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Coronary Artery Disease (CAD) and its diagnosis

– CAD caused approximately 370,000 fatalities in the US every year.

– CAD is usually caused by the buildup of cholesterol and fatty deposits (called plaques) 

inside the arteries, which will limit or stop blood flow to the heart.

– CAD can be diagnosed using electrocardiogram (ECG), which checks the heart’s electrical 

activity. But the accuracy of diagnosis is highly dependent on physician’s training.

Fully blocked arteryPartially blocked artery

[1] https://www.cdc.gov/heartdisease/facts.htm

[2] Coronary Artery Disease. (n.d.). Cleveland Clinic. https://my.clevelandclinic.org/health/diseases/16898-coronary-artery-disease

[3] https://www.cvphysiology.com/Arrhythmias/A009

[4] https://www.alilamedicalmedia.com/

Common ECG waveform

• Each cycle of ECG contains P, Q, R, S, T waves

• P wave: atrial depolarization (atrial contraction)

• QRS complex: ventricle depolarization (ventricle 

contraction)

• T wave: ventricle polarization (ventricle relaxation)

• 𝜟𝒕𝑹𝒊 : i-th time interval of 2 consecutive R wave peaks

• 𝜟𝒕𝑷𝒊: i-th time interval of 2 consecutive P wave peaks
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Coronary Artery Disease (CAD) diagnosis using 

ElectroCardioGram (ECG)

Data preparation

Raw ECG file from PhysioNet [2]

Heart rate variability (HRV)

Automatic R peak detection [3]

Time domain (mean，std)

Freq domain (powers)

Time-freq domain (entropies)

Mechanistic feature 
extraction

Optimized 
system

Classification of  
patients and 

healthy people 
through support 
vector machine 

(SVM)

Mechanistic learning 
through classification

A web-based
interactive mini-

app for CAD 
diagnosis

System and design

Knowledge Database

Uploaded raw 
ECG signal

CAD diagnosis result

R peak detection is widely used to diagnose heart rhythm irregularities [2]

[1] www.mayoclinic.org/tests-procedures/ekg

[2] https://physionet.org/ 

[3] Lourenço et. al., Biosignals, 2012, pp. 49-54

• SVM finds an optimal 
hyperplane that has 
largest distance to 
support vectors 
(nearest data points)

• SVM works well for 
problems with small 
datasets
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Data Preparation

● Segmentation

● Upsampling

● Automatic R peak detection and heart rate variability (HRV) derivation 

② St Petersburg database

○ 7 CAD patients

○ Duration: 30 min

○ Frequency: 257 Hz

○ 12 signals for each

① Fantasia database

○ 40 healthy subjects

○ Duration: 120 min

○ Frequency: 250 Hz

○ 1 signal for each

● Data balance

Derived HRV

● ECG denoising: noises will affect the detection of R peaks. Low and high frequency noises are filtered using the Butterworth filter

ECG signal

60 seconds

i-th time interval of 2 consecutive R wave peaks

R peak: peak of the R wave

https://physionet.org/about/database/

i-th heart rate
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Feature Extraction

● Time domain (3)-linear statistical quantities

● Time-frequency domain (12)-nonlinear analysis of the signal complexity

○ Total power: detecting abnormal autonomic activity

○ Low frequency power: sympathetic modulation

○ High frequency power: parasympathetic modulation

○ LF/HF ratio: sympathetic/parasympathetic balance

○ Mean of heartbeat durations

○ Standard deviation of heartbeat durations

○ Standard deviation of heartbeat duration differences

Very low freq:0~0.04Hz

Low freq:0.04~0.15Hz

High freq:0.15~0.40Hz

○ Shannon entropy: measure of data uncertainty and variability

○ Approximation entropy: quantify the amount of regularity and 

unpredictability of fluctuations

○ Sampling entropy: assess complexities of physiological signals
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● Frequency domain (4)-reveals how heart rate is controlled by the nervous system
Power spectral density
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Classification using Support Vector Machine (SVM)

● Scale input features before classification

● Label the outputs for healthy subjects as 1; CAD patients as 0

● SVM intends to find an optimal hyperplane that has largest distance to support vectors

● SVM is good for small dataset; linear kernel is used in the project

● 5-fold cross validation is used to assess the performance of the ML model

Linear SVM model

https://www.analyticsvidhya.com/blog/2021/05/5-classification-algorithms-you-should-know-introductory-guide/

Training results
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System and Design (facilitating CAD diagnosis)

● Inputs: raw ECG signals (csv file) from a standard ECG recording

● Outputs: diagnosis result (healthy or CAD)

● A web-based interactive mini-app which facilitate the physicians with the 

CAD diagnosis process is developed

Mini-app interface
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What is a Composite Material?

Let's make a simple composite material. 
Reinforcing ice (the matrix) with newspaper (the 
reinforcement) improved the material’s resistance 
to fracture (toughness).

One type of composite, fiber-reinforced composites, 
combines the high modulus of fibers (such as carbon 
and glass) with other materials.

[1] https://www.abbottaerospace.com/aa-sb-001/4-materials/4-1-composite-materials/4-1-3-fundamental-behavior-of-carbon-fiber-epoxy-resin-composite-laminates/
[2] https://slideplayer.com/slide/4235571/

[1]

▪ In general, fibers are quite brittle compared to matrix 
▪ In fiber-reinforced polymer composites, the polymer 

matrix acts as a binder for the fiber
▪ The matrix imparts toughness into the material
▪ We can achieve lightweight and high strength materials 

with lower densities than metals

[2]

https://www.abbottaerospace.com/aa-sb-001/4-materials/4-1-composite-materials/4-1-3-fundamental-behavior-of-carbon-fiber-epoxy-resin-composite-laminates/
https://slideplayer.com/slide/4235571/
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Design of polymer matrix composites at multiple scales

Macroscale: woven structure
Singe lap woven composite bolt joint

Failure?

Mechanistic 
data science 
framework

Location dependent 
microstructure design

Design of interphase and agglomeration

▪ Fiber volume fraction
▪ Yarn angle
▪ Yarn geometry
▪ Matrix and fiber choice

Design variables

▪ Fiber volume fraction
▪ Matrix and fiber choice
▪ Fiber geometry

Mesoscale: woven structure

Microscale: Unidirectional structure

▪ Filler volume fraction
▪ No of agglomerations
▪ Interphase size and 

properties
▪ Filler and matrix choice

Nanoscale: reinforced matrix

▪ High dimensional design space
▪ Building a system knowledge 

database using mechanistic data 
science to bypass the simulations 
and predict directly
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Design of a material system for composite football helmet

Design parameters:
▪ Polymer and fiber choice
▪ Fiber volume fraction , etc..

Design criteria:
▪ Lightweight (low density)
▪ High strength
▪ High toughness (absorb impact energy)

Why do we need a better helmet?
SAFETY!

Helmets are crucial to prevent brain injuries.

From 2012-2019, an average of 242 NFL players per 
year sustained concussions.  At the high school level, 
football is responsible for 60% of all sports related 
concussions. [11]

[11] https://www.thespeedycheetah.com/products/northwestern-wildcats-xp-replica?dfw_tracker=2623-922099945&gclid=Cj0KCQjw6575BRCQARIsAMp-
ksMqcLC0Lb20NX3yj8f6ecTFEc9DGoA4qvgE3icNgOWkeoTzupedq6EaAo6KEALw_wcB
[12] https://www.cognitivefxusa.com/blog/football-concussion-prevention-and-recovery

https://www.thespeedycheetah.com/products/northwestern-wildcats-xp-replica?dfw_tracker=2623-922099945&gclid=Cj0KCQjw6575BRCQARIsAMp-ksMqcLC0Lb20NX3yj8f6ecTFEc9DGoA4qvgE3icNgOWkeoTzupedq6EaAo6KEALw_wcB
https://www.thespeedycheetah.com/products/northwestern-wildcats-xp-replica?dfw_tracker=2623-922099945&gclid=Cj0KCQjw6575BRCQARIsAMp-ksMqcLC0Lb20NX3yj8f6ecTFEc9DGoA4qvgE3icNgOWkeoTzupedq6EaAo6KEALw_wcB
https://www.cognitivefxusa.com/blog/football-concussion-prevention-and-recovery
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System and Design Problem

System Description:

Composite materials are needed for an array 
of applications (football helmet for example). 
Here we consider unidirectional fiber polymer 
composites, where the main features include 
volume fraction, fiber radius, and matrix and 
fiber material properties.

Design Objective:

Design of new composite materials system for desired performance in application. (Ex. 
Higher toughness of Helmet materials)

Modeling Objectives:

Develop a mechanistic data science model 
that predicts a quantifiable output (such as 
the stress response, toughness, damage, etc.) 
based on input features. 

https://www.sciencemag.org/news/2017/07/ninety-nine-percent-
ailing-nfl-player-brains-show-hallmarks-neurodegenerative-disease
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Six steps of mechanistic data science in composite materials

Mechanistic 
Data Science

Multimodal 
data 

generation 
and 

collection
Extraction 

of 
mechanistic 

features

Knowledge-
driven 

dimension 
reduction

Machine 
learning for 
regression 

and 
classification

Reduce 
order 

surrogate 
models

System and 
design

Multimodal data from simulation and experiment

Feature extraction from stress-strain curve

Clustering in latent variable space

Prediction of  materials system

Regression model   

Design for absorbing 
impact energy

Possible materials: short fiber, UD, foam
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Materials  property

Physical  property

Mechanical response
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Data generation through tensile simulations
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Matrix and filler properties

Self-consistent 

Clustering 

Analysis

matrix fiber

matrix fiber

Kmatrix = 8 Kfiber = 2

matrix-matrix fiber-fiber

matrix-fiber

a)

b)

c)

Model output

Model input

Online
Solve Lipmann-

Schwinger equations 

for the clusters to 

predict stress-strain 

response

Offline
a) Data collection 

(local strain 

response)

b) Data compression 

by unsupervised 

learning (K-means 

clustering)

c) Interaction tensor 

calculation for 

clusters

Approximately 1.5 mins for the online simulation
Z. Liu et al. / Comput. Methods Appl. Mech. Engrg. 306 (2016) 319–341 
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Design of experiment and database generation

𝑣𝑜𝑙𝑢𝑚𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =
𝑓𝑖𝑙𝑙𝑒𝑟 𝑣𝑜𝑙𝑢𝑚𝑒

𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒

Parameter Range

Matrix Material Epoxy, PMMA,PET

Filler Material Carbon , Glass, Kevlar fiber

Volume Fraction [0.01, 0.50] (50 samples)

Temperature [213, 333] (K) (3 samples)

Matrix Material

• density
• elastic modulus
• Poisson’s ratio
• yield strength
• hardening parameter

Filler Material

• density
• x-elastic modulus
• y-elastic modulus
• z-elastic modulus
• x-Poisson’s ratio

• y-Poisson’s ratio
• z-Poisson’s ratio
• x-shear modulus
• y-shear modulus
• z-shear modulus

Design of Experiment Summary

Tribological behaviour of unidirectional carbon fibre-reinforced epoxy composites - Scientific Figure on ResearchGate. Available from: 
https://www.researchgate.net/figure/Cross-sectional-view-of-unidirectional-carbon-fibre-reinforced-epoxy-composites-taken-by_fig1_314138488 [accessed 21 Aug, 2020]

*5 realizations for each microstructure descriptors

Input material properties for simulations

Total 6500 
simulations are 
performed to build 
the database
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Mechanistic feature extractions from stress-strain curves

0.2% offset
𝜎𝑦 = 0.136 GPa

𝑈𝑡 = 4.500 
MJ

m3

𝑈𝑟 = 0.917 
MJ

m3

𝐸 = 14.450 GPa

Mechanistic features:
• Elastic modulus
• Yield strength
• Toughness
• Resilience

These mechanistic features are a function 
of the composite microstructures and 
materials properties. 

Simulated stress-strain curve of 0.25 volume fraction of Carbon in Epoxy at 213K
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Reducing problem dimension through 

mechanistic relation and PCA
Microstructure 
Descriptors

Mechanical 
property 
Descriptors

Physical 
Property 
Descriptors

▪ Reducing high dimensional (14 dimensions) 
materials space to latent materials space

▪ Materials form clusters in the latent space
▪ Explore the latent space for new materials system
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Neural network-based regression model identifies 

mechanistic features relation with latent property space

▪ Very high accuracy in the trained model
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Using MDS model for the prediction of new materials system 

of desired performance

𝜌𝑐
𝐸
𝜎𝑦
𝑈𝑟
𝑈𝑡

Design 

specifications

Trained neural

Network from 

regression step

𝐿1
∗ , 𝐿2

∗ , … , 𝐿𝑛
∗ Microstructure, 

matrix and  fillers  

identification

Compare with 

Closest material 

system

Identify material 

system and 

suggest possible 

modifications

System knowledge database built using mechanistic data science

Materials properties 

dimension reduction 

using Principal 

component analysis

Stress-strain 

database 

generated using 

SCA from data 

generation step

Materials 

representation 

latent materials 

property space

Design decision from MDS
▪ Materials system
▪ Microstructure details
▪ Operating condition
▪ Desired toughness

Inverse 
PCA

Neural 
network 
prediction
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MDS guides the materials design process for 

user defined properties

Properties Expected Predicted 

(MDS)

Difference 

(Percentage)

Matrix Elastic Modulus (MPa) 2250 2070.435 7.9806

Matrix Poisson's Ratio 0.34 0.343256 0.9576

Matrix Yield Strength (MPa) 21.64725 20.03131 7.4649

Filler Elastic Modulus 1 (MPa) 118000 116153.9 1.5645

Filler Elastic Modulus 2 (MPa) 7200 7289.216 1.2391

Filler Elastic Modulus 3 (MPa) 7200 7289.216 1.2391

Filler Poisson 1 0.27 0.268592 0.5213

Filler Poisson 2 0.27 0.268592 0.5213

Filler Poisson 3 0.34 0.339824 0.0517

Filler Shear 1 (MPa) 2800 2802.993 0.1069

Filler Shear 2 (MPa) 2800 2802.993 0.1069

Filler Shear 3 (MPa) 2700 2733.786 1.2513

Total Mean Relative Difference: 1.9171

Material system 1: Epoxy/Carbon
Temperature: 230K
Volume fraction of filler: 0.35
Material system 2: PMMA/Carbon
Temperature: 293K
Volume fraction of filler: 0.01
Material system 3: PET/Carbon
Temperature: 300K
Volume fraction of filler: 0.35

Desired properties

Features Value

𝜌𝑐 1477.5 Kg/m3

𝐸 14644.76 MPa

𝜎𝑦 140.84 MPa

𝑈𝑟 0.8972 MJ/m3

𝑈𝑡 4.3084 MJ/m3

Design recommendation: Add nanofiller in the matrix materials to augment stiffness
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