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Library for Deep Learning

• PyTorch

– Facebook’s AI Research Lab (FAIR)

• TensorFlow

– Google Brain Team

https://medium.com/ml-cheat-sheet/machine-learning-curriculum-from-rookie-to-mastery-636bdbf74856

https://medium.com/ml-cheat-sheet/machine-learning-curriculum-from-rookie-to-mastery-636bdbf74856
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Activation Functions

• determines if a neuron should be activated or not activated

– use some simple mathematical operations to determine if the neuron’s input to the 

network is relevant or not relevant in the prediction process

• introduce non-linearity to an artificial neural network 

• generate output from a collection of input values fed to a layer

Human brain Neural networks

Input Receive from outside world Provide as images, sounds, numbers, etc.

Process Neuron Artificial neuron

Activate Neuron tail Algorithm
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• universal approximation: a neural network can approximate any 

continuous function that maps inputs (X) to outputs (y)

– The ability to represent any function is what makes the neural networks so 

powerful and widely-used

– To be able to approximate any function, we need non-linearity: activation functions

– Without activation functions, neural networks can be considered as a collection of 

linear models

https://www.youtube.com/watch?v=joA6fEAbAQc

https://www.youtube.com/watch?v=joA6fEAbAQc
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Activation Functions

• Linear activation function

– proportional to the input, (-∞, ∞)

– simply adds up the weighted total of 

the inputs and returns the result

– Pros and Cons

• not a binary activation because it 

only delivers a range of activations

• Constant derivative: unrelated to x

• Binary step function

– A threshold value determines 
whether a neuron should be 
activated or not activated

– Pros and Cons

• cannot provide multi-value outputs

• gradient is zero
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Non-linear Activation Functions: Sigmoid

– simple to use, all the desirable qualities: nonlinearity, continuous differentiation, 

monotonicity, and a set output range, mainly used in binary classification problems

• Pros and Cons

– non-linear in nature, smooth gradient, good for a classifier type problem

– output is always going to be in the range (0,1) → define a range for our activations

– problem of “Vanishing gradients”

– Its output isn’t zero centered → gradient updates go too far in different directions

– output value is between zero and one → optimization harder (network either 

refuses to learn more or is extremely slow)
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Non-linear Activation Functions: Tanh (Hyperbolic Tangent)

– real-valued number to the range [-1, 1]

– non-linear, its output is zero-centered (different from Sigmoid)

– negative inputs will be mapped strongly to the negative and zero inputs will be 

mapped to almost zero in the graph of TanH

• Pros and Cons

– vanishing gradient problem, but the gradient is stronger for TanH than sigmoid 

(derivatives are steeper)
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Non-linear Activation Functions: ReLU (Rectified Linear Unit)

– one of the most commonly used in the applications

– maximum value of the gradient is one → solve the problem of vanishing gradient: 

– slope is never zero → solved the problem of saturating neuron

• Pros and Cons

– only a certain number of neurons are activated → far more computationally 

efficient

– accelerates the convergence of gradient descent towards the global minimum of 

the loss function due to its linear, non-saturating property

– It should only be used within hidden layers

– Some gradients can be fragile during training → dying ReLu problem
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Non-linear Activation Functions: Leaky ReLU

– upgraded version of the ReLU to solve the dying ReLU problem

– consistency of the benefit across tasks is presently ambiguous

• Pros and Cons

– ReLU + enable back propagation, even for negative input values

– Making minor modification of negative input values, the gradient of the left side of 

the graph comes out to be a real (non-zero) value. As a result, there would be no 

more dead neurons in that area

– predictions may not be steady for negative input values
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Non-linear Activation Functions: ELU (Exponential Linear Units)

– one of the variations of ReLU which also solves the dead ReLU problem

– very similar to ReLU except negative inputs, slightly more computationally 

expensive than leaky ReLU

• Pros and Cons

– strong alternative to ReLU: can produce negative outputs

– Exponential operations → increase the computational time

– No learning about the ‘a’ value takes place, and exploding gradient problem



Mechanistic Data Science Deep Learning - 45

Non-linear Activation Functions: Softmax

– A combination of many sigmoids, determines relative probability, returns the 

probability of each class/labels, most commonly used in multi-class classification

– gives the probability of the current class with respect to others → consider the 

possibility of other classes

• Pros and Cons

– It mimics the one encoded label better than the absolute values

– We would lose information if we used absolute (modulus) values, but the 

exponential takes care of this on its own

– should be used for multi-label classification and regression task as well
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Non-linear Activation Functions: Swish

– allows for the propagation of a few numbers of negative weights

– crucial property that determines the success of non-monotonic smooth functions

– self-gated activation function created by Google researchers

• Pros and Cons

– smooth activation function: it does not suddenly change direction like ReLU does 

near x equal to zero

– large negative numbers are wiped out, resulting in a win-win situation

– non-monotonous function enhances the term of input data and weight to be learnt

– Slightly more computationally expensive
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Important Considerations

• Vanishing gradient is a common problem encountered during neural 

network training

– sigmoid activation function: small output range (0 to 1), huge change in the input 

→ small modification in the output, derivative also becomes small 

– These are only used for shallow networks with only a few layers, For a multi-layer 

network, the gradient may become too small for expected training

• Exploding gradients are situations in which massive incorrect gradients 

build during training, resulting in huge updates to neural network model 

weights

– An unstable network might form, and training cannot be completed

– weights’ values can potentially grow to the point where they overflow, resulting in 

loss in NaN values
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Final Takeaways

– All hidden layers generally use the same activation functions. ReLU activation function 

should only be used in the hidden layer for better results.

– Sigmoid and TanH activation functions should not be utilized in hidden layers due to 

the vanishing gradient, since they make the model more susceptible to problems 

during training.

– Swish function is used in artificial neural networks having a depth more than 40 layers.

– Regression problems should use linear activation functions

– Binary classification problems should use the sigmoid activation function

– Multiclass classification problems  should use the softmax activation function

• Neural network architecture and their usable activation functions,

– Convolutional Neural Network (CNN): ReLU activation function

– Recurrent Neural Network (RNN): TanH or sigmoid activation functions
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Computing Gradients
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Multivariate Chain Rule
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Patterns in Gradient Flow

• Add gate: gradient distributor

• Mul gate: swap multiplier

• Copy gate: gradient adder

• Max gate: gradient router
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Example
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Vector Derivatives

( )

( )

( )
,

Scalar to Scalar ,

Vector to Scalar , , :  gradient

Vector to Vector , , :  Jacobian

N N

n n

N M N M m

n m n

y
x y

x

y y y
y

x

y

x



 
   → 


     

  →  =  
   

   
  →  =  

   

x
x x

y y
x y

x x

f

x

z

y

upstream

gradient

downstream

gradient



Mechanistic Data Science Deep Learning - 55

Back Propagation with Matrices
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