Coronary Artery Disease (CAD) and its diagnosis

— CAD caused approximately 370,000 fatalities in the US every year.

— CAD is usually caused by the buildup of cholesterol and fatty deposits (called plaques)
inside the arteries, which will limit or stop blood flow to the heart.

[1] https://www.cdc.gov/heartdisease/facts.htm

[2] Coronary Artery Disease. (n.d.). Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/16898-coronary-artery-disease
[3] https://www.cvphysiology.com/Arrhythmias/A009

[4] https://www.alilamedicalmedia.com/

Partially blocked artery Fully blocked artery

— CAD can be diagnosed using electrocardiogram (ECG), which checks the heart’s electrical
activity. But the accuracy of diagnosis is highly dependent on physician’s training.

* Each cycle of ECG contains P, Q, R, S, T waves

* P wave: atrial depolarization (atrial contraction)

- * QRS complex: ventricle depolarization (ventricle

Altﬁi contraction)

* T wave: ventricle polarization (ventricle relaxation)
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* A4, i-thtime interval of 2 consecutive P wave peaks
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Mechanistic Data Science
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I' Mechanistic learning
through classification

Classification of
patients and
healthy people
through support
vector machine
(SVM)

SVM finds an optimal
hyperplane that has
largest distance to
support vectors
(nearest data points)

SVM works well for
problems with small
datasets

A web-based
interactive mini-
app for CAD
diagnosis

Coronary Artery Disease (CAD) diagnhosis using
ElectroCardioGram (ECG)

Optimized
system

Uploaded raw
ECG signal

v

CAD diagnosis result

[1] www.mayoclinic.org/tests-procedures/ekg

[2] https://physionet.org/

[3] Lourenco et. al., Biosignals, 2012, pp. 49-54
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e Data balance

Data Preparation

4 (@ Fantasia database

o 40 healthy subjects
o Duration: 120 min
o Frequency: 250 Hz

o 1 signal for each o 12 signals for each
https://physionet.org/about/database/ z

/Cz) St Petersburg database

o 7 CAD patients
o Duration: 30 min
o Frequency: 257 Hz

~N

e Segmentation
e Upsampling

e ECG denoising: noises will affect the detection of R peaks. Low and high frequency noises are filtered using the Butterworth filter

e Automatic R peak detection and heart rate variability (HRV) derivation
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Mechanistic Data Science
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Mechanistic Data Science

Feature Extraction

Time domain (3)-linear statistical quantities

O

O

O

Frequency domain (4)-reveals how heart rate is controlled by the nervous system

0.5

O

Time-frequency domain (12)-nonlinear analysis of the signal complexity
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Total power: detecting abnormal autonomic activity

Low frequency power: sympathetic modulation

PSD [s%/Hz]

High frequency power: parasympathetic modulation

LF/HF ratio: sympathetic/parasympathetic balance
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Classification using Support Vector Machine (SVM)

e Scaleinput features before classification
e Label the outputs for healthy subjects as 1; CAD patients as 0
e SVM intends to find an optimal hyperplane that has largest distance to support vectors

e SVMis good for small dataset; linear kernel is used in the project

Support vector J Optimal Hyperplane

*

P
/ ~

* ’/ from sklearn import svm
. lj ccaler = preprocessing.StandardScaler().fit(X)
/ joblib.dump(scaler, ‘data scaler.pkl’)
PN ,;upportvmm - E.c:aler-:tr-ansfm'-mil{}' __
1f = svm.SVC(kernel="Linear’, (=1000, random_state=0)

Linear SVM model

In [2@]: runfile('F:/MDS/svmTraining.py’, wdir="F:/MDS")
Fold: 1, Accuracy: ©.962, F1 score 8.961
Fold: , Accuracy: ©.949, F1 score 8.947
Fold: , Accuracy: © F1 score 8.974

Fold: , Accuracy: ©.987, F1 score ©.987
Fold: , Accuracy: ©.918, F1 score 8.914

Cross-Validation accuracy: 8.957 +/- 8.826
Cross-Validation F1 score: ©.957 +/- 8.825

Training results
Mechanistic Data Science System & Design - 48




Mechanistic Data Science

System and Design (facilitating CAD diagnosis)

e Inputs: raw ECG signals (csv file) from a standard ECG recording
e Outputs: diagnosis result (healthy or CAD)
e A web-based interactive mini-app which facilitate the physicians with the

CAD diagnosis process is developed
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R-peak detection (healthy people) R-peak detection (CAD patients)
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Using detected R peaks, heartbeat durations can be calculated

Mini-app interface
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Computational Materials Science 214 (2022) 111703

Contents lists available at ScienceDirect
Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Full Length Article )
Knowledge database creation for design of polymer matrix composite e

Hannah Huang ', Satyajit Mojumder ™', Derick Suarez®, Abdullah Al Amin*, Mark Fleming *,
Wing Kam Liu™

* Department of Mechanical Engineering, Northwestern University, Evanston, [L 60208, USA
b Theoretical and Applied Mechanics Progrom, Northwestern University, Evanston, IL 60208, USA

ARTICLE INFO ABSTRACT
Keywords: We present a mechanistic data science (MDS) framework capable of building a composite knowledge database for
Mechanistic data science composite materials design. The MDS framework systematically leverages data science to extract mechanistic

Unidirectional fiber

knowledge from composite materials system. The composite response database is first generated for three matrix
Polymer composite

and four fiber combinations using a physics-based mechanistic reduced-order model. Next, the mechanistic
features of the composites are identified by mechanistically analyzing the composites stress—strain responses. A
relationship between the composite properties and the constituents’” material features are established through a
mechanics constrained data science-based learning process after representing materials in latent space, following
a dimension reduction technique. We demonstrate the capability of predicting a composite materials system for
target properties (material elastic properties, vield strength, resilience, toughness, and density) from the MDS
created knowledge database. The MDS model is predictive with reasonable accuracy, and capable of identifying
the materials system along with the tuning required to achieve desired composite properties. Development of
such MDS framework can be exploited for fast materials system design, creating new opportunity for perfor-
mance guided materials design.

Materials design
Mechanistic features
Dimension reduction

Mechanistic Data Science System & Design - 50



Let's make a simple composite material.
Reinforcing ice (the matrix) with newspaper (the
reinforcement) improved the material’s resistance

to fracture (toughness).

One type of composite, fiber-reinforced composites,
combines the high modulus of fibers (such as carbon
and glass) with other materials.

= |n general, fibers are quite brittle compared to matrix

= |n fiber-reinforced polymer composites, the polymer
matrix acts as a binder for the fiber

= The matrix imparts toughness into the material

= We can achieve lightweight and high strength materials
with lower densities than metals

[1]
Mechanistic Data Science (2]
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https://www.abbottaerospace.com/aa-sb-001/4-materials/4-1-composite-materials/4-1-3-fundamental-behavior-of-carbon-fiber-epoxy-resin-composite-laminates/
https://slideplayer.com/slide/4235571/

Design of polymer matrix composites at multiple scales

Location dependent
microstructure design

Macroscale: woven structure
Singe lap woven composite bolt joint
Failure?

Mechanistic
data science
framework

High dimensional design space
Building a system knowledge
database using mechanistic data
science to bypass the simulations
and predict directly

i
Design of interphase and agglomeration

Mechanistic Data Science

Design variables
Mesoscale: woven structure

- ™
= Fiber volume fraction
= Yarn angle
= Yarn geometry
= Matrix and fiber choice
N Y,

Microscale: Unidirectional structure

4 )
= Fiber volume fraction

= Matrix and fiber choice

= Fiber geometry

- 4

Nanoscale: reinforced matrix

= Filler volume fraction

= No of agglomerations

= Interphase size and
properties

= Filler and matrix choice

System & Design - 52



Design of a material system for composite football helmet

Design parameters:
= Polymer and fiber choice
= Fiber volume fraction, etc..

Design criteria:

= Lightweight (low density)

= High strength

= High toughness (absorb impact energy)

Why do we need a better helmet?
SAFETY!

Helmets are crucial to prevent brain injuries.

Helmets are Testers use a Helmets are

drop-tested at twin-wire drop tested for front, From 2012'2019r an average of 242 NFL players per
specific tower or side, rear and year sustained concussions. At the high school level,
velocities, helmet-to-helmet  top impacts. football is responsible for 60% of all sports related
locations and impact .

temperatures. simulations. concussions. [11]

[11]

Mechanistic Data Science [12] System & Design - 53



https://www.thespeedycheetah.com/products/northwestern-wildcats-xp-replica?dfw_tracker=2623-922099945&gclid=Cj0KCQjw6575BRCQARIsAMp-ksMqcLC0Lb20NX3yj8f6ecTFEc9DGoA4qvgE3icNgOWkeoTzupedq6EaAo6KEALw_wcB
https://www.thespeedycheetah.com/products/northwestern-wildcats-xp-replica?dfw_tracker=2623-922099945&gclid=Cj0KCQjw6575BRCQARIsAMp-ksMqcLC0Lb20NX3yj8f6ecTFEc9DGoA4qvgE3icNgOWkeoTzupedq6EaAo6KEALw_wcB
https://www.cognitivefxusa.com/blog/football-concussion-prevention-and-recovery

Mechanistic Data Science

System and Design Problem

System Description:

Composite materials are needed for an array
of applications (football helmet for example).
Here we consider unidirectional fiber polymer
composites, where the main features include
volume fraction, fiber radius, and matrix and
fiber material properties.

Modeling Objectives:
Develop a mechanistic data science model

that predicts a quantifiable output (such as
the stress response, toughness, damage, etc.)
based on input features.

https://www.sciencemag.org/news/2017/07/ninety-nine-percent-
ailing-nfl-player-brains-show-hallmarks-neurodegenerative-disease

Design Objective:

Design of new composite materials system for desired performance in application. (Ex.

Higher toughness of Helmet materials)

System & Design - 54



Six steps of mechanistic data science in composite materials
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Approximately 1.5 mins for the online simulation

Mechanistic Data Science

Data generation through tensile simulations
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200

voxels//

Z

¥ ", 200 voxels

Detailed UD RVE
(4x106 voxels)

Matrix and filler properties

Model output

100
]‘voxels

0.0785 — = r
/’ \\ ——— 333K
< —=-==313K
L P N J
- 0.0589 ! e Nl -z
g Y KNI
0.0393f / NN
7 N
3 '/ WS
5 0.0196 N
O 1 1 1
0 0.01 0.02 0.03 0.04
Strain €

|

! Self-consistent
I Clustering

: Analysis

|

|

Offline

a) Data collection
(local strain
response)

Data compression
by unsupervised
learning (K-means
clustering)
Interaction tensor
calculation for
clusters

B

4 Online

Solve Lipmann-
Schwinger equations
for the clusters to
predict stress-strain

~N

1
1
1
1 kresponse
1
\

/

\
fiber max
Fopa
(@) ) I E
) d £
n.::'.o XN
0830 o0 | :
%: @ @ E
ePe :o @ g
':..? : @ .. [ min
2e 0002 &2
b) matrix fiber I "
l:
Kmatrix: 8 Kfiber =2 "
) matrix-matrix fiber-fiber
«—
matrix-fiber /
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Design of experiment and database generation

A Design of Experiment Summary
Parameter Range
‘ Matrix Material Epoxy, PMMA,PET
g| Filler Material Carbon , Glass, Kevlar fiber
Volume Fraction [0.01, 0.50] (50 samples)

[213, 333] (K) (3 samples)

" *5 realizations for each microstructure descriptors
filler volume

volume fraction =
total volume

Input material properties for simulations

Matrix Material Filler Material

 density  density * y-Poisson’s ratio Total 6500

« elastic modulus « x-elasticmodulus * z-Poisson’s ratio simulations are
 Poisson’s ratio « y-elasticmodulus °* x-shear modulus performed to build
« vyield strength « z-elastic modulus * y-shear modulus the database
 hardening parameter « x-Poisson’sratio * z-shear modulus

Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites - Scientific Figure on ResearchGate. Available from:
Mechanistic Data Science https://www.researchgate.net/figure/Cross-sectional-view-of-unidirectional-carbon-fibre-reinforced-epoxy-composites-taken-by_fig1 314138488 [accessed 21 Aug, 2020] System & Design - 57




Mechanistic feature extractions from stress-strain curves

Simulated stress-strain curve of 0.25 volume fraction of Carbon in Epoxy at 213K

/ 6.2% offslet
o, = 0.136 GPa

0.16

V2 Mechanistic features:
012} £ - 14.450 GPa e Elastic modulus

©
&, 0.1} * Yield strength
© e Toughness
«» 0.08 o
& * Resilience
& 0,06} //4 /
MI; o . .
0.04 U, =0.917 —2 Touig.hness, Yy - These mechanistic features are a function
0.02 - ~~7/Resilience, U, _ of the composite microstructures and
' [ 195% Confidence Interval materials properties.

0 % 1 [l 1 1 1
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Strain e
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Reducing problem dimension through
mechanistic relation and PCA

Microstructure

Descriptor

Volume Fraction, v
MSDs Rule of

Pe

Matrix Density, p,, .
. : mixture
Filler Density, py
Matrix Elastic Modulus
Matrix Poisson’s Ratio Mechanical

Matrix Yield Strength property _
(o) t Featu
Matrix Hardening Parameter —————

Descriptors , :
<Filler Flastic Modulus Composite Elastic Modulus, E

y-Filler Elastic Modulus MPDs
z-Filler Elastic Modulus

Cumulative Variance Ratio

L — Composite Yield Strength, o,
01 23 456 7 8 9101112
I'Z Composite Resilience, U, Number Principal Components

. ;
x-Filler Poisson Ratio Ls Composite Toughness, Uy
y-Filler Poisson Ratio
z-Filler Poisson Ratio Physical
x-Filler Shear Pro perty
-Filler Shear .
bk Descriptors —
z-Filler Shear ; Epoxy'(;r on
poxy-Glass
Temperature, T PPD (T) 5 ® Epoxy-Keviar
e PMMA-Carbon
1 A PMMA-Glass
- % PMMA-Kevlar
. . . . . . w 0 & PET-Carbon
= Reducing high dimensional (14 dimensions) * PET-Glass
-1 PET-Kevlar

materials space to latent materials space
= Materials form clusters in the latent space
= Explore the latent space for new materials system

Mechanistic Data Science sSystem & Design - 59




Neural network-based regression model identifies
mechanistic features relation with latent property space
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Using MDS model for the prediction of new materials system
of desired performance

Design e )
es1gh , \
spectications ] System knowledge database built using mechanistic data science
: Materials properties Stress-strain
i | Trained neural database

L dimension reduction
+ Network from . .
l : using Principal
regression step :
component analysis

generated using
SCA from data
generation step

— e o o - e o -

[
\

S o o o [ o o o o o o e mmm s o mm mm mmm mm mm mm mmm mmm mm mm mmm gl el o mm mmm mm— m— - /
Neural Inverse Compare with
network Closest material
. . . PCA
4 Design decision from MDS ) prediction system

=  Materials system v 4 v

=  Microstructure details L:, LS, ... Ly Microstructure, |dentify material

= QOperating condition Materials matrix and fillers system and

= Desired toughness : : At i

modifications

latent materials
property space
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Mechanistic Data Science

MDS guides the materials design process for
user defined properties

Properties

Matrix Elastic Modulus (MPa)

Expected

2250

Predicted

(MDS)

2070.435

Difference

(Percentage)

Matrix Poisson's Ratio

Matrix Yield Strength (MPa)
Filler Elastic Modulus 1 (MPa)
Filler Elastic Modulus 2 (MPa)
Filler Elastic Modulus 3 (MPa)
Filler Poisson 1

Filler Poisson 2

Filler Poisson 3

Filler Shear 1 (MPa)

Filler Shear 2 (MPa)

Filler Shear 3 (MPa)

0.34
21.64725
118000
7200
7200
0.27
0.27
0.34
2800
2800
2700

0.343256
20.03131
116153.9
7289.216
7289.216
0.268592
0.268592
0.339824
2802.993
2802.993
2733.786

Total Mean Relative Difference:

Pe 1477.5 Kg/m?3
E 14644.76 MPa
oy 140.84 MPa

U, 0.8972 MJ/m3
U, 4.3084 MJ/m3

‘ Desired properties

Material system 1: Epoxy/Carbon
Temperature: 230K

Volume fraction of filler: 0.35
Material system 2: PMMA/Carbon
Temperature: 293K

Volume fraction of filler: 0.01
Material system 3: PET/Carbon
Temperature: 300K

Volume fraction of filler: 0.35

Design recommendation: Add nanofiller in the matrix materials to augment stiffness System & Design - 62
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