Spine Growth Prediction

« adolescent idiopathic scoliosis (AIS) HAEH7| EQtY =015
— A pure physics-based analysis of the spine and this condition are

currently not possible because of the complicated nature of the spinal
materials and the slow progress of the condition

— assess through a series of “snapshots” taken through X-rays
— do not provide much detail related to the interaction between the
vertebrae
« Step 1: Multimodal data generation and collection

— X-ray imaging taken from the front and the side in intervals specified
by the doctor

— These two image projections establish the position of the spine at a
given instant in time and allow for further measurements of the
progression of AlS
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« Steps 2, 3 and 4. Extraction of mechanistic features, knowledge-driven
dimension reduction, reduced-order surrogate models (blurry)
— compute the location of the vertebra of interest in three dimensions
— use of the snake method to create landmarks outlining each vertebra
— establish a three-dimensional bounding box for each vertebra
— 3D reference ATLAS model is deformed using the generated landmarks of the X-ray image

— The data for the 3D reduced order model were then used to refine the dimension of a 3D
detailed ATLAS model of the vertebrae Z
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« Step 5: Deep learning for regression and classification
— create a finite element model of the spine
— compute the contact pressure at key landmark locations of the surface of the vertebrae

— The predicted contact pressures from the finite element model were combined with the
clinical measurements of spine growth in a neural network

— This allowed for a more patient-specific prediction of vertebrae growth

Train for individual landmark
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« Step 6: System and design
— prognosis patient-specific spinal growth and deformity
— input: data collected and generated based on the X-ray imaging
— output: predicted stress data at landmark locations

-------------------------------------------------- )
Input layer e 1 Y s
B4-Machanistic NN-3 »0
— Output layer 100-Ground 1nh
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Indentation Analysis for Materials Property Prediction

« |Indentation: useful technique to extract mechanical properties of materials
— low-cost semi or nondestructive testing procedure
— less time-consuming than tensile testing
— providing important materials properties such as hardness and elastic modulus

 indenter of known shape (e.g., spherical, conical, etc.), size, and materials
IS penetrated through the workpiece

« load-displacement data (P-h curve) is recorded for both loading and
unloading of the indenter through the testing workpiece
— Important materials physics such as plasticity, yielding
— signature of the materials localized properties
— For metal and alloys, dislocations are generated and propagated
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« |ndentation test --> hardness data for a material at the location
— Hardness: localized property that varies from point to point of the materials
— related to other mechanical properties of the materials such as yield strength,
elastic properties, and hardening parameters.
* Predicting materials properties from the localized hardness data:
iInverse problem of the indentation
— AM: relation between the localized hardness and yield strength can be established
for an AM build Ti-64 alloy parts
* Objective: establish the relation of the experimental low resolution
materials property data with indentation testing data (hardness) first and
then transfer it for simulation data using transfer learning to find the
materials property (yield strength and hardening parameters) from an
Inverse problem
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« Step 1: Multimodal data generation and collection

— Nanoindentation data for AM built part for different processing conditions

— S3067 processing conditions having 144 indentation tests data: experimental data
set (high-fidelity testing data)
— 70 numerical indentation simulations (input: material property)

« Step 2: Mechanistic features extraction
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Mechanistic features ST unit
Curvature, C Pa (N/mz)
Slope of unloading curve, § N/m
Maximum load, P, N
Maximum depth, £, m

Plastic to total work ratio, % -
Hardness, H Pa
Reduced modulus, E* Pa

Yield strength, o, Pa
Hardening parameter, n -
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« Steps 3 and 4. Knowledge-driven dimension reduction and reduced

order surrogate models
— six important nondimensional groups

Reports: A Review Journal
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We provide an overview of the basic concepts of scaling and dimensional analysis, followed by a review of
some of the recent work on applying these concepts to modeling instrumented indentation measurements.
Specifically, we examine conical and pyramidal indentation in elastic—plastic solids with power-law work-
hardening, in power-law creep solids, and in linear viscoelastic materials. We show that the scaling approach to
indentation modeling provides new insights into several basic questions in instrumented indentation, including, what
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information is contained in the indentation load—displacement curves? How does hardness depend on the mechanical
properties and indenter geometry? What are the factors determining piling-up and sinking-in of surface profiles
around indents? Can stress—strain relationships be obtained from indentation load—displacement curves? How to
measure time dependent mechanical properties from indentation? How to detect or confirm indentation size effects?

C S W H The scaling approach also helps organize knowledge and provides a framework for bridging micro- and macro-
p scales. We hope that this review will accomplish two purposes: (1) introducing the basic concepts of scaling and
dimensional analysis to materials scientists and engineers, and (2) providing a better understanding of instrumented
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indentation measurements.
(C) 2004 Published by Elsevier B.V.

7~ N\
m| Q
* <<
E
I
—

m
*

m
*

-

3
=
m
*

Keywords: Scaling: Analysis; Indentation

Mechanistic Data Science System & Design - 71



« Step 5: Deep learning for regression

— experimental neural network
* two hidden layers with 50 neurons eact G |
« . L : Experimental |
+ “RelLU” type activation function

. _ o neural network
« Training, testing, validation: 70%, 20%,
for the dataset

« R2=0.70
— Physics-based neural network

* two additional hidden layers having 20
neurons each

- R2=0.74

Transfer
learning

Physics-based

neural network

Mechanistic learning
through regression

Dimensionless groups
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« Step 6: System and design for new materials system
— sample size: 360 um by 360 pm
— indenter is indented every 30 um apart
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Fig. 7.28 (a) Nondimensional hardness distribution over the AM sample surface, (b) MDS
predicted localized yield strength mapping
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Early Warning of Rainfall Induced Landslides

« A landslide occurs when the soil and rocks on a hillside give way and a
large section of the hillside suddenly moves down the hill
— Cost of landslides damage in the United States exceeds $1 billion per year
— Factors: soil type, rainfall, and slope inclination

— One key parameter is soil moisture due to rain and storms, which inspires the
construction of precipitation intensity-duration thresholds for shallow, rainfall
iInduced landslides

— Thresholds developed from limited historical databases of rainwater infiltration have
large variability in landslide occurrence times

« Landslide Early Warning Systems (LEWS)

— analyze the interplay of numerous key parameters and conditions for landslide
prediction
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« Step 1. Multimodal data generation and collection
— Many historical landslide databases do not include all these parameters

Failure time: time it takes for a landslide to occur

Rainfall intensity: amount of water incident on a soil per unit time (mm/h)

Soil cohesion: measure of the force that holds together solil particles.

Soil porosity: percentage of air or spaces between particles of soil in a given sample

Soil density: dry weight of the soil divided by its volume

Initial moisture conditions: difference in weight of the soil dry and weight of the soil when moist
Slope angle: angle measured from a horizontal plane to a point on the land

— Simulation

Mechanistic Data Science

physical evaluation of a factor of safety threshold to determine when the landslide occurs based
on the moisture content throughout the soil column

water infiltration events with different parameters to compute the time for the slope to become
unstable

Data were extracted from the database for these soil parameters
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— combining historical data with data generated from water infiltration simulations

Surface

Intensity vs Failure Time across different slope angles
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« Step 2: Extraction of mechanistic features

— input: rainfall intensity and slope angle (external conditions are more easily

measured compared to specific soil parameters)

— output: failure time Parameters

Units Range
Failure time h 1-20.000
Rainfall intensity mm/h 1-40
Slope angle ° 25-35
Soil cohesion ° 37.24
Porosity Yo 71.5
Soil density g/em’ 8.7
Initial soil moisture content kPa 3.57

« Steps 3, 4. knowledge-driven dimension reduction and reduced order

surrogate models

— rainfall intensity and slope angles are varied for data generation and database

preparation, which reduces the problem dimension significantly

Mechanistic Data Science
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« Step 5: Deep learning for regression
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k-fold cross-validation
MAE: 0.04~0.05, R2=0.96
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« Step 6: System and design for intensity-
duration thresholds

Mechanistic Data Science

trained neural network can then be used to
compute the rainfall intensity-duration
thresholds that indicate landslide risk

coastal and mountainous areas of California,
which are some of the areas most susceptible
to landslides in the United States
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