384 -5.87638  9.72367
0.8 9976479 7.821118 -7.82112 9.657075

1 996.0837 9.752533 -9.75253  9.57222

(b) Here are the results of the first few steps of the 4®-order RK method with a step size of 1 = 0.2.

t X v
0 1000 0
0.2 999.8038 1.961359
04 999.2157 3.918875
06 9982368 5868738
08 996.869  7.807195
1 995.1149 9.730582

The results for x of both methods are displayed graphically on the following plots. Because the step size 1s
sufficiently small the results are in close agreement. Both indicate that the parachutist would hit the ground at a
little after 20 s. The more accurate 4*-order RK method indicates that the solution reaches the ground between ¢
=20.2and 204 s.

1500

1000

500
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26.13 The second-order equation can be composed into a pair of first-order equations as

g ax g

—_—=X —_—

ar a 1

We can use MATLAB to solve this system of equations.

tspan=[0,5]";

x0=[0,0.25]";

[t,x]=0de45 ('dxdt', tspan,x0);

plo‘;(t,x{:,;),‘;,x(:,i‘.) r Fmsi)

grid

title('Angle Theta and Angular Velocity Versus Time')
xlabel ('Time, tT')

ylabel ('Theta (Solid) and Angular Velocity (Dashed)')
axis([0 2 0 10])

zZoom

function dx=dxdt(t,x)
dx=[x(2):(9.81/0.5)*x(1)]:

Angle Theta and Angular Velocity Versus Time

-
o

& (=] (=]

Theta (Solid) and Angular Velocity (Dashed)
8]

L=
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26.15 (a) Analytic solution:

1000y -1001w

X

where w =)'. Using the same approach as described in Sec. 26.1. the following simultaneous equations
need to be solved to advance each time step,

Yisy ~Iwg =,

10004y, +1001/w;,; = w;

If these are implemented with a step size of 0.5, the following values are simulated

X y w
0 1 0

05 0.667332 -0.66534
1 0.444889 -0.44489

1.5 0.296593 -0.29659
2 0.197729 -0.19773

25 0.131819 -0.13182
3 0.087879 -0.08788

3.5 0.058586 -0.05859
4 0.039057 -0.03906

45 0.026038 -0.02604
5 0.017359 -0.01736

The results for y along with the analytical solution are displayed below:

1.2

1
0.8
0.6
0.4
0.2

0

Implicit numerical

b,
/o
Analytical

- i L n T S—1 i I —

0 1 2 3 4 5
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1.2

0.8
0.6
04
0.2

Implicit numerical

Analytical

4 i 1 i i

0 1 2 3 4 5

Finally, we can also solve this problem using one of the MATLAB routines expressly designed for stiff
systems. To do this. we first develop a function to hold the pair of ODEs.

function dy = dydx(x, y)
dy = [y(2);-1000*y(1)-1001*y(2)1;

Then the following session generates a plot of both the analytical and numerical solutions. As can be seen,
the results are indistinguishable.

x=[0::3:5];

y=1/9%%* (1000*exp (-x) —exp (-1000*x) ) ;
xspan=[0 5];

x0=[1 0];

[%x, yy]=ode23s (@dydx, xspan, x0) ;
plot(x,y,xx,yy(:,1),'0")

grid

xlabel ('x')

ylabel('y')

=
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