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Application: Diamond Price Regression
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Diamond Dataset

• Kaggle (Datasets/Diamonds)

– 53,940 diamonds with 10 features

carat cut color clarity depth table price x y z

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43

2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31

3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31

4 0.29 Premium I VS2 62.4 58 334 4.2 4.23 2.63

5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75

6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

7 0.24 Very Good I VVS1 62.3 57 336 3.95 3.98 2.47

8 0.26 Very Good H SI1 61.9 55 337 4.07 4.11 2.53

9 0.22 Fair E VS2 65.1 61 337 3.87 3.78 2.49

10 0.23 Very Good H VS1 59.4 61 338 4 4.05 2.39

Color (D, E, F, G, H, I, J) → (1, 2, 3, 4, 5, 6, 7)

D: colorless ~ Z: light yellow or brown
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Feature Engineering

• Remove missing values

• Convert categorical label

– Cut: Excellent(0), Very good(1), Good(2), Fair(3), Poor(4)

• Normalization/standardization

:  mean (average)

:  standard deviation from the mean

:  transformed data
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Dimension Reduction

• Reformulating data using less features

• Separate between relevant and irrelevant features

– Correlation matrix

• Select importance features (from 9 features)

– Four important features: carat, clarity, color, length (y)

– Modeling approach: Random Forest

• Find a new set of linear/nonlinear transformed variables

– Principal component analysis (PCA)
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Reduced Order Model

• Model order reduction is a technique for reducing the computational 

complexity of mathematical models

• Single variable linear regression (Reduced order model)

• Multivariable linear regression (Reduced order model)

• Neural network model
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Linear Regression

• Single variable/feature: • Two variables/features:
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Multivariable Linear Regression

• Split dataset for training set (70%) and testing set (30%)

• Training step: 

• Test step:
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Neural Network Architecture

( ) ( )Find the unknown function
9 input variables 1 output variables 
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Network Training and Prediction

• Loss: MSE(mean squared error)

• Optimizer: Adam

• Architecture:

• Metrics

– Mean absolute error: 615.97

– Mean squared error: 1139999.82

– R-squared: 0.93
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System & Design: Prediction of Unseen data
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System & Design: Limitations of the model

• Dataset is updating which depends on the market.

• Confidence level of the prediction (Uncertainty?)

• Unknown features

– Jewelry brand

– SPARKLE

– Preference of customer

– …

• Bargaining



Mechanistic Data Science Deep Learning - 67

A First Look at Convolution Neural Network (1)

• Image a simple world

• Train computer the alphabet
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A First Look at Convolution Neural Network (2)

• How the data store in the computer

• How can we define a right operation? (addition?)
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A First Look at Convolution Neural Network (3)

• Convolution is a formal mathematical operation, just as multiplication 

and addition/integration.

• Convolution is a way to pass a filter over the image to find key features.
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Kernels to be tested

• We have a chance to check all the possible filters only if we assume the 

values in a filter are either 1 or +1.

– select good filters by checking all the possibilities

• If we consider a filter with real numbers, a more efficient approach is 

required.

• That is why CNN get into the picture!
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Mini CNN is used to figure out a good filter
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Python code for Mini-CNN
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Using gradient descent to update filter
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Building Blocks in CNN

• Image classification problem: logistic regression and support vector machine

– Pixel values as features: 36 x 36 image → 1296 features

– Lost a lot of spatial interactions between pixels, very time-consuming

– highly depends on the knowledge and experience of the domain experts

• CNN (1990’s)

– use information from adjacent pixels to down-sample the image into features by 

convolution and pooling

– use prediction layers (e.g., a FFNN) to predict the target values

– Building blocks of input, convolution, padding, stride, pooling, FFNN, and output

• Input layer such as a signals (1D) or an image (2D)

• Padded input can be obtained by adding zeros around the margin of the signal or image

• Multiple convolution operations will be done using several moving kernels to extract features 

from the padded input

• Dimensions of the convolved features can be reduced using pooling layers

• Those reduced features then are used as input for a FFNN to calculate the output of the CNN
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An illustrative structure of CNN including 

several building blocks and concepts
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Terminology used in CNN

Convolution A mathematical operation that does the integral of the product of functions(signals), 

with one of the signals slides. It can extract features from the input signals

Kernel (filter) A function used to extract important features

Padding A technique to simply add zeros around the margin of the signal or image to increase 

its dimension. Padding allows to emphasize the border values and in order lose less 

information

Stride The steps of sliding the kernel during convolution. The kernel move by different stride 

values is designed to extract different kinds of features. The amount of stride chosen 

affects the size of the feature extracted

Pooling An operation that takes maximum or average of the region from the input overlapped 

by a sliding kernel. The pooling layer helps reduce the spatial size of the convolved 

features by providing an abstracted representation of them

Fully 

connected 

layers

A FFNN in which layer nodes are connected to every node in the next layer. The fully 

connected layers help learn non-linear combinations of the features outputted by the 

convolutional layers
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Convolution
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Stride
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Add padding to make dimensions consistent
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An example showing max and average pooling layers

• reduce the spatial size of the convolved features

• reduce overfitting by providing low-dimensional representations

– Max pooling helps reduce noise by ignoring noisy small values in the input data
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Illustration of one-dimensional CNN

A dropout layer is normally used between two 

consecutive fully connective layers to reduce overfitting
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General Notations
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2D definition of convolution

• 2D digitalized convolution are widely used in the convolutional neural 

network.
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Application: COVID-19 detection from 

chest x-ray images of patients

– Coronavirus 2019 (COVID-19) became a pandemic caused a disastrous impact on the world.

– It is very important to accurately detect the positive cases at early stage to treat patients and 

prevent the further spread of the pandemic.

– Chest X-ray imaging has critical roles in early diagnosis and treatment of COVID19.

– Automated toolkits for COVID-19 diagnosis based on radiology imaging techniques such as 

X-ray imaging can overcome the issue of a lack of physician in remote villages and other 

underdeveloped regions.

https://news.uchicago.edu/story/researchers-develop-ai-help-diagnose-understand-covid-19-lung-images
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Classification example

• It is a classification problem where the outputs are discrete (e.g., yes or 

no) instead of continuous values.

• Whether a patient has been infected with COVID-19 based on their 

chest X-ray image?
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Chest x ray images of a 50-year-old COVID-19 patient 

over a week

• AI-assisted automatic diagnosis can automatically extract important 

features (such as alveolar consolidations) from images to accurate 

diagnosis for clinicians.

https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1

Acute Respiratory Distress Syndrome

https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1
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Data Collection

• X-ray database

– COVID-19 X-ray image database was generated and collected by Cohen JP [22]

• https://github.com/ieee8023/COVID-chestxray-dataset

– Another chest X-ray image database was provided by Wang et al. [23]

• https://nihcc.app.box.com/v/ChestXray-NIHCC
• https://paperswithcode.com/dataset/chestx-ray8

• Images

– 125 X-ray images of COVID-19 patients (43 female, 82 male, average age of 

approximately 55 years),

– 500 X-ray images pneumonia patients

– 500 X-ray images of patients with no-findings

• Training (900), Validation (225: 28 COVID-19 cases, 88 pneumonia 

cases, and 109 no-finding cases)

• five-fold cross-validation is used to evaluate the model performance

https://github.com/ieee8023/COVID-chestxray-dataset
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://paperswithcode.com/dataset/chestx-ray8
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Automated detection of COVID-19 cases using 

deep neural networks with X ray images
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Architecture of the CNN model (1)

• Darknet-19 model [25]

• Leaky rectified linear unit (leaky ReLU)

• 17 convolutional layers and 5 max pooling layers with different filter 

numbers, sizes, and stride values

– Padding: 256 x 256 resolution → 258 x 258

– Eight 3 x 3 filters with stride 1 → eight 256 x 256 feature maps

• allows different features from the input image to be extracted

• The values in the filters will be obtained during the data training process

– eight 2 x 2 max pooling operators with stride 2 --> size of feature maps can be 

reduced to 128 x 128

• 1,164,434 parameters, Adam optimizer, learning rate: 3x10-3
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Architecture of the CNN model (2)
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Error matrix allows visualization of the performance of 

the deep neural networks

• In total 225 images in test set are used to 

present the performance of the model

• Classification accuracy for COVID-19 is 

24/28= 85.7%

• Classification accuracy for Normal is 

102/109= 94.6%

• Classification accuracy for Pneumonia is 

75/88= 85.2%

• The patients can seek a second opinion by 

the deep learning system, which significantly 

reduces waiting time and alleviates clinicians’ 

workload.
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