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Data

« Key input for mechanistic data science

 Where does the data come from? It can come from many sources and
iIn many formats. = multimodal data collection and generation
— Physical observation: very costly and difficult to control independent variables

— Modern computer HW and SW: simulate the physical experiments and generate
further complimentary data

« Efficient data collection and management through a database
— Expedite the problem-solving timeline - Help in rapid decision making

« Goal of mechanistic data science (MDS)
— Mining the data intelligently to extract the science
— Combining data and mechanisms for decision making
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Data is the central piece for science

* Question: how are forces transmitted by structural members?

« Galileo’s approach:

— Data collection: performed many experiments on how size and shape
of structural members affects their ability to carry and transmit loads

— Observations : as length of a beam increases, its strength decreases,
unless you increase the thickness and breadth at an even greater
rate

— Science: This led Galileo to recognize what we now call the scaling
problem, there are limits to how big nature can will break under their
own weight.

3
— deflction: § = % This formula to calculate deflection of cantilever

beams works for macroscopic beams made with all materials, size,
shape and loads
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Data is the central piece for science

« Evolution of scientific discovery: from data to empiricism to mechanism

— Astronomical data: O
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 Mechanistic data science is the hidden link between data to science
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Kepler's Law (Data to Mechanism)

« First law (law of orbits): Each planet revolves around the sun in an
elliptical orbit with the sun situated at one of the two foci.

« Second law (law of areas): The real velocity of a planet around the sun
remains constant, OR, The radius vector drawn from the sun to the
planet sweeps out equal areas in equal intervals of time.

« Third law (law of periods): The square of the time period period(T)of
revolution of a planet around the sun is proportional to the cube of the

semi major axis (r)of its elliptical orbit. T the p
e o @ \
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Mechanism to Science: Discovery of gravity

« Newtons universal law of gravitation

— Every point mass attracts every single other point mass by a force acting along the
line intersecting both points. The force is proportional to the product of the two
masses and inversely proportional to the square of the distance between them.

« Force on a falling object (apple from a tree) |n earth due to gravity is

given by Fmg ..

!‘ﬁ& g e
] __;.'__ o

s F=mg
4 l Earth gravity, g =

Newtons universal law of gravitation |V
_ GMgMpy GMpm
Fo =22 = (4
EM TEM

Gravitational l
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Discovery of gravitation from planetary motion data

Mechanistic Data Science
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What is Data”

« Data: collection of information (numbers, words, measurements,
observations) or descriptions of things
— Qualitative

“It's too hot outside”
Descriptive

Counted data

Discrete data can only take certain
values (ex. only whole numbers)

Data

7 data points = 7 people. You can’t
measure height for “7.3” people.

— Quantitative
“It's 90°F outside”
Numerical

Measured data
= Text, numbers, images, graphs, and _
signals are all common forms of data Continuous data can take any value

(within a range)

» Data represents all industries and
problems: finance, climate,
transportation, etc

(k]
=
]
[1n]
—
Lab]
o
=
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e

Temperature can take any value within
Earth’s range. It changes continuously,
forming an infinite curve.
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Common Databases for
Machine Learning Applications

« Database: organized collection of data, generally stored and accessed
electronically from a computer system

Mechanistic Data Science

4 Kaggle ( ) )
« Machine learning datasets
Open source
Anyone can upload data
\ Wide range of topics )

(

\_

[NCDC (National Climate Data Center)\

)

Weather and climate database
Daily weather data
Local climate data

4 . . )
NIST (National Institute of Standard &
Technology) ( )

« Materials physical testing database
\_ J
'\ )

Materials Project (

» Materials database

» Materials data for : 144,595 inorganic
compounds

* 63,876 molecules

Marine data j

)

530243 nanoporous materials j
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Data Preparation for Analysis

— Raw data: collected from the source directly Raw

— Data wrangling: mapping and transforming raw ks
data to another format for machine
interpretation (ex. map Yes/No to 1/0) |

— Data Formatting: formatting data for '
consistency (ex. formatting text data with labels) [ Data H Data }_{ Database J

— Data Cleaning: providing attributes to missing Wrangling | | Cleansing | | Preparation
values and removing unwanted characters from Data Engineering
the data
— Database preparation: adding data from 1+ t
sources to build your own database [ Data Visualization }
— Feature Extraction
» |dentification of important features in the data Data analysis
« Determined with human expertise (feature extraction)

https://developer.ibm.com/articles/ba-intro-data-science-1
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Dataset for Machine Learning (1)

i=2 f(XIlV) j=2 | @ = input feature index

i=3 j = output feature index
N N N = number of data points/samples
Xi ——> y]

Dataset Output/Label

j=i

Dataset Inputs

. f(X’iV) maps input Xﬁv to output y}v.
" Machine Learning Goal = find the functional form y}v = f(X’iV)

« For Kaggle diamond dataset:
— i=1...9 (Carat, Cut, etc.)
— j=1 (Price)
— N=53,940 (number of diamonds sampled)
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Dataset for Machine Learning (2)

N
N f(Xi ) N i = input feature index
Xi E—) yf j = output feature index
Dataset Inputs Dataset Output/Label N = number of data points/samples

— The dataset is divided into training (70%), validation (15%), and testing (15%) sets
to find the functional relationship and confirm it is the best possible fit

— This process is iterative. The model is repeatedly trained, validated, and trained
— Final performance on the testing set is evaluated when function error is minimal

Dataset T
_|-""ﬂ\'"—\_
a T Q Training set: Inputs and outputs fit
to mapping function f(X?’)
O Validation set: Evaluate function
(frequently after each training step)
e, N do g
T S M O Testing set: Evaluate the final
Training Validation Test ) N
Set Set Set function f(Xi )
70% 15% 15%
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Example: How can we identify a high quality diamond
at a reasonable price?

Mechanistic Data Science

1. The Pink Star

Image Source: Cosmopolitan Italia
Price: $71 million
Sold: April 2017 at Sotheby’s Auction
Carat Weight: 59.6 carats

Color: Pink

Image Source: DéinMaiI.co.uk

Price: $39.3 million

Sold: April 2013

Carat Weight: 36.45 carats
Color: Pink

2. Oppenheimer Blue Diamond

Image Source: Christie’s

Price: $57.5 million

Sold: May 2016

Carat Weight: 14.62 carats
Color: Blue

5. The Orange

3. Graff Vivid Pink Diamond

Image Source: Diamondhistorygirl
Price: $46 million

Sold: November 2010
Carat Weight: 24.78 carats
Color: Pink

6. The Largest Diamond Ever Sold

Image Source: NY Post

Price: $35.54 million

Sold: November 2013
Carat Weight: 14.82 carats
Color: Orange

Image Source: CNBC
Price: $30.6 million

Sold: Christie’s in 2013
Carat Weight: 118.28 carat
Color: Colorless
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Mohs Scale of Hardness

Ea”&“’s GEM S SELECT « German mineralogist Frederick
tar es Mohs Hardness Scale Mohs (1773-1839)
maté\ri Name Scale Number Common Object

S T — 0 * How to Perform the MOHS Test?
o Corundum 9 - SCI’atCh it.’

Masonry Drill Bit / 8.5
LBonnne—

—

‘EEEELNaiI {.6. 5
Orthoclase 6 Knife / 5.5
B — T
Apatite 5 o

. Fluorite 4

L
@ Calcite 3

‘a‘ Gypsum 2 \ Fingernail / 2.5

v Talc 1

https://www.gemselect.com/gem-info/gem-hardness-info.php
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Features used to Characterize Diamonds

1. SHAPE "One carat” (100 points) equals

2. SIZE (carats) the weight of 1/5 of a gram

3. CLARITY ROUND OVAL MARQUISE PEAR

4. COLOR = 1..*.5 . .

5. CUT @ !l A B B A B
. BRIGHTNE

o SRHINESS D W N1
7. FIRE (dispersion) Total internal

8. SPARKLE reflection  + 4%+,

9. POLISH

10. SYMMETRY
11. FLUORESCENCE

12. DURABILITY
13. LUSTER Data Science focuses on quantifiable features

Mechanistic Data Science Introduction - 15



https://perrywinkles.com/blogs/education/introduction-to-diamonds

Different features can represent the same problem

4Cs of Diamond Quality ? 4C Standard
P | . ) ) -|.i :*' ' &\ .
f —— ...'-«‘”“ / “—“.\ _5‘,. 2 \
CoLor | €08 €700 Gwid €wd
D H N [
CLARITY
ws, s, ) I,
cuTt Excellent, Very good, Good, Fair, Poor
THE 4Cs
OF DIAMOND QUALITY CARAT "One carat” (100 points) equals the
The universal method for assessing the quality of any diamond, W E l G H T Welght of 1/5 of a gram

anywhere in the world.

Mechanistic Data Science Gemologlcal Institute of America (GIA) Introduction - 16



Example: Diamond Data for Feature-based Pricing

« Kaggle (Datasets/Diamonds)
— 53,940 diamonds with 10 features

Price: ($326--$18,823)

Carat: (0.2--5.01)

Cut: (Fair, Good, Very Good, Premium, |deal)

Color: (J (worst) to D (best))

Clarity: (11 (worst), SI12, SI1, VS2, VS1, VVS2, VVS1, IF (best))
Size in x direction in mm (0--10.74)

Size in y direction in mm (0--58.9)

Size in z direction in mm (0--31.8)

Depth: z/mean(x,y)=2"z/(x +vY) (43--79) (%)

Table: width of top of diamond relative to widest point (43--93) (%)

Color (D,E,F,G,H,1,J)> (1,2,3,4,5,6,7)
D: colorless ~ Z: light yellow or brown

carat cut color clarity depth table price X y z

1 0.23 Ideal E SI2 61.5 55 326 395 398 243

2 0.21 Premium E SIn 59.8 61 326 389 384 231

3 0.23 Good E VS1 56.9 65 327 405 407 231

4 029  Premium I VS2 624 58 334 4.2 423  2.63

5 0.31 Good J SI2 63.3 58 335 434 435 275

6 0.24 Very Good J VWS2 628 57 336 394 396 248

7 0.24 Very Good I VVS1 623 57 336 395 398 247

8 0.26  Very Good H SIn 61.9 55 337 407 411 253

9 0.22 Fair E VS2 651 61 337 387 378 249

10 0.23 Very Good H VS1 594 61 338 4 405 239
Cut Rating | Numerical value  Clarity Rating Numerical value
Premium 1 [F—Internally Flawless 1
Ideal 2 VVS1.,2—Very, Very Slightly Included 1,22
Very Good | 3 VS1,2—Very Slightly Included 1,2 3
Good 4 SI1,2—Slightly Included 1,2 4
Fair 5 [1—Included 1 5

Mechanistic Data Science
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Example: Moneyball

« Kaggle (Datasets/Moneyball)
MLB statistics 1962-2012

— Billy Beane and Paul DePodesta, Oakland Athletics, 2002

Team
AR|
ATL
BAL
BOS
CHC
CHW

Mechanistic Data Science

1,232 data with 15 features
Player: Batting average (BA), runs batted in (RBI)

League
NL
NL
AL
AL
NL
AL

Win 95 games to make the playoffs, score 133 more runs than opponents

On-base percentage (OBP), slugging percentage (SLG)=(1B+2B*2+3B*3+HR*4)/AB,

on-base plus slugging (OPS)=0BP+SLG

Year
2012
2012
2012
2012
2012
2012

RS

734
700
712
734
613
748

RA
688
600
705
806
759
676

W

81
94
93
69
61
85

OBP
0.328
0.32
0.311
0.315
0.302
0.318

SLG
0.418
0.389
0.417
0.415
0.378
0.422

BA
0.259
0.247
0.247

0.26
0.24
0.255

Playoffs RankSeason RankPlayoffs

O O O = = O

5

G
162
162
162
162
162
162

OOBP
0.317
0.306
0.315
0.331
0.335
0.319

OSLG
0.415
0.378
0.403
0.428
0.424
0.405
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Example: Data Collection from Indentation Testing

Mechanistic Data Science I How to analyze

Applications: Materials Engineering material properties?

* Indentation testing: material testing for hardness

« Hardness: resistance to penetration of a hard indenter (related to
material strength)

« Significance
— Testing is simple, fast, relatively inexpensive, and not destructive

— Hardness is closely related to critical mechanical properties: strength, ductility,
and fatigue resistance

— More plausible at small scales then tensile test

Mechanistic Data Science
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Example: Data Collection from Indentation Testing

Load (P)

J.l‘

Parameter  Berkovich Cube-corner Cone Spherical Vickers

" AA@OA

C-f angle 65.35° 35.264° HV) (HV) - (HV)
Projected
Contact area 24.5600d> 2.59814> wa® ma®  24.50444d°

Mechanistic Data Science Introduction - 20
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Mechanistic Data Science

Indentation Tests: Vary by Sample Size and Shape

Macroindentation

Brinell macrohardness test

= Applied load > 1kgf

= Example: Vickers, Brinell,
Knoop, Janka, Meyer,
Rockwell, Shore hardness test

Microindentation

Vicker microhardness test

Applied load = 1~1000 gf
Example: Vicker, Knoop,
microhardness test

Nanoindentation

Load Application
Device

]‘ Springs

Displacement
— SENSOr

Springs

«——Probe Tip
Sample

Load Frame

Nanoindentation test

= Also known as instrumented
indentation

= Applied load < 1gf

= Material testing at micro
and nanoscale

Introduction - 21


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846235/
https://link.springer.com/article/10.1007/s11249-016-0805-5

Calculating Hardness from Load-Displacement Data

— What data we collect from indentation test? Py Voo
— Hardness is calculated with the maximum applied dp
load and the indenter contact area —~ loading >=n
_8 curve
P = applied load 9 unloading
h = indentation depth : curve
S = slope of unloading curve
C = curvature of load-displacement curve R
P,, = maximum load h h
h,, = maximum indentation depth h (Depth) "
h. = critical indentation depth (difficult to Key Equations ‘
measure and must be calculated)
A = contact area (depends on indenter shape) * h,=h-— Elm
H = hardness (GPa) « A= f(hy) S= 24.56h2
E = elastic modulus (GPa) . g Pm
€ = constant (depends on indenter geometry) A
W, = Elastic work done e Er=-= i (B = 1.034 for Berkovich indenter)
W),= Plastic work done 2hf ~ 24-56

Mechanistic Data Science Introduction - 22



https://www.nanoscience.com/techniques/nanoindentation

Indentation Data from Different Sources

« Data modality: data from different sources (modes)

« Data sources
— Experiment: Instrumented indentation
— Imaging : Scanning Electron Microscope (SEM)

— Sensors: Load and displacement sensing using Linear variable differential
transformer (LVDT)

— Modeling and simulation: Finite element, Atomistic simulation

(a) ~——— (b)
vechanistic . Experimental set up Indentation surface imaging Sensing using LVDT sensor Simulation of indentation . .

FET element

g} = | &

Depth (d) : :
VD :
e W] ﬂ Indenter
) 17

-

TiN

»

it
5
(,:mtum: |
gERRNERERIRER
e




Indentation Data from Different Sources

« Load-displacement data can be found through physical experiments
and computer simulations

— Both experiment and simulations produce the same indentation
— Deviations in modality require data calibration

Nanoindentation Experiment and Imaging Finite Element Method / Computer Simulation

Z-axis precision linear guide
Piczoelectric stack
Flexure hinge
Force sensor
Dlsplaccmcnt sensor
Diamond indenter

% Specimen

EEREO T NENEERD

X-Y axis precision positioning stage

10.0

Stand column Fﬂundatlon
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https://www.nature.com/articles/srep15072

Indentation Data at Different Scales

« Data Fidelity: Resolution of data
— High fidelity data is more accurate, but expensive

— Machine learning improves the accuracy of low fidelity data, translating it to high
fidelity with less cost

— High and low fidelity are relative

| Low-fidelity = Large Scale: High-fidelity = Small Scale:
l|_ Microindentation AFM Nanoindentation Nano Resolution

. o 5 . - 175 nm
Z-axis precision linear guide
Piezoelectric stack

Flexure hinge

Force sensor
i Displacement sensor

Diamond indenter
Specimen

X-Y axis precision positioning stage k. 0nm

Impression shows indenter shape

, , 7 Surface imprint after nanoindentation,
Micron Resolution Stand column Foandailsn XL Y Scanning electron microscope (SEM) image
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https://www.nature.com/articles/srep17164
https://downloads.hindawi.com/archive/2016/6508597.pdf

Indentation Database

Data Modality: Experimental and

Nanoindentation database summary: simulation data collected for each material

Material Experiment Computation
Al-6061 alloy 7 experiment 2D FEM (Axisymmetric) : 100 simulations

each for conical indenter half angle of e
Al-7075 alloy 7 experiment 50,60,70,80° » Data Fidelity:

3D FEM: 15 simulations for Berkovich indenter 2D (low fidelity) and
3D printed Ti-6Al-4V 144 experiments  Not available 3D (high fidelity)
alloys (six samples) for each sample simulations

*Load-displacement curves are available for each experiment and simulation.

Input data
Load-displacement curvature
Indentation depth

Output data
Hardness

Elastic modulus
Yield strength

Indenter shape and size
Maximum load
Unloading curve slope

Database source:
Mechanistic Data Science Introduction - 26



https://www.pnas.org/doi/epdf/10.1073/pnas.1922210117
https://github.com/lululxvi/deep-learning-for-indentation

Working with Noisy Data and Outliers

* Noise in the data is very common
 Source of noise: Human error in measurement, sensor fluctuation and so on

« Outliers are data coming from same source but vary significantly from other
measurement

20000 -

. = Regression model can give idea
on the data trend and help identify
outliers or noise from the data.

= Type of regression:

» | east square method
= Lasso regression
| = Ridge regression
mileage = Elastic net regression, etc.

/

outliers

price

How do we know if this outlier to ignore or not?
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Challenges: Data

« Data on demand
— Do not have enough data to run an ML model
— Produce the data by using physics-based simulations
— Issue: extensible or adaptive sampling is critical

« Data in hand
— Use of the historical data, stored in different places and formats created by
different software versions

— Issue: reliability, need to be converted to metadata
* Non-standard formats without proper access (op2, d3plot, bdf, ...)
* Non-uniform data (shell, solid, mesh, time series, text, ...)
* Inconsistent data (1d, 2d and 3d mixed)
« Highly dirty data (oscillations, instability, ...)

« Data in flight

— Internet of Things (loT) sensors: large amounts of fast data from operation
— Issue: volume and quality of data

Mechanistic Data Science Introduction - 28



From Model-centric to Data-centric Al

Al System = Code + Data
Model-Centric Al Data-Centric Al

How can you change How can you

the model (code) to »svstematically change

improve performance?  the data (inputs x or
labels y) to improve
performance?

%

Making it systematic: MLOps el

Model-centric view Data-centric view

Collect what data you can, The consistency of the data is

and develop a model good paramount. Use tools to

enough to deal with the noise improve the data quality; this

in the data. will allow multiple models to
do well.

Hold the data fixed and Hold the code fixed and
iteratively improve the iteratively improve the
code/model. data.
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Homework #1: Data Plotting

« Diamond
— Fig.1.12 price vs. (a) carat, (b) separated by cut
* Moneyball

— Fig.3.10 (a) RS vs. BA, OBP, SLG, OPS, (b) W vs. BA, OBP, SLG, OPS

6 5

L 3
C"arl'ty

Figure 12 Diamond price vs carat (a) parameters combined (b) separated by clarity.
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