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Musical Instrument Sound Conversion

Demonstration: Learn from a system (Piano sound) and transfer the
knowledge for a new system (Guitar sound)
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Data Collection and Generation (1)

« Start with training the first pair of A4 piano and A4 guitar sound files
« Sample rate: 44.1 kHz
« Duration: 2.8 second for the piano and 1.6 seconds for the guitar

* Then, repeat for the other 7 pairs of keys: A5, B5, C5, C6, D5, E5, G5
piano and guitar sound files with duration ranging from 1.5 to 3.0
seconds. These 8 pairs of keys constitute the training sets.

* To reduce the data dimensions, the extracted four features using Short-
time Fourier transform (STFT) and least square optimization for each
data set is used for regression between the piano keys and the guitar
keys (8x4x8 input, 8x4x8 output).
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Data Collection and Generation (2)

A4 Dimension: 120,000 (44.1 kHz X 2.8 s) A4 Dimension: 72,000 (44.1 kHz X 1.6 s)
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Mechanistic Feature Extraction

To enhance the reconstruction of the authentic A4 key, Short Time
Fourier Transform (STFT) is used to reveal the strike, sustain and

decay.

Definition: The Short-time Fourier transform (STFT), is a Fourier-related
transform used to determine the sinusoidal frequency and phase content of local

sections of a signal as it changes over time.

Short-time Fourier transform
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https://en.wikipedia.org/wiki/List_of_Fourier-related_transforms
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Dimension Reduction: Frequencies and Amplitudes

Mechanistic Data Science

0.15

0.

0.0

Amplitude

1

5

0

-0.05

-0.

-0.1

1

5L

0

0.5

1

1.5

Time

2

25

3

Authentic A4 piano sound

»2

0 to 0.01 second authentic A4 piano sound

Zoome-in of the
first 0.01
second depicts
higher

0.002 0.004 0.006 0.008 0.01 -
Fime harmonics

STFT reveals higher frequencies sound signals disappear faster due to higher damping

5000 r

4000

3000

2000

1000

0

0

STFT: “authentic A4 piano” (2D view)

0.5

1

1.5
Time(s)

2

2.5

3

Fundamental
Harmonics

frequency 0
D
) 0
4 5 %
0 € 28
="
-8 _Q o
-10 10 E 3
0 12 <

Frequency(Hz) 4000 3 Time(s)

STFT of “authentic A4” (3D view)

System & Design - 6



Dimension Reduction: Damping Coefficients

« By using exponential fitting of time history, the values of each damping constant can be determined.
« The fitting can also be determined during the optimization stage using least square optimization.

Fundamentalfrequency 0.1 ' |n|t|a| amplitude
Harmonics icti 8
Mechanistic model o0s _ y= Zaie_bit sin(at+4)
e i=1
// / / vg m,; é ’ w WIN Nwm MW (@ : initial amplitude
33 < PR
" 7 g;ﬁ’ kr, 0.05 < b, : damping ratio
b [ o , . . . w; . frequency
2000 2502 ot 0 0.02 0.04 . 0.06 0.08 0.1 k¢| : phase angle

Frequency(Hz)
Damping of fundamental frequency i=1

Number of sampling points (features) in a sound file: ------

Ns =t X fs =842,310 (A4 sound)

t: duration of the sound Values

The number of features extractedis 4 X 8 = 32

fs:sampling rate
System & Design - 7
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Extracted Features of A4 Piano Sound and Guitar

All eight sets of features from authentic A4 piano and authentic A4 guitar sound
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STFT of the authentic A4 piano sound STFT of the authentic A4 guitar sound
Frequencie Initial Dam.pi.ng Frequencie nitial Dam_pl_ng
s amplitudes coefficient Type S ambolitudes coefficient
(54) P S (Hz) P S
Fundamental  4.410E+02 1.034E-01 3.309E+00 6.954E-01 Fundamental  4.400E+02 2.346E-02 1.287E+00 4.218E-01
8.820E+02 1.119E-02 1.844E+00 7.202E-01 8.800E+02 1.142E-02 1.865E+00 9.157E-01
1.323E+03 6.285E-03 5.052E+00 3.469E-01 1.320E+03 3.630E-03 2.176E+00 7.922E-01
1.764E+03 7.715E-04 2.484E+00 5.170E-01 1.760E+03 7.761E-03 1.100E+00 9.595E-01
Harmonics 2.205E+03 1.455E-03 8.602E+00 5.567E-01 Harmonics 2.200E+03 7.860E-03 3.346E+00 6.557E-01
2.646E+03 5.130E-04 1.198E+01 1.565E-01 2.640E+03 9.594E-03 2.504E+00 3.571E-02
3.087E+03 1.899E-04 8.108E+00 5.621E-01 3.080E+03 1.088E-03 1.666E+00 8.491E-01
3.528E+03 3.891E-05 3.282E+00 6.948E-01 3.520E+03 1.387E-03 2.610E+00 9.340E-01
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Dimension Reduction

Instrument Original signal dimension Reduced order dimension
Piano 120,000 (44.1 kHz x 2.8 s) 32 (4 features x 8 frequencies)
Guitar 72,000 (44.1 kHz x 1.6 s) 32 (4 features x 8 frequencies)
0.15
Authentic sound
0.1 MATLAB approximation | -

©

p=| possibly due to reverberation or changing in the

'g. pressure from the damping pedal

<
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Mechanistic Learning through Regression

Extracted Mechanistic features: Neural network:

« 8 frequencies * 3 hidden layers with 100 neurons;
« 8 amplitudes;

« 8 damping coefficient;

« 8 Phase angles;
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feature vector ’ feature vector
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Simple Demonstration of MDS for knowledge transfer in
sound files
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First seven notes from “Twinkle, twinkle little star”
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Musical Instrument Sound Conversion: Code

 Feature_extractor.m

« Sound_generator.m

* Model_trainer.py

* Feature_generator.py

Mechanistic Data Science System & Design - 13




Principal Component Analysis for Musical Note Conversion
(Type 1 Advanced)

« Dimension reduction of the raw sound signals

« PCA creates a reduced order model based only on the data and does
not consider mechanistic features - very hard to interpret

« Data Preprocessing (Normalization and Scaling)

mean(Ap)
std(A, )

piano sound signal: A, (m X n) »B, : normalized and scaled

J

m=8 v
) n=44100Hzx1.865~81,849

mean(Ag ) .8

guitar sound signal: A, (A ) g
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

« Compute the Eigenvalues and Eigenvectors for the Covariance Matrix

of Bp and Bg
 Build a Reduced-Order Model 2, 0 - 07 pf
B.'B 0 4 - 0| p,N
- v P _ T _ P2
covariance: X , = = P,AP, =[Py Py - P . T .. :
T
0 0 ﬁm-_pm |
{Pp . orthogonal matrix containing the eigenvectors Magnitude for each PC Piano-A4 Guitar-A4
. : . : Ist PC —78.08 —47.32
A . diagonal matrix containing the eigenvalues > PC 303,93 SR
a," 3rd PC 47.98 19.68
. 4th PC ~5.03 27.26
_ ad, 5th PC —38.21 —40.95
— reduced-order model: Bp = Eip E’p = PO Sy 026
(mxm)  (mxn)(nxm) . 7th PC —4.71 144.83
Eh 8th PC 145 x 10" 3.58 x 10"

a (m ><1) contains the magnitudes of all principal components (PCs) for the i-th piano sound
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Principal Component Analysis for Musical Note Conversion
(Type 1 Advanced)

* Inverse Transform Magnitudes for all PCs to a Sound
« Cumulative Energy for Each PC T

b,
b.T
— reduced-order model: R, = B, P, =| 2
(mxm)  (mxn)(nxm)
_me_

b; (m ><1) contains the magnitudes of all principal components (PCs) for the i-th guitar sound

—> reconstruct guitar sound: s; = ;" P, ostd (A )+ mean(A, )
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

« Training a Fully-Connected FFNN

T - \2
training : LZWZ(bi —bi)

=
prediction: b; = Feeyy (2;)

FFNN: 3 hidden layers with 100 neurons

Magnitudes of Piano Predicted Magnitudes of
principal components guitar principal components
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Principal Component Analysis for Musical Note Conversion

(Type 1 Advanced)

« Generate a Single Guitar

well-trained FFNN model is obtained — b = Fepyy (@)

— reconstruct the guitar sound: §, =b" P, ostd (Ag )+ mean(Ag )

(a) (b)

Key: A4 Key: A4
2000 2000
-- Generated guitar sound
- Authentic guitar sound
000 1000
8 8
1 0 3 )
S= =
- =
E -1000 é -1000
> ) .
-2000 =2000 § —a— Generated guitar sound
— Authenlc guitar sound
oo LJ o2 Y 06 Y] 10 12 14 9100 0102 0104 0106 0108 0110

Time/s Time/s

Mechanistic Data Science System & Design - 19



Principal Component Analysis for Musical Note Conversion

- __(Type 1 Advanced): Code

« Python code for data collection and data preprocessing
« PyTorch is used to implement the FFNN and to train the model
* |nverse transform Python code

« The generation of a melody: “Twinkle, twinkle little star”
— “C5, C5, G5, G5, A5, A5, GY”

Mechanistic Data Science System & Design - 20




an ComputatiOﬂa| Materia|8 www.nature.com/npjcompumats p—

'.) Check for updates

ARTICLE
Mechanistic data-driven prediction of as-built mechanical

properties in metal additive manufacturing

=

=

Xiaoyu Xie'*#, Jennifer Bennett'?*, Sourav Saha>*, Ye Lu', Jian Cao(®', Wing Kam Liu and Zhengtao Gan

Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling
heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process.
To this end, we develop a mechanistic data-driven framework integrating wavelet transforms and convolutional neural networks to
predict location-dependent mechanical properties over fabricated parts based on process-induced temperature sequences, i.e.,
thermal histories. The framework enables multiresolution analysis and importance analysis to reveal dominant mechanistic features
underlying the additive manufacturing process, such as critical temperature ranges and fundamental thermal frequencies. We
systematically compare the developed approach with other machine learning methods. The results demonstrate that the
developed approach achieves reasonably good predictive capability using a small amount of noisy experimental data. It provides a
concrete foundation for a revolutionary methodology that predicts spatial and temporal evolution of mechanical properties
leveraging domain-specific knowledge and cutting-edge machine and deep learning technologies.

npj Computational Materials (2021)7:86; https://doi.org/10.1038/541524-021-00555-z
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Metal Additive Manufacturing is the Buzzword Nowadays

Complex parts

Hip implant
Courtesy GE)

Metal Additive
Manufacturing

Courtesy Siemens
Turbine blades

Mechanistic Data Science

Total Metal Additive Manufacturing Revenue
Opportunities by Segment, 2018 vs. 2024(e) ($USM)
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Hardware Materials Services

Source: SmarTech Analysis W2018 « 2024

Revenue Opportunities

Perez, K. Blake. "Design Innovation Web of Science Results for “Additive Manufacturing” AND “Design”

with Additive Manufacturing (AM):
An AM-Centric Design Innovation
Process." Singapore University of
Technology and Design (2018).
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Number of papers with additive
manufacturing and design in it
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https://phys.org/news/2017-12-additive.html
https://www.youtube.com/watch?v=bQMWETpckNU
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html
https://www.globenewswire.com/news-release/2019/06/05/1864873/0/en/SmarTech-Analysis-Issues-Latest-Report-on-Metal-Additive-Manufacturing-Market.html

There are some structural defects in parts coming from the Process

Surface Roughness

Porosity

At different points we see different
ultimate tensile strength

Defects

Microstructural
Heterogeneity

Residual stress

Can we control and
design the thermal
history at each point
and get AM part with
desired property?

Delamination

Source of all these defects
is high thermal gradient
and solidification rate!
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System and Design Philosophy

System Description:

* Metal additive manufacturing system (can be either Direct Energy Deposition (DED) or Powder bed)
where we can control the manufacturing process parameters.

* We can measure the thermal response of the system with Infrared imaging system.

 We can only test the mechanical properties at a few locations on the wall with tensile test.

Modeling Objective:
Our objective is to develop a computational model that takes the thermal history at different points on the

AM build wall and can predict the mechanical property (for example, ultimate tensile strength) at that point.

Design Objective:

* To design the AM process parameters (scan speed or laser power).

* To control the temperature history at different locations.

* To minimize the variation of mechanical properties at different locations of the build.

Modeling approach: Mechanistic data science and Digital Twins

Mechanistic Data Science

System & Design - 24



Mechanistic Data Science and Digital Twins for System and Design

Mechanistic Data Science
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Some important Definition for Metal Additive Manufacturing

Liquidus Temperature: The temperature above
which all components of the alloys are liquid.
Solidus Temperature: The temperature below
which all components of the alloys are solid.
Solidification Cooling Time: The time required
for the alloy to change from the liquid to solid
phase during cooling.

Solidification Cooling Rate: The slope of the
temperature-time history during solidification.

Dwell time: The pause between deposition
between two successive layers.

1500 A }

1250 .
Solidus 1260 °C

=
o
o
o

750 A

Solidificatier Cooling Rate, dT/dt

Temperature (°C)

500 4

Ly ——
250 Solidification Cooling Time (SCT)

04 Solidification cooling rate (SCR) —
Microstructure — Mechanical properties

& Liquidus 1336 °C

0 100 200 300 400 500 600
Time (s)

Meltpool Control: Controlling the laser power to maintain a desired meltpool characteristics.

. . , Multiresolut
icn Natg

2400 A

£ 2200 — 3

5
2000 —
1800 1

1600
0

ure/°C

Temp

Mechanistic Data Science

Meltpool dynamics
(ns ~ ms)

Scan speed (ms)

Sources of data from multiple time scales

Convection and
radiation cooling (s)

Q Residual plastic stress (s)
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Mechanistic Data Science

Local Thermal History is the Key Factor Controlling

Phvsical Phenomena
Mu|t||ayer AM Proceﬁss 2. Vaporization/Spattering

Im\‘r

Time= 0.0

Zhao, C. X..etal. [

58.19 (2010):
6345-6357.

Assumption 1:

thermal field includes enough information for ex

0]

Loss of heat,f
mass and \
composition |

https://ww
w.youtube

C .com/watc

h?v=S07f
Po45BvM

Time elapsed: 0.001125 sec

Bidare, P., etal. 142 (2018): 107-120.

K' Infrared Measurement
Tem perature is not accurate after this
A [\ point

o

Boiling point

Heat absorption
Mass addition

Marangoni flow
Radiation

f

m

Liquidus

\ Solidus

3. Solidification

Grain growth
Precipitate
Phase change

measurement location

Grain growth
Dendrite
Segregation
Precipitate

4. Solid-State Phase
Transformation

Microstructure
dependson
temperature gradient,
growth velocity and
cooling rate

l\ / Critical

U \ '\ Temperature

Thermal history at a specific thermal

Time

echanical properties of a specific alloy system.

>

lanation/prediction
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Mechanistic Data Science

Overview of the Process Features

Material System

IN 718; Substrate: SS 304

Manufacturing Method

Direct Energy Deposition

DMG-MORI LaserTech65

Machine
Particle Size 50 — 150 um
Laser Power 1800 W
Powder Flow 18 g/min
Scanning Speed 1000 mm/min
Laser Spot 3 mm
Wall Length Set 1: 80 mm (3 walls, No dwell time)

Set 2: 120 mm (3 walls, No dwell time)
Set 3: 120 mm (3 walls, 5s dwell time)
Set 4: 120 mm (3 walls, melt pool control)

Input Process Features

[

N

S—

Mechanistic Signature

Mechanical Property

-~

_ 1. Ultimate tensile
Temperature-time strength
history Elongation

/PS“!\’

Yield strength
Young’s modulus
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Position-dependent Mechanical Properties as the Output
Small tensiie couponsal T

Thermal histories at the center
of ROIs in each wall corresponding ROIs of the walls
= g o | o, Tmrﬁ?'“'-v“e' S R

(9-12 locations per wall ) - f s o ST

Experimental IR sensing

13125
1203
.
989,

YYYYYYY

: = Ultimate Strength (U) sctrsRuptre
Stress Strength (R)
pL(?l Ultimate strength

12 thin walls V.VI.'[h different P Yield strength
process conditions overeeren

Process conditions: .

1. Without Dwell "

Strain

2. With 5s Dwell Time 135 thermal curves .
Stress-strain curve

Mechanistic Data Scienge

3. Meltpool Control

Input

135 sets of mechanical properties
Output
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Wavelet scalograms encapsulates multiresolution Information

Mechanistic Data Science

« Morse wavelet 1: ¥y ,(w) = U(w)cy pw®e@P

* Wavelet transform: W (a,b) = (‘)_if(t)y:b (¢)dt
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Wavelet scalogram
Thermal history Wavelet scalogram with logarithmic y-axis
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Temperature-time plot is converted to Frequency-time plot using wavelet transform.
Frequency axis is converted from decimal to logarithmic axis for readability.

Dominant frequency of 0.1 Hz is related to laser scan speed.
High frequencies are related to meltpool shape change, instantaneous temperature
fluctuation and inherent noise.

[1] Olhede, S. C. et al. “Generalized morse wavelets.” IEEE Transactions on Signal Processing, 2002. System & Design -
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hermal response is dependent on the location on the wall

* location 1 (top): dual peaks appearance---does not get enough time to cool before reheating.

* Location 2 (bottom right): more fluctuation---multiple layers are deposited, experiences more
heating and cooling cycles, more complex frequency spectrum.

7

N
Thermal measurement location 1: Wavelet scalogram
Thermal history Wavelet scalogram (frequency in log scale) Location 2: higher
solidification cooling
) With dual peaks ’ lting in high
| N rate resulting in higher
Lo D) 3 : volume fraction and
20 3 finer precipitates, hence
e higher strength.
1600 50 1(;0 150 200 0 50 100 150 200 80 00 120 0
Time, Time/s Time/s
\. J
( ] N\
Thermal measurement location 2: Wavelet scalogram
Thermal history Wavelet scalogram (frequency in log scale)
T SCT:6.7s
e UTS: 834 MPa "
E’zooo Lt‘ :
0 50 Til ro;g/s 150 200 9 50 Tilrgz/s 150 200 . o
120 mm thin wall \. J

without dwell time
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Dwell time introduces higher fluctuations in temperature

With dwell time: higher frequencies appear on the frequency-time spectrum; because it has more time to get cooled before reheated.

Without dwell time: solidification cooling time is lower, hence, more precipitates form (strengthening).

120 mm thin wall

Mechanistic Data Science

7

Thermal measurement location 2;
Wavelet scalogram

Thermal history
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Meltpool control makes fluctuations more consistent

Melt pool control gives less thermal history fluctuation, shown in wavelet scalograms.

Magnification plot of a Wavelet scalogram
Thermal history sub-range thermal history (frequency in log scale)
2800 T T B 2700 ; . -y . . 250
2600 2600 SCT:7.0s
2500 UTS: 834 MPa
With melt £ O 2400 "
:;Z 2200 ‘; | §
pool control  : = g
& 2000 E 2100} S
1800 < »
1900 |
1600 ; : : 1800 . . . "
0 50 100 150 200 0 5 10 15 20 25 0 60 80 100 120 0 200
Time/s Time/s Time/s
l 300
3200 (-) 3200
3000 oo SCT:7.0s -
2800 | UTS: 837 MPa
. L 2800 1200
Without melt <™ o 5
£ 2400 £ 2600 3 -
pool control Eiii - £
1800 - - 2200 F
1600 + 2000 F &
14000 SI() Ti]rljllg/s 15‘0 200 ]80{]0 ; 1‘0 1'5 2'0 o5 60 80 Tir:’::}/s 120 200

Time/s
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Discovery of Physics insight from Temperature: Binning Technique

Input
e N
1950-2000 °C

Total time that the material point
undertake during the range ™\

1200-1250°C | @ Regressmf‘[sm]
950-1000°C | @ | Qutput:
Ultimate Tensile
Strength (UTS)
(MPa)

300-350 °C|_

J

Dimension: 35

0O 100 200 300 Time
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Mechanistic Data Science

Different Regression Analyses are Performed with
Segmented Data

Input: reduced thermal history Output: Ultimate Tensile Strength
o ® ® X1 V1
® ® ® X2 Regression Y2
O O ® | x| > Dimension reduction:
: 17500 -> 35
@) ® ® | XN YN
300 950 1950 D
- 350 °C - 1000 °C - 2000 °C

Randomly separate for 150 times:
Training data: 108 points (80%)
Test data: 27 point (20%)

N: the number of the training data

Supervised learning algorithms:

* Least Squares Regression (LSR)

» Least Absolute Shrinkage and Selection Operator (LASSO)
» K-Nearest Neighbors (KNN)

» Support Vector Regression (SVR)

» Decision Tree (DT)

 Random Forest (RF)

» Gradient Boosting Regression (GBR)
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Important Temperature Ranges Discovered by
Random Forest Algorithm

Importance analysis via Random Forest - UTS
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1. Two dominant temperature ranges are identified without prior knowledge.

2. Solidification range: 1212-1364 °C;
Solid-state phase transformation range: 654-856 °C.

3. Three temperature ranges: (a) higher than liquidus (1364 °C) lower than 600 °C , and
(c) between 856 °C and 1212 °C are not important notably for predicting UTS.

4. Only using solidification cooling rate is not enough for prediction of UTS in AM of Inconel 718.
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Using Linear Regression with Important Temperature Range

Can Predict the Mechanical Response
Using three important intervals (1314-1365°C, 807-857 °C, 654-705°C):

UTS = —9.63 * t1314 + 2.9 x t807 + 0.4 % t654- + 758

Negative effect Positive effect Positive effect Dimension: 17500 -> 35 -> 3

v U, v

R L1314 =055 .
PDAS = 8.1 um 12006
UTS =1076.6 MPa

120°C/min 65°C/min 15°C/min 10°C/min

B] (214 =7s
PDAS =133 um
{ UTS =884.7 MPa

§ ti314=10s
BRs PDAS = 18.5um 25°C

B TS = 649.4 MPa Spherical Shape ¥’ coarsening Cuboidal Shape Butterfly Shape
A0 % LA ,7'_”7 Masoumi, F., Shahriari, D., Jahazi, M., Cormier, J.,
*PDAS: primary dendrite arm spacing & Devaux, A. (2016). Scientific reports, 6, 28650.

Increasing cooling time increases the volume fraction of y'/y", strengthening the material
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Correlative relationships between thermal histories and
mechanical properties

_______________________________________________________________

Block x 2 Block x 2 Block x 2 Block x 2 - FC + RelLU Output layer

o [ I N ,é:""""""'".
64x64x3 : ¥ X &
1 < < | = Q| D - ey :
c N = c ). £ g wi'l 2 c w'l. AR 0 !

= > S = 8 > S -> S > 8 -> S — —> h = N I"_’ UTS
f)'g o CQ o ) o ™ 1
X 1
™ o0 o c>r<) é 25) c?é :

Y (a) Training set: R? = 0.9  (b) Validation set: R? = 0.68
High-level mechanistic relationship is g 1000
obtained by the hierarchical structure of CNN. | £
Different learnable filters can be used to Nzl
capture different mechanistic features. | fofestset R =07  {d) Total dataset: A” = 0.54
CNN maps well to from thermal G e
histories to mechanical properties; S el
o o |
700 ] L g
o aniants fea T MBipenientaiire

Mechanistic Data Science System & Design - 39



Data-driven prediction of UTS from thermal histories

* CNN predicted UTS (in black) and experimental values (in red) at marked locations.
* CNN can predict the UTS well when compared with experimental measurements.
* CNN model can be used to evaluate the weakest parts of the as-built thin walls.

Wall: #4 Predicted UTS maps Locally averaged UTS maps
120 mm wall

o
=1
o
UTS/MPa

Wall: #7
120mm wall with 5 second dwell time

1.2e+03 (5w AR g
CLEE [ |

©

o

)
UTS/MPa

— e — — e —— — | —
; 8
UTS/MPa
Sifgsecattentead .
i :
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Standard deviation highly correlates with
experimental observations of UTS in the training set

Standard deviation maps of predicted UTS b = Built part #4
Wall: #4 — Bu!lt part #7
120 mm wall B Built part #10
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& +—
o = S 600
L0 é 8
— 30 3 400
20 T
[,0 3 200
2.0e+00

0 .
Wall: #7 0 10 20 30 40 50
120mm wall with 5 second dwell time Standard deviation

6.0e+01
[50 g Standard Deviation Distribution for Predictions
L 40 §
| 5 g o (o}
20 g 1000 A
[ 10 é
X ‘ 20e+00 g 900 10
. =
Wall: #10 N - ) [ " R, pa——
120 mm wall with melt pool control % 800 § E ]
_ - Fdd o o eSS W oy
; 6.0e+01 =) ﬂ [:ﬂ. ;
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20
10
2.0e+00
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Generalization to other mechanical properties

0.5 1 600 -
0.4 g 50
= = 4001
203 @
= @ 300
S 021 ?
w 3 200-
=
01 T - Exp data 100 o - EXp Data
[ Predictions [ Predictions
o8 Wall #4 Wall #7 Wall #10 Wall #4 Wall #7 Wall #10
Elongation Yield Stress / MPa
Training Validation Training Validation
Metrics Statistics set set Test set set set Test set
Mean 0.7759 0.5428 0.4460 0.7719 0.6007 0.6791
R? Std 0.0175 0.0671 0.0332 0.0914 0.0689 0.0546
Mean 0.0367 0.0489 0.0655 0.0488 0.0637 0.0556
MRE Std 0.0015 0.0043 0.0026 0.0132 0.0297 0.0046
0.0004 0.0008 0.0014 984.47 1567.90 1184.19
Mean
MSE Std 0.0000 0.0002 0.0001 465.25 1093.34 201.36
0.0166 0.0221 0.0295 22.6473 29.1507 27.6480
Mean
MAE Std 0.0008 0.0024 0.0013 5.1186 8.5509 1.9445
Mechanistic Data Science Note that for R2, the higher the better. For MRE, MSE, and MAE, the lower the better. System & Design - 42



Physical AM process .
| e # Path 2: Importance analysis

Infrared temperature S B W 1S between thermal features and UTS

measurements of AM process j— | . i
= iy =l = [,

As-built thin wall i W, iz l”"”"""«u. EF B
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Multiresolution analysis of Temperature ("C)
extracted thermal histories

Substrate

*Random Forest (RF) method is
applied for the importance analysis

Digital twin Train

Data-driven prediction of
ultimate tensile strength (UTS)
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Substrate

Tlme frequency sca/ograms
Path 1: Predictive relationship
Convolutlonal Neural Network (CNN)
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Measured UTS at
regions-of-interest

*Deta/led CNN structure is prov:ded in Methods

Substrat
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