Highlights of Linear Algebra

* Goal: understanding even more than solving

(Ax =b — Find x (Is the vector b in the column space of A?)
) eigenvector directions so that Ax keeps the same direction as x
Ax =Ax — Find xand A

solve anything linear when we know every x and A

close but different, two vectorsu and v
A :rectangular, full of data

what part of that data matrix is important?

Av=ocu > Findv,uando| _ o o ] .
Singular Value Decomposition : find its simplest pieces cuv

) data science meets linear algebra in the SVD

Principal Component Analysis: find those pieces ouv’

— |
Minimize W singular vectors and
X
, the best X in the least squares
Factor the matix A > — | computes | . _
, principal comonent v, in PCA
— Factor A = (columns) times (rows)
fit the data
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1. Multiplication Ax Using Columns of A

« Matrix-vector multiplication
— Dot products: (row)-(column), computing, low level
— Linear combination of the columns of A

« Combinations of the columns fill out the column

space of A
(2 3] (2 3 5] (2 3 1]
A=|2 4, 4,=|2 4 6 4=|2 4 1
3 7 3 7 10] 3 7 1]

« Factor A into C times R
— R: row-reduced echelon form of A
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« Rank of A = rank of C: count independent columns

« = Dimension of the column space of Aand C
— Column rank = Row rank

1 3 8| [1 3]
1 0 2
A=|1 2 6|=]|1 2
01 2
0 1 2| |0 1
(1 2 3]
A=|0 4 5
0 0 6
(1 2 5] [1
A=[1 2 5(=|11 2 3]
1 2 5] |1
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2. Matrix-Matrix Multiplication AB

AB = (m by n) times (n by p)
Inner product: rows times columns
— mp inner products, n multiplications each

Outer product: columns times rows
— n outer products, mp multiplications each

AB = sum of rank one matrices

2 (6 8 12
uv’' =2 [3 4 6]= 6 8 12 |=rank one matrix
1] 3 4 6]

6 8 121 [6 6 3] [3
') =l6 8 12| =|8 8 4|=|42 2 1]=wu’
3 4 6] |12 12 6] |6

T . .
row space of uv' is the line through v
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Insight from Column times Row

— Why is the outer product approach essential in data science?
— We are looking for the important part of a matrix A
— We don’t usually want the biggest numberin A

— What we want more is the largest piece of A: those pieces
are rank one matrices uv’

— Factor A into CR
(A=LU
A=0QR
S=QAA’
A=XAA"
A=Uxx’

N\
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3. Four Fundamental Subspaces

* Column space C(A)
« Row space C(AT)

* Nullspace N(A)
 Left nullspace N(AT)

1 2 1
A — — [1 2] m=2,n=2,r=1 N
3 6] |3 ) 3
Aly=0->y=

|:1 o 2 o 2j| m=2,n=3,r=1 \{C(B) - Rm

3 -6 -6 C(B")c R"

(Ax=0—>x={2}—>c( T) L N(A)

} —C(A)L N(AT)

} — Bx = 0: (n—r)independent solutions
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The other two fundamental spaces come from the transpose matrix AT. They are
N (AT) and C(AT). We call C(AT) the “row space of A” because the rows of A are

the columns of AT. What are those spaces for our 2 by 2 example?

Y |1 3
‘-4—[3 6] transposes to A —[2 G]'

Both columns of AT are in the direction of (1.2). The line of all vectors (c,2c) is
C(A") = row space of A. The nullspace of AT is in the direction of (3, —1):

- r |13 E|l [0 . El | 3¢
Nullspace of A Ay—[z 6 Fl=1o gives i | =] e [

The four subspaces N(A), C(A), N(AT). C(AT) combine beantifully into the big
picture of linear algebra. Figure A2 shows how the nullspace N (A) is perpendicular
to the row space C(AT). Every input vector x splits into a row space part r, and a
nullspace part z,,. Multiplying by A always(!) produces a vector in the column space.
Multiplication goes from left to right in the picture, from r to Az = b.

column space
C(A)
multiples of (1, 3)

1 | nullspace N(AT)
row space C'(A") [ nullspace IV (A) multiples of (3, —1)

P
multiples of (1,2) T multiples of (2, —1) i b

Figure A2: The four fundamental subspaces (lines) for the singular matrix A.
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C(AT)

dim r

Perpendicular
T ATw =0
dim n —r

T in
Nullspace

Ar=10

N (A4)

Column space

dim r

Perpendicular
wrAz =0 P
- 2
il . dim m —r
w in
ullspace of AT
Atw =0

N (AT)

Figure A3: Dimensions and orthogonality for any m by n matrix A of rank r.

Figure A3 shows the Fundamental Theorem of Linear Algebra:

1.  The row space in R™ and column space in R™ have the same dimension r.

2.  The nullspaces N(A) and N (A") have dimensions n — r and m — r.

3. N(A) is perpendicular to the row space C(AT).

4. N(A") is perpendicular to the column space C(A).
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