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Introduction (1)

• Data: unstructured, disorganized and jumbled formats

– various forms: recorded music, photographs, or measured data

– some processing required to get it into a useful form and to isolate the key 

features of the data

• Extracting the key features of data

– Important step that begins the transformation from data to information

– re-organize data to make it possible to achieve useful outcomes

– understand the scientific principles associated with data

• How to 

– extract features from a given dataset

– normalize them to establish meaningful correlation

– use available scientific or mathematical tools to minimize the number of features 

for consideration
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Introduction (2)

• many tools and methods for extracting features from data

– Geometrical analysis for image processing

– Fourier transform analysis

– short-time Fourier transform analysis

• Real-world examples of feature extraction using vector geometry and 

mathematics

– Image analysis: medical imaging (X-rays, MRI’s, Ultrasounds)

– Signal processing: Fourier transform
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Features (1)

• a measurable property of the object (sample) in dataset

• Examples

– predict how much he/she is going to get in his/her final exam

• data on students taking a course: past performance in CGPA, the grades in 

assignments, mid-terms, attendance in class

– evidence of archaeological sites, species migrations, and changes in shorelines

• satellite images

– Facial recognition software and autonomous vehicle technology

• extensive image collections

– aid in medical diagnosis and treatment

• medical images, such as X-rays, MRIs, and Ultrasounds



Mechanistic Data Science Feature - 5

Features (2)

• a measurable property of the object (sample) in dataset

• Features in other scenarios

1. Where to go out to eat for dinner 2. Where to go on vacation 3. Determining the weather

• Type of food

(Mexican, Italian, etc.)

• Price

• Size of portions 

(All you can eat, small, etc.)

• Style of restaurant

(Takeout, sit down, etc.)

• Distance from home

(out of state, international, etc.)

• Time of year

(Summer, Winter, etc.)

• Languages spoken

• Expense of trip

(Flights, hotel, food, etc.)

• Wind speed

• Time of year

(Fall, Winter, etc.)

• Number of clouds

• Climate of location

(Humid beach, desert, etc.)
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Commercial Applications of Feature Engineering

• Billboard Advertisement

• Need to identify the important features of 

the advertisement

• Once the important features are 

identified, a relationship between the 

features can be established.

• Billboard can be designed to emphasize 

the important features, factoring in the 

relationships between them,
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Normalization of Feature Data
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Feature Engineering

• transform the features in a dataset into a form that is easier to use and 

interpret, while maintaining the critical information

– Coordinate systems: Cartesian → polar

Example: Determining a New Store Location Using Coordinate Transformation Techniques
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Projection of Images (3D to 2D) and Image Processing

• Photographs and videos are a constant aspect of daily life

– television, online images and videos, or photos and video recording of dynamic 

testing

• Forensic challenge with photos and videos

– how to extract meaningful measurements and data these images

• instant replay reviews in major sporting events

– On December 7, 1963, Director Tony Verna pioneered the use of instant replay 

during the annual Army Navy football game.

• Instant replay allows analysts and viewers to relive key moments.

• To implement instant replay, sporting events are filmed from multiple 

camera angles simultaneously.

He Invented Instant Replay, The TV Trick We Now Take For Granted : The Two-Way : NPR

https://www.npr.org/sections/thetwo-way/2015/01/20/378570541/he-invented-instant-replay-the-tv-trick-we-now-take-for-granted
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Motivation of 3D image reconstruction

• Houston Astros claim that Game 4 of the 2018 American League 

Championship Series (ALCS) was impacted by insufficient instant 

replay. Jose Altuve appeared to hit a baseball over the fence but was 

called “out” for fan interference. Replay review was inconclusive:

• despite Major League Baseball’s multitude of cameras, no angle clearly 

captured the ball’s position relative to the fielder’s glove, the fans’ hands, 

and the fence.
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Tracking the ball in Volleyball game

• Tracking the 3D location of the ball is crucial.

• It is very common that the referees request video check to determine 

the position of a ball.

• Some rules and fouls that are related to the position of the ball.

VideoCheck (dataproject.com)

https://www.dataproject.com/Products/eu/en/volleyball/VideoCheck
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Problem Statement

• A point in 3D space is projected to the planes XY and YZ.

• How can we construct the 3D geometry from 2D images?
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Review of 3D geometry: 

a vector and a point in 3D space

– A 3D vector (𝒅) is a line segment in three dimensional space running from point 𝑶(tail) 

to point 𝑨(head).

– A line in 3D space can be uniquely defined with a single point (P) and a direction (𝒅).
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Problem Definition and Assumptions

• Objective: locate the 3D coordinates of the volleyball (point C)

– Point C is the center point of a ball

– Camera 1 captures the 2D projection of point C on plane ZY (point A)

– Camera 2 captures the 2D projection of point C on plane XY (point B)

• Problem setup for locating the volleyball position

– 𝑳1, 𝑳2 : the line passing through point 𝑨and Camera 1, point 𝑩 and 

Camera 2

– 𝒅1: direction vector of line 𝑳1 connecting Camera 1 to point 𝑨 on plane 

ZY

– 𝒅2: direction vector of line 𝑳2 connecting Camera 2 to point 𝑩 on plane 

XY

– Point 𝑪 is located at the intersection of 𝑳1 and 𝑳2 1 1 1 1
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How to find the intersection of lines L1 and L2?

• Known:

– Point 𝑨, 𝑩: The projection of point 𝑪 on plane ZY and plane XY

– 𝒅1, 𝒅2: the direction of line 𝑳𝟏 and line 𝑳𝟐

• Unknown point 𝑪 coordinates(x,y,z) are given by the intersection of 

lines 𝑳𝟏 and 𝑳𝟐
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How to find the intersection of lines L1 and L2?
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Numerical Example
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Scoliosis & Overview of spine Anatomy

• Scoliosis is a three dimensional deformity of the spine 

characterized by a lateral deviation of the spine, 

accompanied by an axial rotation of the vertebrae.

• The human spine contains 24 vertebrae in three regions:

– Cervical Spine (7 vertebrae)

– Thoracic Spine (12 vertebrae)

– Lumbar Spine(5 vertebrae)

• It is assumed that Thoracic spine and Lumbar spine are 

responsible for scoliosis (17 vertebrae).
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3D Reconstruction of the spinal column

• The X-ray images are the 2D projections of the vertebrae from 3D 

space to the planes XY and ZY.

• Goal: reconstruct the 3D vertebrae from 2D images?
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Outline each vertebra

• In this problem we have considered 16 landmarks (yellow dots) to segment 

each vertebra

– 16 landmarks have been chosen in each view to define the shape of each vertebra.

– X-ray Segmentation and Snake algorithm to locate the landmarks
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Problem Setup: Reference of the coordinate system

• In AP and LAT view, the reference of the coordinate system is the 

center point of L5 (5th vertebra of Lumbar spine).

• AP and LAT views are perpendicular: the angle between AP and LAT 

views are 90ᵒ.

Pasha, Saba, and John Flynn. "Data-driven classification of the 3D spinal curve in adolescent idiopathic 

scoliosis with an applications in surgical outcome prediction."Scientific reports8.1 (2018): 1-10.
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Extracting Geometry Features Using 2D X-ray Images

• spinal deformities can be described by five global angles

– Trunk Inclination Angle (TIA)

– Sacral Inclination Angle (SIA)

– Thoracic Kyphosis Angle (TKA)

– Lumbar Lordosis Angle (LLA)

– Cobb Angle (CA)

• how to standardize feature calculations used in AIS diagnosis and 

classification

– Doctors manually estimate vertebrae planes and locations from patient x-rays, 

measuring angles according to individual definitions

– AIS treatment methodology varies by hospital
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Global Angles

plane angle
Line 1 Line 2

vertebra region vertebra region

LAT
TKA T1 II T12 IV

LLA L! II L5 IV

AP

TIA L5 IV L IV

SIA L5 IV T IV

CA U II B IV C shape

CA1 U1 II B1 IV
S shape

CA2 U2 II B2 IV

• L, T: the vertebra corresponding the point that has maximum curvature in the lumbar and thoracic spine

• U, B: vertebrae two above and two below C (the vertebra with maximum curvature)

• U1, B1: vertebrae two above and two below T (the thoracic vertebra with maximum curvature)

• U2, B2: vertebrae two above and two below L (the lumbar vertebra with maximum curvature)
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Angles in the Lateral (LAT) Plane
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Angles in the Anteroposterior (AP) Plane
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Problem Setup:  Scaling

• The images are taken with different scales. Images need to be scaled 

such that the heights of the spine in the two X ray views are the  same.

• Assume the AP (Anteroposterior plane (𝑥𝑦 view)) is fixed. 

• We aim at calibrating LAT (lateral (𝑦𝑧 view)).
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3D Reconstruction of a vertebrae

• Challenges

– The vertebra has a non planar surface.

– The projection of the non-planer surface is not the 

same in two views.

– We cannot find identical corresponding points in 

two different views.

– The lines passing through the nodes will not 

intersect each other in the space.

• What is the solution?

– Find a bounding box which gives us the 

estimation of the 3D reconstructed geometry in 

3D space and use those points to generate the 

detailed geometry.

– Bounding box: region in 3D space that contains 

the 3D reconstructed points.



Mechanistic Data Science Feature - 28

3D Reconstruction of a vertebrae

• Object Detection and Bounding Boxes

– Bounding boxes can be defined either in 

2D or 3D.

– 2D bounding boxes can be implemented to 

identify the vertebrae in medical images.

– There are several techniques to define a 

bounding box.

– In this problem, a bounding box will be 

determined by finding the intersections of 

lines in 3D space.
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3D Reconstruction of a vertebrae

– A vertebra is projected to ZY and XY planes.

– Points A and A’ are not corresponding the each 

other (are not the projection of a same point in 

vertebra).

– Line 𝑳𝟏 is perpendicular to the ZY plane and 

passes through point A.

– Line 𝑳2 is perpendicular to the XY plane and 

passes through point A’.

– Goal: find a point (A’’) that has the minimum 

distance from Lines 𝑳𝟏 and 𝑳𝟐.

– point (A’’) can be used to reconstruct the 

bounding box.
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Problem Statement

• Find a point that has the minimum distance of lines 𝑳𝟏 and 𝑳𝟐.

• Note that 𝑳𝟏 and 𝑳𝟐 are not intersecting in 3D space.
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Numerical Example

– The coordinate of the projection of a given point 𝑪(a point 

on the top surface of a vertebra) in the 3D space on plane 

YZ and XZ are described as follows:

• A = (0, 34, 52) [mm]

• B = (28, 36, 0) [mm]

– Let’s assume that the direction of the line connecting X 

ray source 1 to the point 𝑨located on the YZ plane and 

that the direction of the line passing through X ray source 

2 and point 𝑩 located on the XZ plane are given by:

• d1 = (1, 0, 0)

• d2 = (0, 0, 1)

– Find the coordinates of point 𝑪 in the 3D space?
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2D to 3D reconstruction algorithm

Load segmented data (coordinates of the points)

For each projected plane, set the normal line direction

The normal lines are drawn passing through 

all points (landmarks) of the projected planes

The program will find the minimum distances between the 

normal lines and sorting them based on the distances

The Intersection of normal lines will be 

calculated using the mean square error
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Feature extraction and geometry generation for spine

Tajdari, Mahsa, et al. "Image-based modelling for Adolescent Idiopathic Scoliosis: Mechanistic machine learning 

analysis and prediction."Computer methods in applied mechanics and engineering374 (2021): 113590.
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Signals and Signal Processing

• Signal: time-varying or space-varying impulse that has a meaning or 

stores some information

– high-pitched siren from an ambulance is a time-varying signal intended to get 

peoples’ attention. 

– A photograph from a family vacation is a space-varying signal composed of color 

and intensity

• Calculus: invented independently by both Isaac Newton and Gottfried 

Leibniz

• Fourier transform: developed by Joseph Fourier (1768-1830)

– decomposed a dynamic signal into its component frequencies and amplitudes

– periodic dynamic functions can be represented as a sine and cosine series called 

a Fourier series
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Fourier Transform (FT)

• everything from sounds to photographs can be described in terms of waves

– it is assumed that there is a periodic (continuously repeating) pattern

– Amplitude, period, frequency
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Fourier Series and Transform

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( )

( )

1

0

0

1

0 0
0

0

0

sin   where  2 ,  

1
sin sin

2

cos   where  

1

2

1
cos cos

2

cos

n

n

k k

n

n

k k

n

S x b nx S x S x S x S x

S x kxdx b b S x kxdx

C x a a nx C x C x

C x dx a a C x dx

C x kxdx a a C x kxdx

F x a a n

 



 



 


















=

−



=

−

−


= + = − = −


 = → =



= + − =




= → =



= → =


= +



 



 

 

( ) ( )

( )

( )

( )

1 1

0

sin

1

2

1
cos

1
sin

n

n n

k

k

x b nx C x S x

a F x dx

a F x kxdx

b F x kxdx



















 

= =

−

−

−


+ = +




=

 =


 =


 







( ) ( )Fourier inverse Fourier

transfrom transfrom

amplitudespace domain space domain
: frequency

frequency domain

k

k

F x c F x⎯⎯⎯⎯→ ⎯⎯⎯⎯⎯→

( )

( ) ( )

0 1 1

1
2

2

inx ix ix

n

n

ikx ikx

k k

F x c e c c e c e

F x e dx c c F x e dx
 

 





−

−

=−

− −

− −


= = + + +


 = → =




 



Mechanistic Data Science Feature - 37

Fast Fourier Transform

https://en.wikipedia.org/wiki/Fast_Fourier_transform

https://en.wikipedia.org/wiki/Fast_Fourier_transform
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FFT of Sine Wave Signal (Fig.4.25)

import scipy.fft

import numpy as np

from matplotlib import pyplot as plt

# Set up sine wave signal

tt = np.linspace(0,2*np.pi,21)

yy = np.sin(tt)

plt.plot(tt,yy,'-o')

plt.axhline(y=0,color='k')

N = yy.shape[0]

FFT = abs(scipy.fft.fft(yy))

FFT_side = FFT[range(N//2)] # one side FFT range

freqs = scipy.fft.fftfreq(yy.size, tt[1]-tt[0])

fft_freqs = np.array(freqs)

freqs_side = freqs[range(N//2)] # one side frequency range

plt.figure()

p3 = plt.plot(freqs_side, abs(FFT_side), “ro")

#p3 = plt.semilogy(freqs_side, abs(FFT_side), "b")
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Example: Analysis of Separate and Combined Signals



Mechanistic Data Science Feature - 40

Example: Analysis of Separate and Combined Signals

• Aliasing: inability to distinguish between signals due to inadequate 

sampling frequency

– sampling data rate must be at least half of the frequency of the curve being sampled 

– critical sampling rate is called the Nyquist frequency

• Filter: device or process that removes some selected frequencies from a 

signal

– Low-pass, high-pass, band-pass
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Example: Analysis of Separate and Combined Signals

A lowpass Butterworth filter: remove all frequencies above 15 Hz, leaving

only the two dominant peaks corresponding to f1(t) and f2(t)
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Analysis of Sound Waves from a Piano

• A piano makes music based on vibration of strings of different lengths 

and thicknesses inside the body of the piano

• The piano keyboard consists of 88 white and black keys and around 

230 strings (the total number of strings can vary from one piano-maker 

to another)

• When a key is struck, a felt-tipped hammer → vibration of a wire (or 

wires) → bridge → soundboard → wave

• different frequencies based on the diameter and length of the wire(s) 

and the tension in the wire(s): 27.5~4186 Hz
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Terminologies of Music

– In music, a note is a symbol denoting a musical sound.

– A volume is the subjective perception of sound pressure.

– Pitch can be identified as the frequency of a tune.

– Sustain is the speed or pace of a given musical piece.

– The lowest frequency of any vibrating object is called the 

fundamental frequency.

– Harmonics are integer multiples of the fundamental frequency 

with lower amplitudes. For musical recording there can be 

inharmonic frequencies which are non integer multiples of 

fundamental frequency.
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Tale of Tuning a Piano (1)

• When a key is struck, the strings vibrate and generate sound

– There are about 220 to 240 strings inside a piano.

• To tune a piano, one needs to know the frequencies of the sound 

generated by adjusting the tension of associated string(s) to get the 

desired frequency

– The frequencies of a sound can be identified using Fast Fourier Transform (FFT)
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Tale of Tuning a Piano (2)

• Tuning is a big part of playing a piano, usually costs $65 to $225

• Tuning means adjusting each key of the piano to a specific pitch 

(frequency)

27.5 Hz 4,186.01 Hz

Different keys are designed to have different frequencies  Range: 27.5 Hz to 4,186.01 Hz. 

https://www.apronus.com/

• Fundamental frequency: the lowest frequency of 

any vibrating object

• Harmonics: waves having frequencies that are 

integer  multiples of the fundamental frequency 

with lower amplitudes
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Structural Components of a Piano

• Sound generation in three stages

– Strike: hammer hits the string and transmits the energy to the string

– Sustain: hammer stays on the string

– Decay: hammer is withdrawn, damper dampens the string vibration

• Assumption

– Time of strike and sustain stage in piano is very short

– Amplitude: relative scale of air pressure in transmitting the sound

Yamaha piano A4 sound

Strike DecaySustain
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Generate a Piano Sound (Fig.4.36, Matlab→Python)

import numpy as np

from scipy.io import wavfile

def generate_piano_sound(fs, tn, a, omega):

t = np.arange(0, tn, 1/fs) # Generate the time array

n = len(a) # Count the number of sine waves

y = np.zeros(len(t)) # Define signal

for i in range(n):

y += a[i] * np.sin(2 * np.pi * omega[i] * t)

wavfile.write('piano.wav', fs, y.astype(np.float32)) # Write the sound file

fs = 44100 # Sampling frequency

tn = 2 # Duration of sound in seconds

a = [0.5, 0.3, 0.2] # Amplitude of each sine wave

omega = [440, 880, 1320] # Frequency of each sine wave

generate_piano_sound(fs, tn, a, omega) # Generate and write the sound file

function generate_piano(fs,tn,a,omega)

%This function is to generate a sound file with a series of

%sine waves

%to approximate the piano sound.

%ts: time integral in a sound

%tn: duration of the sound

%a: amplitude of each sine wave, should be an 1 by I vector.

%omega: frequency of each sine wave, should be an 1 by I

%vector.

t=0:1/fs:tn; %Generate the time array

n=size(a); %Count the number of sine waves

y=zeros(size(t));%Define signal

for i=1:1:n

y=y+a(i).*sin(2.*pi.*omega(i).*t);

end

audiowrite('piano.wav',y,fs); %Write the sound file
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How to Convert a Sound to a Signal?

• A software package, such as MATLAB, provides tools to convert the 

sound file to asignal for mathematical analysis

• How does waveread() work?

– The waveread () function takes a sound file in wave format

– The file is converted to binary format (waveread () reads in 32 bit)

– A sampling frequency is fixed at which the data acquisition occurs.

– A vector of amplitudes and corresponding sampling times is expressed as signal
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Multiresolution in a Signal

A 0.01 second zoomed 

in view of the signal

A strike piano key emits sound through the

vibration of a pre-tensioned string

• investigate the acoustic features using Fast Fourier Transform (FFT) 

• Acoustic features: frequency, amplitude

Wave distortion shows

presence of multiple

frequencies

(observations)

• The sound wave consists of 

multiple frequencies

• The amplitude of the signal

changes with time.

• There is a decayingpattern in

the signal, which means sound

becomes muffled with time.
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Feature Extraction of the Sound Signal Using 

Fast Fourier Transform (FFT)

Yamaha A4 piano note

0.01s Harmonics

Fourier transform can extract the frequency and amplitude features of fundamental 

and (eight) harmonic frequencies of the piano sound.

Authentic A4 sound

(extracted from first 0.01s)

FFT

Fundamental frequency

Harmonics
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Why we need short time Fourier transform?

• Limitations of Fourier Transform: Not very useful for 

analyzing time variant, non-stationary signals

– If we press 𝐴5, 𝐶#6 𝑎𝑛𝑑 𝐸6 each for 1s

– The sound wave (sine function) is:

• (To better show the plot, we define each frequency happened 

0.01s)

– If we use Fourier transform to analysis the wave, we cannot 

know how frequencies change with time.

– We can use Short time Fourier transform to analysis the sound.
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Short time Fourier transform steps

• STFT presents the frequencies with different time, so it can tell us how 

frequencies change with time.
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Use Short Time Fourier transform 

to analyze the piano sound

• Short Time Fourier transform shows the how the fundamental frequency 

and each harmonic rise and damping with time.
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Improvement of Feature Extraction

• To enhance the reconstruction of the authentic A4 key, Short Time Fourier Transform 

(STFT) is used to reveal the strike, sustain and decay.

• Short-time Fourier transform (STFT)

– Fourier-related transform used to determine the sinusoidal frequency and phase content of 

local sections of a signal as it changes over time

strike, sustain and decaySignal

A
m

p
lit

u
d

e

Fundamental 

frequency

Short-time Fourier transform (STFT)
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Mechanistic Equation in terms of ODE

• A mass-spring-damper model without external forces can be defined as:
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Simple Harmonic Vibration (Oscillator)
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Simple Harmonic Vibration (Oscillator)
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Mechanistic Equation for a Sound from Piano Key
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Determination of the Envelop Mechanistic Features

Fundamental frequency 

Fundamental 

frequency

“Yamaha A4” coefficient for fundamental frequency and each harmonic
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Reconstruction of the Piano Sound

– As more features (harmonics) are added, the reconstructed sound quality improves

– The sound generated with 7 (total of 8) harmonics is closer to the original sound

No. of 

harmonics 
1 2 3 4 5 6 7 8

Sound

Yamaha piano A4 sound
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Use Short Time Fourier transform 

to analyze the piano melody

• A melody is a series of musical notes or tones arranged in a definite 

pattern of pitch.

• How to write down a piano note by analyzing the music?

• At least, one should know what frequency and amplitude happened at 

what point of time.

• Short Time Fourier transform can be used to extract frequency, 

amplitude, and time from the music sound.
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Short Time Fourier transform of “Twinkle twinkle little star"

– For the first second, two keys are pressed with fundamental frequency 262 Hz. The key 

associate to this frequency is C4.

– For each key, the fundamental frequency and harmonics are considered.

– The height is the amplitude and from the plot, one can tell which key is pressed at what time.

– Short Time Fourier transform shows the features of time, amplitude, and frequency.
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Short Time Fourier transform of “Twinkle twinkle little star"

• At time window: t=0.2554s, STFT shows the main frequency is 262 Hz 

with harmonics. The key C4 is pressed at this time.

• For each time window, STFT shows the frequency and amplitude of 

fundamental part and harmonics.
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Other mechanistic models

• How to regress the amplitude, damping, frequencies, and phase angles 

of the A4 key?

• Two-time scale model for the mass spring damper system (based on 

perturbation theory):
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How machines extract/identify features from images?
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What is convolution?

• Image a simple word:

• Train computer the alphabet:
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• How the data store in the 

computer

• How can we define a right 

operation?
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An image recognition classifier

• Convolution is a formal mathematical operation, just as multiplication 

and addition/integration.

• Convolution is a way to pass a filter over the image to find key features.
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A more rigorous definition of convolution
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• Convolution operation step 1:

• Convolution operation step 2:
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2D definition of convolution
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Why can convolution extract features?

• We design three filters (called creepy eye, creepy nose, and creepy 

mouth) to identify corresponding features in the creepy face.



Mechanistic Data Science Feature - 73

Convolution using creepy nose filter

• Only the “nose” is shown in the feature map after convolution with “a 

creepy nose” filter.
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Convolution using creepy eye filter

• Only the “eyes” are shown in the feature map after convolution with “a 

creepy eye” filter.
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Convolution using creepy mouth filter

• Only the “mouth” is shown in the feature map after convolution with “a 

creepy mouth” filter.
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