
Mechanistic Data Science Deep Learning - 36

Library for Deep Learning

• PyTorch

– Facebook’s AI Research Lab (FAIR)

• TensorFlow

– Google Brain Team

https://medium.com/ml-cheat-sheet/machine-learning-curriculum-from-rookie-to-mastery-636bdbf74856

https://medium.com/ml-cheat-sheet/machine-learning-curriculum-from-rookie-to-mastery-636bdbf74856

Mechanistic Data Science Deep Learning - 37

Activation Functions

• determines if a neuron should be activated or not activated

– use some simple mathematical operations to determine if the neuron’s input to the

network is relevant or not relevant in the prediction process

• introduce non-linearity to an artificial neural network

• generate output from a collection of input values fed to a layer

Human brain Neural networks

Input Receive from outside world Provide as images, sounds, numbers, etc.

Process Neuron Artificial neuron

Activate Neuron tail Algorithm

Mechanistic Data Science Deep Learning - 38

• universal approximation: a neural network can approximate any

continuous function that maps inputs (X) to outputs (y)

– The ability to represent any function is what makes the neural networks so

powerful and widely-used

– To be able to approximate any function, we need non-linearity: activation functions

– Without activation functions, neural networks can be considered as a collection of

linear models

https://www.youtube.com/watch?v=joA6fEAbAQc

https://www.youtube.com/watch?v=joA6fEAbAQc

Mechanistic Data Science Deep Learning - 39

Activation Functions

• Linear activation function

– proportional to the input, (-∞, ∞)

– simply adds up the weighted total of

the inputs and returns the result

– Pros and Cons

• not a binary activation because it

only delivers a range of activations

• Constant derivative: unrelated to x

• Binary step function

– A threshold value determines
whether a neuron should be
activated or not activated

– Pros and Cons

• cannot provide multi-value outputs

• gradient is zero

Mechanistic Data Science Deep Learning - 40

Non-linear Activation Functions: Sigmoid

– simple to use, all the desirable qualities: nonlinearity, continuous differentiation,

monotonicity, and a set output range, mainly used in binary classification problems

• Pros and Cons

– non-linear in nature, smooth gradient, good for a classifier type problem

– output is always going to be in the range (0,1) → define a range for our activations

– problem of “Vanishing gradients”

– Its output isn’t zero centered → gradient updates go too far in different directions

– output value is between zero and one → optimization harder (network either

refuses to learn more or is extremely slow)

()
()2

1 1 1
1

1 11

x x

x xx

df e e
f f

dx e ee

− −

− −−

+ −
= = = −

+ + +

Mechanistic Data Science Deep Learning - 41

Non-linear Activation Functions: Tanh (Hyperbolic Tangent)

– real-valued number to the range [-1, 1]

– non-linear, its output is zero-centered (different from Sigmoid)

– negative inputs will be mapped strongly to the negative and zero inputs will be

mapped to almost zero in the graph of TanH

• Pros and Cons

– vanishing gradient problem, but the gradient is stronger for TanH than sigmoid

(derivatives are steeper)

Mechanistic Data Science Deep Learning - 42

Non-linear Activation Functions: ReLU (Rectified Linear Unit)

– one of the most commonly used in the applications

– maximum value of the gradient is one → solve the problem of vanishing gradient:

– slope is never zero → solved the problem of saturating neuron

• Pros and Cons

– only a certain number of neurons are activated → far more computationally

efficient

– accelerates the convergence of gradient descent towards the global minimum of

the loss function due to its linear, non-saturating property

– It should only be used within hidden layers

– Some gradients can be fragile during training → dying ReLu problem

Mechanistic Data Science Deep Learning - 43

Non-linear Activation Functions: Leaky ReLU

– upgraded version of the ReLU to solve the dying ReLU problem

– consistency of the benefit across tasks is presently ambiguous

• Pros and Cons

– ReLU + enable back propagation, even for negative input values

– Making minor modification of negative input values, the gradient of the left side of

the graph comes out to be a real (non-zero) value. As a result, there would be no

more dead neurons in that area

– predictions may not be steady for negative input values

Mechanistic Data Science Deep Learning - 44

Non-linear Activation Functions: ELU (Exponential Linear Units)

– one of the variations of ReLU which also solves the dead ReLU problem

– very similar to ReLU except negative inputs, slightly more computationally

expensive than leaky ReLU

• Pros and Cons

– strong alternative to ReLU: can produce negative outputs

– Exponential operations → increase the computational time

– No learning about the ‘a’ value takes place, and exploding gradient problem

Mechanistic Data Science Deep Learning - 45

Non-linear Activation Functions: Softmax

– A combination of many sigmoids, determines relative probability, returns the

probability of each class/labels, most commonly used in multi-class classification

– gives the probability of the current class with respect to others → consider the

possibility of other classes

• Pros and Cons

– It mimics the one encoded label better than the absolute values

– We would lose information if we used absolute (modulus) values, but the

exponential takes care of this on its own

– should be used for multi-label classification and regression task as well

Mechanistic Data Science Deep Learning - 46

Non-linear Activation Functions: Swish

– allows for the propagation of a few numbers of negative weights

– crucial property that determines the success of non-monotonic smooth functions

– self-gated activation function created by Google researchers

• Pros and Cons

– smooth activation function: it does not suddenly change direction like ReLU does

near x equal to zero

– large negative numbers are wiped out, resulting in a win-win situation

– non-monotonous function enhances the term of input data and weight to be learnt

– Slightly more computationally expensive

Mechanistic Data Science Deep Learning - 47

Important Considerations

• Vanishing gradient is a common problem encountered during neural

network training

– sigmoid activation function: small output range (0 to 1), huge change in the input

→ small modification in the output, derivative also becomes small

– These are only used for shallow networks with only a few layers, For a multi-layer

network, the gradient may become too small for expected training

• Exploding gradients are situations in which massive incorrect gradients

build during training, resulting in huge updates to neural network model

weights

– An unstable network might form, and training cannot be completed

– weights’ values can potentially grow to the point where they overflow, resulting in

loss in NaN values

Mechanistic Data Science Deep Learning - 48

Final Takeaways

– All hidden layers generally use the same activation functions. ReLU activation function

should only be used in the hidden layer for better results.

– Sigmoid and TanH activation functions should not be utilized in hidden layers due to

the vanishing gradient, since they make the model more susceptible to problems

during training.

– Swish function is used in artificial neural networks having a depth more than 40 layers.

– Regression problems should use linear activation functions

– Binary classification problems should use the sigmoid activation function

– Multiclass classification problems  should use the softmax activation function

• Neural network architecture and their usable activation functions,

– Convolutional Neural Network (CNN): ReLU activation function

– Recurrent Neural Network (RNN): TanH or sigmoid activation functions

Mechanistic Data Science Deep Learning - 49

Computing Gradients

() ()()() ()()() ()() ()

1

3 2 1
3 2 1 2 1 1

, ,
n

f f
f

x x

dF dF dFdF
F x F F F x F F x F x x

dx dx dx dx

 =

= → =

a

b

c = a + b

d = b + 1

e = cd

()

()

()()

sum rule: 1

derivatives

product rule:

computational graph

1 1

a b
a b

a a a

u v
uv v u v

u u u

c a b

e a b b d b

e cd

e e c

a c a

e e c e d

b c b d b

+ = + =

 = + =

= +

= + + → = +
 =

= =

 = + =

Mechanistic Data Science Deep Learning - 50

Multivariate Chain Rule

x y z

1
x

x
=

()

x

y

= + +

()()

x

z

= + + + +

()()
x

z

= + + + +

α

β
γ

()
y

z

= + +

1

z

z
=

forward-mode: how one input affects every mode
differentiation

backward-mode: how every mode affects one input

inputs
depends on how many

functions

Deep Learning: one loss function with many inputs (

weights) backward!→

δ

ε
ζ

reverse mode ?

z
⎯⎯⎯⎯

forward mode

?

x

⎯⎯⎯⎯⎯→

Mechanistic Data Science Deep Learning - 51

a

b

c = a + b

d = b + 1

e = cd
?

b

e
=

Mechanistic Data Science Deep Learning - 52

Patterns in Gradient Flow

• Add gate: gradient distributor

• Mul gate: swap multiplier

• Copy gate: gradient adder

• Max gate: gradient router

f

x

z

y

upstream

gradient

downstream

gradient

Mechanistic Data Science Deep Learning - 53

Example

() ()

()
()

0 0 1 1 2

1
,

1

,
1

w x w x w
f w x

e

df w x
f f

dx

− + +

= +

 = −

Mechanistic Data Science Deep Learning - 54

Vector Derivatives

()

()

()
,

Scalar to Scalar ,

Vector to Scalar , , : gradient

Vector to Vector , , : Jacobian

N N

n n

N M N M m

n m n

y
x y

x

y y y
y

x

y

x

 →

 → =

 → =

x
x x

y y
x y

x x

f

x

z

y

upstream

gradient

downstream

gradient

Mechanistic Data Science Deep Learning - 55

Back Propagation with Matrices

,

, , ,

,

,

, , , ,

What part of are affected by one element of ? affects the whole row

How much does affect ?

n d m

n d n m d m

T

M D

N D
N Mn m

d m

m mn d n m n d n m T

D N

D M

x y

x y w

L L

yL L L
w

x y x y L L

=

= = →

=

y x

w
x y

x
w y

N M

2 1 3

3 4 2N D

−
=

−
x

3 2 1 1

2 1 3 2

3 2 1 2
D M

−

=

 −

w

13 9 2 6

5 2 17 1
N M

− −
=

y

2 3 3 9

8 1 4 6

N M

dL

d

−
=

− y

, , ,

matrix multiply

n m n d d m

d

y x w=

() ()

() ()

:

Jacobians

:

d
N D N M

d

d
D M N M

d

x y

w y

y

x

y

w

Mechanistic Data Science Deep Learning - 56

()

() ()

() ()

() ()

()

()

()

vector big number

1

: : cost

: : cost

specialize to column vector 1 : vs.

m n n p p q

m n
n q

p q
m p

n m p mp n

npq mnq npq mnq nq m p

mnp mpq mnp mpq mp n q

q

+ +

=

→ → = + = +

→ → = + = +

= =

A B C AB C

BC A BC

AB AB C

C A BC AB C

	슬라이드 1: Contents
	슬라이드 2: Classification
	슬라이드 3: Supervised Learning
	슬라이드 4: Recall Piecewise Linear Regression
	슬라이드 5: We can solve this problem using Neural Network!
	슬라이드 6: Brief History (1)
	슬라이드 7: Brief History (2)
	슬라이드 8
	슬라이드 9: A First Look at Feed Forward Neural Network (1)
	슬라이드 10: A First Look at Feed Forward Neural Network (2)
	슬라이드 11: A First Look at Feed Forward Neural Network (3)
	슬라이드 12: Network Structure: one hidden neuron
	슬라이드 13: Result of Weights: one hidden neuron
	슬라이드 14: Network Structure: one hidden layer, two hidden neurons
	슬라이드 15: Result of Weights: one hidden layer, two hidden neurons
	슬라이드 16: 1 hidden layer, 1 neuron
	슬라이드 17: 1 hidden layer, 2 neuron
	슬라이드 18: 1 hidden layer, 10 neuron
	슬라이드 19: 2 hidden layer, 10 neuron
	슬라이드 20: 3 hidden layer, 10 neuron
	슬라이드 21: 4 hidden layer, 10 neuron
	슬라이드 22: General Notation for FFNN
	슬라이드 23: A Neural Networks Playground
	슬라이드 24: A Neural Network Playground
	슬라이드 25: A Neural Network Playground
	슬라이드 26: A Neural Network Playground
	슬라이드 27: A Neural Network Playground
	슬라이드 28: A Neural Network Playground
	슬라이드 29: A Neural Network Playground
	슬라이드 30
	슬라이드 31: Application: Diamond Price Regression
	슬라이드 32: Diamond Dataset
	슬라이드 33: Neural Network Architecture
	슬라이드 34: Network Training and Prediction
	슬라이드 35: Prediction of Unseen data
	슬라이드 36: Library for Deep Learning
	슬라이드 37: Activation Functions
	슬라이드 38
	슬라이드 39: Activation Functions
	슬라이드 40: Non-linear Activation Functions: Sigmoid
	슬라이드 41: Non-linear Activation Functions: Tanh (Hyperbolic Tangent)
	슬라이드 42: Non-linear Activation Functions: ReLU (Rectified Linear Unit)
	슬라이드 43: Non-linear Activation Functions: Leaky ReLU
	슬라이드 44: Non-linear Activation Functions: ELU (Exponential Linear Units)
	슬라이드 45: Non-linear Activation Functions: Softmax
	슬라이드 46: Non-linear Activation Functions: Swish
	슬라이드 47: Important Considerations
	슬라이드 48: Final Takeaways
	슬라이드 49: Computing Gradients
	슬라이드 50: Multivariate Chain Rule
	슬라이드 51
	슬라이드 52: Patterns in Gradient Flow
	슬라이드 53: Example
	슬라이드 54: Vector Derivatives
	슬라이드 55: Back Propagation with Matrices
	슬라이드 56
	슬라이드 57
	슬라이드 58: Use PyTorch to fit spring-mass data (1)
	슬라이드 59: Use PyTorch to fit spring-mass data (2)
	슬라이드 60: Use PyTorch to fit spring-mass data (3)
	슬라이드 61: Limitations of NN
	슬라이드 62
	슬라이드 63: Automatic Differentiation
	슬라이드 64
	슬라이드 65: Customized loss function by adding governing equation
	슬라이드 66: Code
	슬라이드 67: PINN vs. NN
	슬라이드 68
	슬라이드 69: Small Dataset: PINN vs. NN (1)
	슬라이드 70: Small Dataset: PINN vs. NN (2)
	슬라이드 71: Summary
	슬라이드 72: Convolution Neural Network
	슬라이드 73: Kernels to be tested
	슬라이드 74: Mini CNN is used to figure out a good filter
	슬라이드 75: Using gradient descent to update filter
	슬라이드 76: An illustrative structure of CNN including several building blocks and concepts
	슬라이드 77
	슬라이드 78: Add padding to make dimensions consistent
	슬라이드 79: An example showing max and average pooling layers
	슬라이드 80: 2D definition of convolution
	슬라이드 81: Application: COVID-19 detection from chest x-ray images of patients
	슬라이드 82: Classification example
	슬라이드 83: Chest x ray images of a 50-year-old COVID-19 patient over a week
	슬라이드 84: Automated detection of COVID-19 cases using deep neural networks with X ray images
	슬라이드 85
	슬라이드 86: Error matrix allows visualization of the performance of the deep neural networks

