Training Neural Network

 One time set up

— activation functions, preprocessing, weight initialization, regularization, gradient
checking

« Training dynamics
— Dbabysitting the learning process, parameter updates, hyperparameter optimization

« Evaluation
— model ensembles, test-time augmentation, transfer learning

Mechanistic Data Science Deep Learning - 1

Activation Functions

Sigmoid 1 Leaky RelLU)
o max(0.1x, x)
U(:l?) 14e=
= o - ——— 0
tanh V Maxout
tanh(a:) 4 T max(wi z + by, wd z + by)
RelLU ELU

T x>0
max (0, r) {a(ea’—l) -0)

=2

Mechanistic Data Science Deep Learning - 2

Activation Functions: In Practice

 Use RelLU
— Be careful with your learning rates

« Try out Leaky ReLU / Maxout / ELU / SELU

— To squeeze out some marginal gains
« Don’t use sigmoid or tanh

Mechanistic Data Science Deep Learning - 3

Data Processing

original data zero-centered data normalized data

0 0 10
-

5 s > s

0 —_— 0 - 0

-5 -5 -5
v

-10 -10

1 -10 = 0 5 19 -10 = ° 5 0

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix, each example in a row)

Mechanistic Data Science Deep Learning - 4

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

-10 - ~10
-10 -5 3 5 9 -10 - 0 5

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

Mechanistic Data Science Deep Learning - 5

Before normalization: classification loss After normalization: less sensitive to small
very sensitive to changes in weight matrix; changes in weights; easier to optimize
hard to optimize

®
e
® o \A
L

Mechanistic Data Science Deep Learning - 6

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image
(mean image = [32,32,3] array)

- Subtract per-channel mean
(mean along each channel = 3 numbers)

- Subtract per-channel mean and
Not common

Divide by per-channel std o do PCA or
(mean along each channel = 3 numbers) whitening

Mechanistic Data Science

eep Learnin

Batch Normalization

Batch Normalization [loffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

(k) _ Rl

v/ Var[z(%)] this is a vanilla
differentiable function...

Mechanistic Data Science Deep Learning - 8

Batch Normalization: Test-Time

Input: : N x D

Learnable scale and
shift parameters:

¥, 0
Learning v=o0,

3= i will recover the
identity function!

Mechanistic Data Science

Estimates depend on minibatch;
can’'t do this at test-time!

Per-channel mean,
shape is D

Z(ﬂfz’j . Uj)Q Per-channel var,

=1

shape is D

Normalized x,
Shapeis Nx D

Output,
ShapeisNx D

Deep Learning - 9

Mechanistic Data Science

Batch Normalization

|

FC

!

BN

:

tanh

1

FC

'

BN

:

tanh

. .l.

[loffe and Szegedy, 2015]

Makes deep networks much easier to train!
Improves gradient flow

Allows higher learning rates, faster convergence
Networks become more robust to initialization

Acts as regularization during training

Zero overhead at test-time: can be fused with conv!
Behaves differently during training and testing: this
is a very common source of bugs!

Deep Learning - 10

Batch Normalization for ConvNets

Batch Normalization for

Batch Normalization for convolutional networks

fully-connected networks (Spatial Batchnorm, BatchNorm2D)
X: N x D X: NXCXHXW
Normalize ¢ Normalize ¢ ¢ ¢
MH,0: 1 x D H,0: 1xCx1lxl
Y,B: 1 x D Y,B: 1xCx1lx1l

y = Y(x-H)/o+p y = Y(x-H)/0o+B

Mechanistic Data Science Deep Learn

ing - 11

TR
TR TR
Z,

Group Norm

M 'H
T T T VR

Instance Norm

L ERIR RN
O T T T
SECINCNGAA Z
O O V2 .

Layer Norm

Batch Norm

Wu and He, “Group Normalization”, ECCV 2018

Deep Learning - 12

Mechanistic Data Science

Mechanistic Data Science

Weight Initialization

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01 * np.random.randn(Din, Dout)

Works ~okay for small networks, but problems with
deeper networks.

eep Learning - 13

Weight Initialization: Activation Statistics

dims = [4096] * 7 Forward pass for a 6-layer All activations tend to zero

hs = [] net with hidden size 4096 for deeper network layers
X = np.random.randn(16, dims[0])

for Din, Dout in zip(dims[:-1], dims[1:]): @Q: What do the gradients

W = 0.01 * np.random.randn(Din, Dout) i
& = v tanli (. GOt N} dL/dW look like”
HE - SPPOna(E) A: All zero, no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=0.00 mean=0.00 mean=-0.00 mean=-0.00 mean=0.00

std=0.49 std=0.29 std=0.18 std=0.11 std=0.07 std=0.05

Mechanistic Data Science Deep Learning - 14

dims = [4096] * 7 Increase std of initial All activations saturate
hs = [] weights from 0.01 to 0.05

X = np.random.randn(1l6, dims[0]) Q: What do the gradients
for Din, Dout in zip(dims[:-1], dims[1l:]): |ook like?

|w = 0.05 =« np.random.randn(Din, Dout) :
X = np.tanh(x.dot(W)) A: Local gradients all zero,

hs.append(x) no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.00 mean=-0.00 mean=0.00 mean=-0.00 mean=0.00 mean=-0.00

std=0.87 std=0.85 std=0.85 std=0.85 std=0.85 std=0.85

Mechanistic Data Science Deep Learning - 15

Weight Initialization: Xavier

dims = [4096] * 7 “Xavier” initialization: “Just right”: Activations are
hs = [] std = 1/sqrt(Din) : |
% B ESndoR AR LE, diea 1) nicely scaled for all layers!
Ger o] i)

W = np.random.randn(Din, Dout) / nE.sgrt(Din)l FQr conv Iayers, Dinis
x = np.tanh(x.dot(W)) filter_size? * input_channels

hs.append(x)

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=-0.00 mean=-0.00 mean=0.00 mean=0.00 mean=0.00 mean=-0.00

std=0.63 std=0.49 std=0.41 std=0.36 std=0.32 std=0.30

-3 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0 1
Glorot and Bengio, “Understanding the difficulty of training deep feedforward neural networks”, AISTAT 2010

Mechanistic Data Science Deep Learning - 16

Weight Initialization: ReLU

ﬁimz ?] (40961 * 7 Change from tanh to ReLU Xavier assumes zero
X = np.random.randn(16, dims[0]) centered activation function

for Din, Dout in zip(dims[:-1], dims[1l:]):

W = np.random.randn(Din, Dout) / np.sqrt(Din) ; :
|_L_‘_'_|x np.maximum(0, x.dot (W)) Activations collapse to zero

hs.append (x) again, no learning =(
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.39 mean=0.28 mean=0.20 mean=0.14 mean=0.10 mean=0.07

std=0.58 std=0.41 std=0.30 std=0.21 std=0.15 std=0.10

Mechanistic Data Science Deep Learning - 17

Weight Initialization: Kaiming / MSRA

ii‘mi 71[4096] " ' RelLU correction: std = sqrt(2 / Din) “Just right”: Activations are

X = np.random_randn(]_ﬁ, dims[()]) nlcely Scaled for a” IayerS!
fo 1 i] i : =] A RE
W = np.random.randn(Din, Dout) * np.sqrt(Z/Din)I 2
X = np.maximum(0, x.dot(W)) std = 5 :
hs.append (x) (1 + a?) X fan_in
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
mean=0.57 mean=0.57 mean=0.56 mean=0.55 mean=0.55 mean=0.55
std=0.83 std=0.83 std=0.83 std=0.81 std=0.81 std=0.81

o | 0 1 -1 0 1 -] 0 1 -1 0 1 -] 0 1 -1 0 1

He et al, “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, ICCV 2015

Mechanistic Data Science Deep Learning - 18

Proper Initialization is an active area of research

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by Saxe et al, 2013
Random walk initialization for training very deep feedforward networks by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification by He et
al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbihl et al., 2015
All you need is a good init, Mishkin and Matas, 2015
Fixup Initialization: Residual Learning Without Normalization, Zhang et al, 2019

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks, Frankle and Carbin, 2019

Mechanistic Data Science Deep Learning - 19

Learning Rate

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

A

loss

Q: Which one of these learning
rates is best to use?

low learning rate

PPPRP A: All of them! Start with large
‘— learning rate and decay over time

good learning rate

Mechanistic Data Science Deep Learning - 20

Learning Rate Decay

Training Loss

Step: Reduce learning rate at a few fixed

Reduce learning rate points. E.g. for ResNets, multiply LR by 0.1
l after epochs 30, 60, and 90.

0 20 40 60 80 100

Mechanistic Data Science Deep Learning - 21

Learning Rate Decay

Learning rate

10 - Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1

o after epochs 30, 60, and 90.

0.6 1 1
Cosine: q; = 50 (1 4 cos(tm/T))

04 1

0.2 1

0.0 1

0 20 40 60 80 100
Epoch

(X() : Initial learning rate
Loshchilov and Hutter, “SGDR: Stochastic Gradient Descent with Warm Restarts”, ICLR 2017

Radford et al, “Improving Language Understanding by Generative Pre-Training”, 2018 Oét : Leamlng rate at epOCh t
Feichtenhofer et al, “SlowFast Networks for Video Recognition”, arXiv 2018 .
Child at al, “Generating Long Sequences with Sparse Transformers”, arXiv 2019 2 - TOtaI number Of epOChS

Mechanistic Data Science Deep Learning - 22

Learning Rate Decay

Learning rate

10 1

0.8 1

0.6 1

0.4 -

0.2 1

0.0 1

0 20 a0 60 80 100

Devlin et al, “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018

Mechanistic Data Science

Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
after epochs 30, 60, and 90.

1
Cosine: q; = 50 (1 4 cos(tw/T))

Linear: «o; = ag(1l —t/T)

() : Initial learning rate
(x4 - Learning rate at epoch t
T : Total number of epochs

Deep Learning - 23

Learning Rate Decay

Learning rate

Lo Step: Reduce learning rate at a few fixed
points. E.g. for ResNets, multiply LR by 0.1
08 after epochs 30, 60, and 90.

0.6 1

1
Cosine: o, = 50 (1 4 cos(tn/T))

Linear: «; = ag(1 —t/T)

0.2 1
- - ps - - — Inverse sqrt: vy = / \/Z
Epoch N _
X() : Initial learning rate
(v - Learning rate at epoch t
Vaswani et al, “Attention is all you need”, NIPS 2017 T : TOtal number Of epOChS

Mechanistic Data Science Deep Learning - 24

Learning Rate Decay: Linear Warmup

Learning rate

06 High initial learning rates can make loss

05 | explode; linearly increasing learning rate
from O over the first ~5,000 iterations can

o prevent this.

0.3 1

02 Empirical rule of thumb: If you increase the

. batch size by N, also scale the initial
learning rate by N

0.0 1

0 20 20 60 80 100
Epoch

Goyal et al, “Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour”, arXiv 2017

Mechanistic Data Science Deep Learning - 25

First-Order Optimization

(1) Use gradient form linear approximation
(2) Step to minimize the approximation

S

Loss

w1

Mechanistic Data Science Deep Learning - 26

Second-Order Optimization

(1) Use gradient and Hessian to form quadratic approximation
(2) Step to the minima of the approximation

A
Loss

w1

Mechanistic Data Science Deep Learning - 27

Optimizer: In Practice

Adam is a good default choice in many cases; it often works ok even
with constant learning rate

« SGD+Momentum can outperform Adam but may require more tuning of
LR and schedule

 |f you can afford to do full batch updates, then try out L-BFGS (and
don’t forget to disable all sources of noise)

— Limited memory Quasi-Newton method

Mechanistic Data Science Deep Learning - 28

Mechanistic Data Science

Beyond Training Error

Train Loss

175

150

125

100

75

50

25

00

0 2500 B000 7500 10000 12500 15000 17500 20000

Better optimization algorithms
help reduce training loss

091

08 1

07

06 1

051

Accuracy

—e— train
—e— val

2500 5000 7500 10000 RS00 15000 17500 20000

But we really care about error on
new data - how to reduce the gap?

Deep Learning - 29

Early Stopping: Always do this

Train
Val

Loss Accuracy

Stop training here

lteration lteration

Stop training the model when accuracy on the validation set decreases

Or train for a long time, but always keep track of the model snapshot
that worked best on val

Mechanistic Data Science Deep Learning - 30

Model Ensembles

1. Train multiple independent models
2. At test time average their results

(Take average of predicted probability distributions, then choose argmax)

Enjoy 2% extra performance

Mechanistic Data Science Deep Learning - 31

How to improve single-model performance?

Train Loss Accuracy
175 as —e— train
15.0 —=— val
25 08 1
100
07 -
75
2 06 1
25
00 05 1
0 2500 S000 7500 10000 12500 1S000 17500 20000 0 2500 S000 7500 10000 12500 15000 17500 20000

Regularization

Mechanistic Data Science Deep Learning - 32

Regularization: Add Term to Loss

L=+l Y, max(0, f(zi W); — f(zi W)y, + 1) +HAR(W)

In common use:
L2 regularization R(W) =32 25, Wy, (Weight decay)
R

L1 regularization W) = 2ue 2.0 |Wail
Elastic net (L1 + L2) R(W) =3, >, 8W¢, + [Wi,]

Mechanistic Data Science

eep Learning - 33

Regqularization: Dropout

In each forward pass, randomly set some neurons to zero
Probability of dropping is a hyperparameter; 0.5 is common

Srivastava et al, “Dropout: A simple way to prevent neural networks from overfitting”, JMLR 2014

Mechanistic Data Science Deep Learning - 34

How can this possibly be a good idea?

Mechanistic Data Science

Forces the network to have a redundant representation;
Prevents co-adaptation of features

1111

has an ear
has a tall AX——<
is furry X—— cat

" score
has claws +/
mischievous

look

Deep Learning - 35

Dropout: Test time

Output Input
(label) (image)
’ Random
Dropout makes our output random! [yl= fw (zllz) .

Want to “average out” the randomness at test-time
y=1(a) = E:[f(@,2)] = [p()f(@.)z

But this integral seems hard ...

Mechanistic Data Science Deep Learning - 36

Dropout: Test time

Want to approximate

the integral y = f(z) = E:[f(2,2)] = f p(2)f(z, z)dz

Consider a single neuron.

At test time we have: L [ﬂ] = wW1T + Wy

During training we have: g4 =i(u-'1:r + way) + %(

1 1
+ 702 +0y) + 7(0z + way)

wiz + Oy)

At test time, multiply

1
by dropout probability =§(’w1:c + way)

Mechanistic Data Science Deep Learning - 37

“"" Vanilla Dropout: Not recommended implementation (see notes below) """

Dropout Summary

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):
"un X contains the data """

forward pass for example 3-layer neural network

H1 = np.maximum(©, np.dot(Wl, X) + bl)

Ul = np.random.rand(*Hl.shape) < p # 7irst dropout mask
H1l *= Ul # drop! 2 . a
7= b~ FaXTRURTY, P dotWZ, RIT +52] drop In train time
U2 = np.random.rand(*H2.shape) < p # second dropout mask
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

def predict(X):
ensembled forward pass
H1 = np.maximum(®, np.dot(Wl, X) + bl)]* p # NOTE: scale the activations Sca|e at test t|me
H2 = np.maximum(©, np.dot(W2, Hl) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

Mechanistic Data Science Deep Learning - 38

More common: “Inverted dropout”

p = 0.5 # probability of keeping a unit active. higher = less dropout

def train_step(X):

forward pass for example 3-layer neural network

H1 = np.maximum(®, np.dot(Wl, X) + bl)

Ul = (np.random.rand(*Hl.shape) < p) |/ p #|first dropout mask. Notice /p!
Hl1 *= Ul # drop!
H2 = np.maximum(©, np.dot(Wi, H1) + §2)
U2 = (np.random.rand(*H2.shape) < p) |/ p #|second dropout mask. Notice /p!
H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

/ test time is unchanged!
def predict(X):
ensembled forward pass

H1l = np.maximum(@, np.dot(Wl, X) + bl) # no scaling necessary
H2 = np.maximum(©, np.dot(W2, H1) + b2)
out = np.dot(W3, H2) + b3

Mechanistic Data Science Deep Learning - 39

Regularization: Common Pattern

Training: Add some kind
of randomness

Y = fw(.CL’,Z)

Testing: Average out randomness
(sometimes approximate)

y = f(z) = E.[f(z,2)] =] p(2)f (@, 2)dz

Mechanistic Data Science

Example: Batch
Normalization

Training:
Normalize using
stats from random
minibatches

Testing: Use fixed
stats to normalize

earning - 40

Regularization: Data Augmentation

Load image
and label

Compute
loss

Transform image

Mechanistic Data Science Deep Learning - 41

Random crops and scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

1. Resize image at 5 scales: {224, 256, 384, 480, 640}

2. Foreach size, use 10 224 x 224 crops: 4 corners + center, + flips

Mechanistic Data Science Deep Learning - 42

Color Jitter 1. Apply PCAto all [R, G, B]

Simple: Randomize pixels in training set
contrast and brightness 2. Sample a “color offset”
& along principal component
directions

3. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al. 2012], ResNet, etc)

Mechanistic Data Science Deep Learning - 43

« Examples of data augmentations:
— Translation
— Rotation

— Stretching Automatic Data Augmentation
— Shearing

— Lens distortions Original Sub-policy | Sub-policy2 Sub-policy 3 Sub-policy 4 Sub-policy 5

. =TT FPAaAr
11 LIE
1] Fsl

ShearX, 0.9, 7 ShearY, 0.7, 6 ShearX, 0.9, 4 Invert, 0.9, 3 ShearY, 0.8, 5
Invert, 0.2, 3 Solarize, 04,8 AutoContrast, 0.8,3 Equalize, 0.6, 3 AutoContrast, 0.7, 3

Batch 2

Batch 3

Cubuk et al., “AutoAugment: Learning Augmentation Strategies from Data”, CVPR 2019

Mechanistic Data Science Deep Learning - 44

Regularization: DropConnect

Training: Drop connections between neurons (set weights to 0)
Testing: Use all the connections

Examples:
Dropout

Batch Normalization
Data Augmentation
DropConnect

Wan et al, “Regularization of Neural Networks using DropConnect”, ICML 2013

Mechanistic Data Science Deep Learning - 45

Regularization: Fractional Pooling

Training: Use randomized pooling regions
Testing: Average predictions from several regions

Mechanistic Data Science Deep Learning - 46

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling

Graham, “Fractional Max Pooling”, arXiv 2014

Testing: Use all the layer

Training: Skip some layers in th%

Huang et al, “Deep Networks with Stochastic Depth”, ECCV 2016

Mechanistic Data Science

Regularization: Stochastic Depth

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth

-

*

<

—
—

<

+

AN AP Y iniph &

—

]

*

:

—3

Deep Learning - 47

Regularization: Cutout

Training: Set random image regions to zero
Testing: Use full image

Examples:

Dropout

Batch Normalization
Data Augmentation
DropConnect
Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop

Works very well for small datasets like CIFAR,
DeVries and Taylor, “Improved Regularization of |€SS common for Iarge datasets ||ke |mageNet

Convolutional Neural Networks with Cutout”, arXiv 2017

Mechanistic Data Science Deep Learning - 48

Regularization: Mixup

ol]

Regularization: Mixup .

Training: Train on random blends of images

Testing: Use original images £
Examples:

Dropout Target label:
Batch Normalization CNN | cat: 0.4
Data Augmentation dog: 0.6
DropConnect

- -

Randomly blend the pixels
. of pairs of training images,
* . e.g.40% cat, 60% dog

Fractional Max Pooling
Stochastic Depth
Cutout / Random Crop
Mixup

Zhang et al, “mixup: Beyond Empirical Risk Minimization”, ICLR 2018

Mechanistic Data Science Deep Learning - 49

Mechanistic Data Science

Regularization:

Training: Add random noise

In Practice

Testing: Marginalize over the noise

Examples:
Dropout

Batch Normalization
Data Augmentation

Cutout / Random Crop
Mixup

Consider dropout for large
fully-connected layers

Batch normalization and data
augmentation almost always a
good idea

Try cutout and mixup especially
for small classification datasets

Deep Learning - 50

Mechanistic Data Science

Choosing Hyperparameters

Step 1: Check initial loss

Turn off weight decay, sanity check loss at initialization
e.g. log(C) for softmax with C classes

eep Learning - 51

Mechanistic Data Science

Step 1: Check initial loss
Step 2: Overfit a small sample

Try to train to 100% training accuracy on a small sample of
training data (~5-10 minibatches); fiddle with architecture,
learning rate, weight initialization

Loss not going down? LR too low, bad initialization
Loss explodes to Inf or NaN? LR too high, bad initialization

earning - 52

Mechanistic Data Science

Step 1: Check initial loss
Step 2: Overfit a small sample
Step 3. Find LR that makes loss go down

Use the architecture from the previous step, use all training
data, turn on small weight decay, find a learning rate that
makes the loss drop significantly within ~100 iterations

Good learning rates to try: 1e-1, 1e-2, 1e-3, 1e-4

eep Learn

ing - 53

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs

Choose a few values of learning rate and weight decay around
what worked from Step 3, train a few models for ~1-5 epochs.

Good weight decay to try: 1e-4, 1e-5, 0

Mechanistic Data Science

eep Learning - 54

Mechanistic Data Science

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Pick best models from Step 4, train them for longer (~10-20
epochs) without learning rate decay

eep Learning - 55

Mechanistic Data Science

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves

eep Learning - 56

A . .
need to train longer
Train P
Val
underfitting: train longer, use a
bigger model oL
Train L oony
— € o]
=
0.02 1
Val 0.00
-
time

Mechanistic Data Science

A

Huge train / val gap means
overfitting! Increase regularization,
get more data
Train _—
i
Val o
time
Training Loss Train / Val Accuracy
% -
i
% “
.bc”wbﬁ*ti"v“"‘
M 4
92 1
m 4

100000 200000 300000 400000 500000 600000
lteration

0 100000 200000 300000400000 500000600000 = §
lteration

Losses may be noisy, use a

scatter plot and also plot moving

average to see trends better

Deep Learning - 57

Mechanistic Data Science

Step 1: Check initial loss

Step 2: Overfit a small sample

Step 3: Find LR that makes loss go down
Step 4: Coarse grid, train for ~1-5 epochs
Step 5: Refine grid, train longer

Step 6: Look at loss and accuracy curves
Step 7: GOTO step 5

eep Learning - 58

Check out

You can plot all your loss curves for different hyperparameters on a single plot

1)

— task0
—— taskl
— task2
—— task3
~—— task4
—— task5
—— task6
—— task7
— task8
— task9
~—— task10

— taskll
— taskl2
— taskl3
- taskl4
— taskl5

~—— taskl6
— taskl7
— taskl8
— task19
— task20
— ftask21
~— task22

—— task23

* ' Tl — task24
g \ | =
| : “' ‘ V'VWM" / WY ‘“" Ry VT A'A
A ; W u n ”‘ %}”N ml H"m — task28

— task29

I\ ull
bt ““‘" 4‘“ 9 m =
m NN”MM&M AN sk3§
— task34
— task3S
— task36

Mechanistic Data Science Deep Learning - 59

https://wandb.ai/

Random Search vs. Grid Search

Mechanistic Data Science

Grid Lavout

Unimportant Parameter

Important Parameter

Random Search for

Hyper-Parameter Optimization

Bergstra and Bengio, 2012

Random L.avout

...

Unimportant Parameter

Important Parameter

Deep Learning - 60

Transfer Learning

* You need a lot of a data if you want to trainfluse CNNs?

 Have some dataset of interest but it has < ~1M images?

— Find a very large dataset that has similar data, train a big ConvNet there
— Transfer learn to your dataset

* Deep learning frameworks provide a “Model Zoo” of pretrained models
so you don’t need to train your own
— TensorFlow:
— PyTorch:

Mechanistic Data Science Deep Learning - 61

https://github.com/tensorflow/models
https://github.com/pytorch/vision

Transfer Learning with CNNs

1. Train on Imagenet

FC-4096
FC-4096

MaxPool
Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool

MaxPool

MaxPool

Mechanistic Data Science

m

Cc
FC-4096
FC-4096

o

MaxPool

MaxPool

MaxPool

MaxPool

MaxPool

]

2. Small Dataset (C classes)

Reinitialize
this and train

> Freeze these

—

70

65

60

55

5

[=]

45

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014
Razavian et al, “CNN Features Off-the-Shelf: An
Astounding Baseline for Recognition”, CVPR Workshops
2014

Finetuned from AlexNet

64.96
58.75
56.78
50.98
DPD (Zhang et POOF (Berg & AlexNet FC6 + AlexNet FC6 +
al., 2013) Belhumer, logistic DPD
2013) regression

Donahue et al, “DeCAF: A Deep Convolutional Activation Feature for
Generic Visual Recognition”, ICML 2014

Deep Learning - 62

Donahue et al, “DeCAF: A Deep Convolutional Activation
Feature for Generic Visual Recognition”, ICML 2014

Transfer Learning with CNNs Raiamag B o Aeeegton VPR rishops

2014
1. Train on Imagenet 2. Small Dataset (C classes) 3. Bigger dataset

T

c-C
FC-4096 \
FC-4096

FC-4096
FC-4096

Train these

Reinitialize

this and train

[_Fec |
[_Fe-d096 |
|_Fc-4096 |

L_rFec |

~ FC-4096

\

With bigger
dataset, train
more lavers

> Freeze these

> Freeze these

|
Lower learning rate
when finetuning;
1/10 of original LR
is good starting

Y, J point

Mechanistic Data Science Deep Learning - 63

Summary

« Activation Functions (use RelLU)

« Data Preprocessing (images: subtract mean)
« Weight Initialization (use Xavier/Kaiming init)
« Batch Normalization (use this!)

« Transfer learning (use this if you can!)

* Improve your training error:
— Optimizers
— Learning rate schedules
* |mprove your test error:
— Regqularization
— Choosing Hyperparameters

Mechanistic Data Science Deep Learning - 64

	슬라이드 1: Training Neural Network
	슬라이드 2: Activation Functions
	슬라이드 3: Activation Functions: In Practice
	슬라이드 4: Data Processing
	슬라이드 5
	슬라이드 6
	슬라이드 7
	슬라이드 8: Batch Normalization
	슬라이드 9
	슬라이드 10
	슬라이드 11
	슬라이드 12
	슬라이드 13: Weight Initialization
	슬라이드 14: Weight Initialization: Activation Statistics
	슬라이드 15
	슬라이드 16: Weight Initialization: Xavier
	슬라이드 17: Weight Initialization: ReLU
	슬라이드 18: Weight Initialization: Kaiming / MSRA
	슬라이드 19: Proper Initialization is an active area of research
	슬라이드 20: Learning Rate
	슬라이드 21: Learning Rate Decay
	슬라이드 22: Learning Rate Decay
	슬라이드 23: Learning Rate Decay
	슬라이드 24: Learning Rate Decay
	슬라이드 25: Learning Rate Decay: Linear Warmup
	슬라이드 26: First-Order Optimization
	슬라이드 27: Second-Order Optimization
	슬라이드 28: Optimizer: In Practice
	슬라이드 29
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33: Regularization: Add Term to Loss
	슬라이드 34: Regularization: Dropout
	슬라이드 35
	슬라이드 36
	슬라이드 37
	슬라이드 38
	슬라이드 39
	슬라이드 40: Regularization: Common Pattern
	슬라이드 41: Regularization: Data Augmentation
	슬라이드 42
	슬라이드 43
	슬라이드 44
	슬라이드 45: Regularization: DropConnect
	슬라이드 46: Regularization: Fractional Pooling
	슬라이드 47: Regularization: Stochastic Depth
	슬라이드 48: Regularization: Cutout
	슬라이드 49: Regularization: Mixup
	슬라이드 50: Regularization: In Practice
	슬라이드 51: Choosing Hyperparameters
	슬라이드 52
	슬라이드 53
	슬라이드 54
	슬라이드 55
	슬라이드 56
	슬라이드 57
	슬라이드 58
	슬라이드 59: Check out Weights & Biases
	슬라이드 60
	슬라이드 61: Transfer Learning
	슬라이드 62
	슬라이드 63
	슬라이드 64: Summary

