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Musical Instrument Sound Conversion

• Demonstration: Learn from a system (Piano sound) and transfer the 

knowledge for a new system (Guitar sound)
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Data Collection and Generation (1)

• Start with training the first pair of A4 piano and A4 guitar sound files

• Sample rate: 44.1 𝑘𝐻𝑧
• Duration: 2.8 second for the piano and 1.6 seconds for the guitar

• Then, repeat for the other 7 pairs of keys: A5, B5, C5, C6, D5, E5, G5 

piano and guitar sound files with duration ranging from 1.5 to 3.0 

seconds. These 8 pairs of keys constitute the training sets. 

• To reduce the data dimensions, the extracted four features using Short-

time Fourier transform (STFT) and least square optimization for each 

data set is used for regression between the piano keys and the guitar 

keys (8x4x8 input, 8x4x8 output).
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Data Collection and Generation (2)

[1] https://www.apronus.com/

Piano [1] Guitar [1]

A4 Dimension: 120,000 (44.1 𝑘𝐻𝑧 × 2.8 𝑠) A4 Dimension: 72,000 (44.1 𝑘𝐻𝑧 × 1.6 𝑠)

Piano Sound (A4) Guitar Sound (A4)
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Mechanistic Feature Extraction

• To enhance the reconstruction of the authentic A4 key, Short Time 

Fourier Transform (STFT) is used to reveal the strike, sustain and 

decay.

– Definition: The Short-time Fourier transform (STFT), is a Fourier-related 

transform used to determine the sinusoidal frequency and phase content of local 

sections of a signal as it changes over time.
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https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
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Dimension Reduction: Frequencies and Amplitudes

Authentic A4 piano sound 0 to 0.01 second authentic A4 piano sound 

STFT: “authentic A4 piano” (2D view) 
STFT of “authentic A4” (3D view) 

Zoom-in of the 

first 0.01 

second depicts 

higher 

harmonics

STFT reveals higher frequencies sound signals disappear faster due to higher damping

Fundamental 

frequency
Harmonics
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Dimension Reduction: Damping Coefficients

• By using exponential fitting of time history, the values of each damping constant can be determined.

• The fitting can also be determined during the optimization stage using least square optimization.
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Extracted Features of A4 Piano Sound and Guitar

All eight sets of features from authentic A4 piano and authentic A4 guitar sound 

Type

Frequencie

s

(Hz)

Initial 

amplitudes

Damping 

coefficient

s

Phase 

angles 

(rad)

Fundamental 4.410E+02 1.034E-01 3.309E+00 6.954E-01

Harmonics 

8.820E+02 1.119E-02 1.844E+00 7.202E-01

1.323E+03 6.285E-03 5.052E+00 3.469E-01

1.764E+03 7.715E-04 2.484E+00 5.170E-01

2.205E+03 1.455E-03 8.602E+00 5.567E-01

2.646E+03 5.130E-04 1.198E+01 1.565E-01

3.087E+03 1.899E-04 8.108E+00 5.621E-01

3.528E+03 3.891E-05 3.282E+00 6.948E-01

Optimal coefficients to reconstruct the authentic A4 piano sound  
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Type

Frequencie

s

(Hz)

Initial 

amplitudes

Damping 

coefficient

s

Phase 

angles 

(rad)

Fundamental 4.400E+02 2.346E-02 1.287E+00 4.218E-01

Harmonics 

8.800E+02 1.142E-02 1.865E+00 9.157E-01

1.320E+03 3.630E-03 2.176E+00 7.922E-01

1.760E+03 7.761E-03 1.100E+00 9.595E-01

2.200E+03 7.860E-03 3.346E+00 6.557E-01

2.640E+03 9.594E-03 2.504E+00 3.571E-02

3.080E+03 1.088E-03 1.666E+00 8.491E-01

3.520E+03 1.387E-03 2.610E+00 9.340E-01

Optimal coefficients to reconstruct the authentic A4 guitar sound  

STFT of the authentic A4 piano sound  STFT of the authentic A4 guitar sound  
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Dimension Reduction

possibly due to reverberation or changing in the

pressure from the damping pedal
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Mechanistic Learning through Regression

Piano mechanistic 

feature vector

Predicted guitar mechanistic 

feature vector

Extracted Mechanistic features:

• 8 frequencies 

• 8 amplitudes; 

• 8 damping coefficient;

• 8 Phase angles;

Frequencies

Amplitudes

Damping

Neural network:

• 3 hidden layers with 100 neurons;

Generation of guitar sound is possible with a significantly smaller dimensions

...

... ..
.

Phase angles
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Simple Demonstration of MDS for knowledge transfer in 

sound files
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Damping)
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First seven notes from “Twinkle, twinkle little star”
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Musical Instrument Sound Conversion: Code

• Feature_extractor.m

• Sound_generator.m

• Model_trainer.py

• Feature_generator.py
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

• Dimension reduction of the raw sound signals

• PCA creates a reduced order model based only on the data and does 

not consider mechanistic features → very hard to interpret

• Data Preprocessing (Normalization and Scaling)
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Ap → Bp
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

• Compute the Eigenvalues and Eigenvectors for the Covariance Matrix 

of Bp and Bg

• Build a Reduced-Order Model
11
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

• Inverse Transform Magnitudes for all PCs to a Sound

• Cumulative Energy for Each PC

( ) ( ) ( )

( )

( )

1

2reduced-order model: 

1  contains the magnitudes of all principal components (PCs) for the -th guitar sound

reconstruct guitar sound: 

T

T

g g g

m m m n n m
T

m

i

T T
i i g g

m i

std mean

  

 
 
 

→ = =  
 
 
 



→ = +

b

b
R B P

b

b

s b P A A( )g

( )

( )

2

1

2

1

i

k

k
i m

k

k

e





=

=

=







Mechanistic Data Science System & Design - 18

Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

• Training a Fully-Connected FFNN

( ) ( )

( )

( )

FFNN

2

1

FFNN

,  1, ,8 ,  1, ,8

1 ˆtraining :  

ˆprediction: 

i i

N

i i

i

i i

i i

L
N

=

= → → =


= −




=



a b

b b

b a



Mechanistic Data Science System & Design - 19

Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

• Generate a Single Guitar
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced): Code

• Python code for data collection and data preprocessing

• PyTorch is used to implement the FFNN and to train the model

• Inverse transform Python code

• The generation of a melody: “Twinkle, twinkle little star”

– “C5, C5, G5, G5, A5, A5, G5”
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Metal Additive Manufacturing is the Buzzword Nowadays

https://phys.org/news/2017-12-additive.html

https://www.youtube.com/watch?v=bQMWETpckNU

https://www.globenewswire.com/
news-
release/2019/06/05/1864873/0/en
/SmarTech-Analysis-Issues-Latest-
Report-on-Metal-Additive-
Manufacturing-Market.html

Courtesy GE)

Courtesy Siemens

Metal Additive 
Manufacturing Perez, K. Blake. "Design Innovation 

with Additive Manufacturing (AM): 

An AM-Centric Design Innovation 

Process." Singapore University of 

Technology and Design (2018).

Revenue Opportunities

Number of papers with additive 
manufacturing and design in it

Complex parts

Hip implant

Turbine blades

https://phys.org/news/2017-12-additive.html
https://www.youtube.com/watch?v=bQMWETpckNU
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
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There are some structural defects in parts coming from the Process

Defects

Surface Roughness

Porosity

Residual stress

Delamination

Microstructural 
Heterogeneity

Source of all these defects 
is high thermal gradient 
and solidification rate! 

1600 C

100 C

Can we control and 
design the thermal 

history at each point 
and get AM part with 

desired property?

At different points we see different 
ultimate tensile strength

834 

839

743 

760

733 

725 

743 

724

735
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System and Design Philosophy 

Modeling Objective:
Our objective is to develop a computational model that takes the thermal history at different points on the 
AM build wall and can predict the mechanical property (for example, ultimate tensile strength) at that point. 

Design Objective:
• To design the AM process parameters (scan speed or laser power).
• To control the temperature history at different locations.
• To minimize the variation of mechanical properties at different locations of the build.

System Description:
• Metal additive manufacturing system (can be either Direct Energy Deposition (DED) or Powder bed) 

where we can control the manufacturing process parameters.
• We can measure the thermal response of the system with Infrared imaging system.
• We can only test the mechanical properties at a few locations on the wall with tensile test.

Modeling approach: Mechanistic data science and Digital Twins
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Mechanistic Data Science and Digital Twins for System and Design 

Mechanistic 
Features

(Cooling Rate,
Maximum 

Temperature)

Data collection 
and generation:
experiment and 

AM-CFD 
simulations

Mechanistic 
feature 

extraction

Cooling Rate

Precipitation 
temperature 
range

melting point

Dimension 
reduction

Maximum Temp

Reduced 
order 
model

Optimized 
system

Active and 
Transfer 
Learning 
through 

deep 
convolution

al neural 
networks 

(DNN)

Mechanistic 
learning 
through 

regression

Process 
parameters 
for strength 

maximization

System and 
design

Knowledge Database

Infrared 

temperature 

measurements 

of AM process 

Thermal histories

Time-frequency 

spectrograms Discovering 

physically important 

temperature ranges 

from data

Convolutional Neural Network (CNN)

Input

Digital twin:
Real time digital 

counterpart of the 
product to run 
experiments  

Data-driven 

prediction of 

ultimate tensile 

strength (UTS)

Substrate

834 (885)

Temperature-

time history 

from AM-CFD

Mechanical 
properties

Scan speed

Power

Hatch Spacing

Composition
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Some important Definition for Metal Additive Manufacturing

Liquidus 1336 ℃

Solidus 1260 ℃

Liquidus Temperature: The temperature above 
which all components of the alloys are liquid.
Solidus Temperature: The temperature below 
which all components of the alloys are solid.

Solidification Cooling Time (SCT)

Solidification Cooling Rate, d𝑇/d𝑡

Solidification cooling rate (SCR) → 

Microstructure → Mechanical properties

Solidification Cooling Time: The time required 
for the alloy to change from the liquid to solid 
phase during cooling.

Solidification Cooling Rate: The slope of the 
temperature-time history during solidification.

Dwell time: The pause between deposition 
between two successive layers.
Meltpool Control: Controlling the laser power to maintain a desired meltpool characteristics.

Multiresolut
ion Data

Meltpool dynamics 
(ns ~ ms)

Scan speed (ms)

Convection and 
radiation cooling (s)

Sources of data from multiple time scales

Residual plastic stress (s)
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Local Thermal History is the Key Factor Controlling 

Physical Phenomena

Thermal history at a specific thermal 

measurement location

Multilayer AM Process

Time

Temperature

Boiling point

Critical

Temperature

Liquidus

Solidus

1. Melt Pool Dynamics

2. Vaporization/Spattering 3. Solidification

4. Solid-State Phase 

Transformation

Heat absorption

Mass addition

Marangoni flow

Radiation

Loss of  heat, 

mass and 

composition

Grain growth

Dendrite 

Segregation

Precipitate

Grain growth

Precipitate

Phase change

Zhao, C. X., et al. 

58.19 (2010): 

6345-6357. 

Bidare, P., et al. 142 (2018): 107-120.

https://ww

w.youtube

.com/watc

h?v=S07f

Po45BvM

Assumption 1: thermal field includes enough information for explanation/prediction 

of mechanical properties of a specific alloy system. 

Infrared Measurement 
is not accurate after this 

point 

Microstructure 
depends on 

temperature gradient,  
growth velocity and  

cooling rate
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Overview of the Process Features

Material System IN 718; Substrate: SS 304

Manufacturing Method Direct Energy Deposition

Machine DMG-MORI LaserTech65

Particle Size 50 – 150 µm

Laser Power 1800 W

Powder Flow 18 g/min

Scanning Speed 1000 mm/min

Laser Spot 3 mm

Wall Length Set 1: 80 mm (3 walls, No dwell time)
Set 2: 120 mm (3 walls, No dwell time)
Set 3: 120 mm (3 walls, 5s dwell time)

Set 4: 120 mm (3 walls, melt pool control)

Input Process Features

1. No Dwell Time
2. 5 second Dwell 

Time
3. Meltpool Control

Mechanistic Signature

Temperature-time 
history

Mechanical Property

1. Ultimate tensile 
strength

2. Elongation
3. Yield strength
4. Young’s modulus
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Position-dependent Mechanical Properties as the Output

Thermal histories at the center 

of ROIs in each wall 

(9-12 locations per wall )

Experimental IR sensing

12 thin walls with different 

process conditions 

…

135 thermal curves

Small tensile coupons at 

corresponding ROIs of the walls 

135 sets of mechanical properties

1

2

3

4

5

6

7

8

9

Stress-strain curve

Process conditions:

1. Without Dwell

2. With 5s Dwell Time

3. Meltpool Control

Input Output

Yield strength

Ultimate strength
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Wavelet scalograms encapsulates multiresolution Information

W (a,b) = f (t)y
a,b

* (t)dt
-¥

¥

ò• Wavelet transform:

• Morse wavelet [1]:

Thermal history Wavelet scalogram
Wavelet scalogram

with logarithmic y-axis

• Temperature-time plot is converted to Frequency-time plot using wavelet transform.
• Frequency axis is converted from decimal to logarithmic axis for readability.

𝜓𝑎,𝑏 𝜔 = 𝑈 𝜔 𝑐𝑎,𝑏𝜔
𝑎𝑒−𝜔𝑏

[1] Olhede, S. C. et al. “Generalized morse wavelets.” IEEE Transactions on Signal Processing, 2002.

• Dominant frequency of 0.1 Hz is related to laser scan speed.
• High frequencies are related to meltpool shape change, instantaneous temperature 

fluctuation and inherent noise.

Higher 
frequencies

Dominant frequency
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Thermal response is dependent on the location on the wall

120 mm thin wall 

without dwell time

SCT: 7.3 s

UTS: 771 MPa  

Thermal measurement location 1:
Thermal history Wavelet scalogram

Fundamental 

frequency

With dual peaks

Wavelet scalogram

(frequency in log scale)

SCT: 6.7 s

UTS: 834 MPa  

Thermal measurement location 2:

Thermal history Wavelet scalogram
Wavelet scalogram 

(frequency in log scale)

• location 1 (top): dual peaks appearance---does not get enough time to cool before reheating.

1

2

Location 2: higher 
solidification cooling 
rate resulting in higher 
volume fraction and 
finer precipitates, hence 
higher strength.

• Location 2 (bottom right): more fluctuation---multiple layers are deposited, experiences more 
heating and cooling cycles, more complex frequency spectrum.
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Dwell time introduces higher fluctuations in temperature

120 mm thin wall 

SCT: 4.7 s

UTS: 992 

MPa

Thermal measurement 

location 2:Thermal history Wavelet scalogram

Wavelet scalogram 

(frequency in log scale)

With dwell time: higher frequencies appear on the frequency-time spectrum; because it has more time to get cooled before reheated.  

2

SCT: 6.7 s

UTS: 834 MPa  

Thermal measurement location 2:

Thermal history Wavelet scalogram
Wavelet scalogram 

(frequency in log scale)

Without dwell time

With 5 s dwell time

Without dwell time: solidification cooling time is lower, hence, more precipitates form (strengthening).
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Meltpool control makes fluctuations more consistent

Thermal history

Fundamental 

frequency

Wavelet scalogram 

(frequency in log scale)

SCT: 7.0 s 

UTS: 834 MPa

SCT: 7.0 s 

UTS: 837 MPa

Magnification plot of a 

sub-range thermal history

Melt pool control gives less thermal history fluctuation, shown in wavelet scalograms.  

With melt 
pool control

Without melt 
pool control
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Discovery of Physics insight from Temperature: Binning Technique 

Input

1950-2000 ℃

300-350 ℃

1200-1250 ℃

Output: 
Ultimate Tensile

Strength (UTS)

(MPa)

800
Regression

1200

2 s 2
3

2
4

2
4

4
4

6 = 33 s
33

Total time that the material point 

undertake during the range

950

1 s 1 3 3 4 4 4
4 4

= 28 s

950-1000 ℃ 28

Dimension: 35

Time
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Different Regression Analyses are Performed with 

Segmented Data
Output: Ultimate Tensile Strength

Regression

𝑦1
𝑦2

…

𝑦𝑁

𝑁: the number of the training data

Input: reduced thermal history

𝑥1
𝑥2
𝑥3

𝑥N
1950

- 2000 ℃

…

950

- 1000 ℃
300

- 350 ℃

…

Dimension reduction:

17500 -> 35

Randomly separate for 150 times:

Training data: 108 points (80%)

Test data: 27 point (20%)
Supervised learning algorithms:

• Least Squares Regression (LSR)

• Least Absolute Shrinkage and Selection Operator (LASSO)

• K-Nearest Neighbors (KNN)

• Support Vector Regression (SVR)

• Decision Tree (DT)

• Random Forest (RF)

• Gradient Boosting Regression (GBR)
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Important Temperature Ranges Discovered by 

Random Forest Algorithm
Importance analysis via Random Forest - UTS 

1212-1364 ℃

Melting point of IN718:

1260-1336 ℃
http://www.matweb.com

654-856 ℃

𝜸′ begins to 

form at 649 ℃
The most rapid 

formation is at 

732 to 760 ℃
Keiser, D. D., & 

Brown, H. L. (1976).

𝜸′′ precipitate 

forms at 649 

to 760 ℃
Paulonis, D. F., 

et al. (1969). 

Median

First quartile

Third quartile

Minimum

Maximum

http://www.matweb.com/
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1. Two dominant temperature ranges are identified without prior knowledge. 

2. Solidification range: 1212-1364 ℃; 

Solid-state phase transformation range: 654-856 ℃.

3. Three temperature ranges: (a) higher than liquidus (1364 ℃) lower than 600 ℃ , and 

(c) between 856 ℃ and 1212 ℃ are not important notably for predicting UTS.

4. Only using solidification cooling rate is not enough for prediction of UTS in AM of Inconel 718. 
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Using Linear Regression with Important Temperature Range 

Can Predict the Mechanical Response
Using three important intervals (1314-1365℃, 807-857 ℃, 654-705℃):

𝑈𝑇𝑆 = −9.63 ∗ 𝑡1314 + 2.9 ∗ 𝑡807 + 0.4 ∗ 𝑡654 + 758

Negative effect Positive effect Positive effect

Sample 12A

Sample 6A

Sample 3A

*PDAS: primary dendrite arm spacing

Increasing solidification time leads to larger PDAS, degrading UTS

𝑡1314 = 5 𝑠
PDAS = 8.1 𝜇𝑚
𝑈𝑇𝑆 = 1076.6 𝑀𝑃𝑎

𝑡1314 = 7 𝑠
PDAS = 13.3 𝜇𝑚
𝑈𝑇𝑆 = 884.7 𝑀𝑃𝑎

𝑡1314 = 10 𝑠
PDAS = 18.5 𝜇𝑚
𝑈𝑇𝑆 = 649.4 𝑀𝑃𝑎

Masoumi, F., Shahriari, D., Jahazi, M., Cormier, J., 

& Devaux, A. (2016). Scientific reports, 6, 28650.

Increasing cooling time increases the volume fraction of 𝜸′/𝜸′′, strengthening the material

Dimension: 17500 -> 35 -> 3
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Correlative relationships between thermal histories and 

mechanical properties

Image
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Different learnable filters can be used to 
capture different mechanistic features.

High-level mechanistic relationship is 
obtained by the hierarchical structure of CNN.

CNN maps well to from thermal 
histories to mechanical properties;
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Data-driven prediction of UTS from thermal histories

834 (885)

839 (826)
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1109 (1108)
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902 (992)

900 (977)

831 (916)

756 (827)

754 (835)

736 (762)

741 (738)

719 (731)

691 (691)

685 (682)

762 (763)

791 (764)

796 (837)

Wall: #4
120 mm wall

Wall: #7
120mm wall with 5 second dwell time

Wall: #10
120 mm wall with melt pool control

Predicted UTS maps Locally averaged UTS maps

• CNN predicted UTS (in black) and experimental values (in red) at marked locations.
• CNN can predict the UTS well when compared with experimental measurements.
• CNN model can be used to evaluate the weakest parts of the as-built thin walls.
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Standard deviation highly correlates with 

experimental observations of UTS in the training set

UTS (Exp. Data) distribution

Standard Deviation Distribution for Predictions

Wall: #4
120 mm wall

Wall: #7
120mm wall with 5 second dwell time

Wall: #10
120 mm wall with melt pool control

Standard deviation maps of predicted UTS

Standard deviation distribution
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Generalization to other mechanical properties

Metrics Statistics

Elongation Yield Stress / MPa

Training 

set

Validation 

set Test set

Training 

set

Validation 

set Test set

𝑅2
Mean 0.7759 0.5428 0.4460 0.7719 0.6007 0.6791

Std 0.0175 0.0671 0.0332 0.0914 0.0689 0.0546

MRE

Mean 0.0367 0.0489 0.0655 0.0488 0.0637 0.0556

Std 0.0015 0.0043 0.0026 0.0132 0.0297 0.0046

MSE

Mean
0.0004 0.0008 0.0014 984.47 1567.90 1184.19

Std 0.0000 0.0002 0.0001 465.25 1093.34 201.36

MAE

Mean
0.0166 0.0221 0.0295 22.6473 29.1507 27.6480

Std 0.0008 0.0024 0.0013 5.1186 8.5509 1.9445

Note that for 𝑅2, the higher the better. For MRE, MSE, and MAE, the lower the better. 

(a) Elongation (b) Yield stress
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