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Musical Instrument Sound Conversion

• use mechanistic data science to convert piano sounds to guitar sounds

• Dataset: eight pairs of notes (notes A4, A5, B5, C5, C6, D5, E5, G5) 
performed by a piano and by a guitar (apronus.com)

Same pitch (fundamental frequency)
Sampling rate: 44,100 Hz
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Nyquist-Shannon Theorem

– If a system uniformly samples an analog signal at a rate that exceeds the signal’s 
highest frequency by at least a factor of two, the original analog signal can be 
perfectly recovered from the discrete values produced by sampling.

– The human hearing range is 20~20,000 Hz. Therefore, a sufficient sampling rate 
for sound file should be 40,000 Hz
• A common sampling time interval in music is 44,100Hz. It is higher than 40,000Hz
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Three Solutions

(3) PCA + NN  Ch.7
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Pure CNN Analysis

• Input and output are high-dimensional time-amplitude curves

• drawback of this strategy is the high number of trainable parameters 
involved in the CNN and FFNN structures

• For some applications where the amount of data is small or the quality 
of data is low, the performance of the CNN is limited

• high-dimensional sound curve can be represented by a set of 
mechanistic features with a physical meaning

• hyperparameters involved in the model can be significantly decreased 
from thousands to dozens in this manner
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Mechanistic Data Science Analysis

• Instead of extracting deep features by CNN, mechanistic data science 
extracts mechanistic features based on the underlying scientific 
principles

• Each signal (high-dimensional sound curve) can be simplified to a set of 
sine functions, where the mechanistic features are the frequencies, 
damping coefficients, amplitudes, and phase angles

• Short Time Fourier Transform (STFT) and a regression to fit a 
mechanistic model, such as a spring-mass-damper model

• hyperparameters involved in the model can be significantly decreased 
from thousands to dozens in this manner, which reduces the amount of 
training data required
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CNN vs. MDS

– The loss function of the CNN is volatile and does not converged to zero

– Training a CNN model requires the number of data points to be larger than the 
dimension of input signal or image
• In this case, the dimension of input is a million
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FFNN structure with reduced mechanistic features

– Dataset: 4(features) x 8(sets) = 32 for one note

– activation function: tanh
– Loss function: MSE
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Results of reconstructing a single guitar key A4 
from a piano key as input
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Use PyTorch to fit spring-mass data (1)
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Use PyTorch to fit spring-mass data (2)
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Use PyTorch to fit spring-mass data (2)
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Use PyTorch to fit spring-mass data (3)
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Use PyTorch to fit spring-mass data (4)
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Use PyTorch to fit spring-mass data (3)
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Limitations of NN

• Good at interpolation, not extrapolation

• May be overfit if there are not enough data
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Automatic Differentiation

• A trained NN model is differentiable

• PyTorch for automatic differentiation
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Customized loss function by adding governing equation
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Loss Function for PINN: Code
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PINN vs. NN
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• Derivative/Gradient accuracy is critical in many engineering applications

• Data-driven airfoil design

• Pressure-structure linkage in additive manufacturing
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Small Dataset: PINN vs. NN (1)
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Small Dataset: PINN vs. NN (2)
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Summary

• Adding prior governing equation into NN loss function
– Can improve prediction accuracy, especially for derivatives
– Can avoid (to some extent) overfit

– Works well for small data sets
– Might improve extrapolation capability

• Physics informed neural networks (PINN)
– M. Raissi, P. Perdikaris and G.E. Karniadakis . "Physics informed deep learning (Part I ): Data driven solutions of nonlinear partial 

differential equations." arXiv preprint arXiv:1711.10561 (2017)

• Physics guided neural networks (PGNN)
– A. Karpatne, et al. "Physics guided neural networks (PGNN): An application in lake temperature modeling." arXiv preprint 

arXiv:1710.11431 2 (2017)

• Physics Aware Neural Networks (PANN)
– A.S. Zamzam and N.D. Sidiropoulos, IEEE Transactions on Power Systems 35.6 (2020): 4347 4356.

• Mechanistic neural networks (MNN): Embed prior physical knowledge 
into machine learning
– S.L Brunton, "Applying Machine Learning to Study Fluid Mechanics.“ arXiv preprint arXiv:2110.02083 (2021)


