Midterm Exam

1. Build a linear regression model for these data. (20 pts)

Height (cm)	166	176	171	173	169
Weight (kg)	58	75	62	70	60

(1) Perform K-means on the dataset below. Circles are data points and there are two initial cluster centers at data points 5 and 7. Draw the cluster centers (as squares) and the decision boundaries that define each cluster. If no points belong to a particular cluster, assume its center does not change. Use as many of the pictures as you need for convergence. (5 pts)

(2) Give advantages of hierarchical clustering over K-means clustering, and advantages of K-means clustering over hierarchical clustering. (5 pts)

- 3. Suppose $\lambda_1 = 1$ and $\lambda_2 = 2$ are the eigenvalues of a matrix **A**, and $\mathbf{v}_1^T = \begin{bmatrix} 1 & 0 \end{bmatrix}$ and $\mathbf{v}_2^T = \begin{bmatrix} 1 & 1 \end{bmatrix}$ are the corresponding eigenvectors.
 - (1) Calculate the matrix A . (5 pts)
 - (2 Calculate the matrix A^8 , its eigenvalues and its eigenvectors. (5 pts)
 - (3) Let $u(t) = \begin{bmatrix} u_1(t) & u_2(t) \end{bmatrix}^T$ satisfy $u'(t) = \mathbf{A}u(t)$ with $u(0) = \begin{bmatrix} 0 & 1 \end{bmatrix}^T$. Solve for u(t). (10 pts)
- 4. All entries in the factorization of \mathbf{F}_6 involve powers of $\omega = \text{sixth root of 1}$. $\mathbf{F}_6 = \begin{bmatrix} \mathbf{I} & \mathbf{D} \\ \mathbf{I} & -\mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{F}_3 & \\ \mathbf{F}_3 \end{bmatrix} \begin{bmatrix} \text{even} \\ \text{odd} \end{bmatrix}$ Write down these factors and multiply to check. (10 pts)

Midterm Exam

5. Find a closet rank-1 approximation to these matrices (L^2 or Frobenius norm): (10 pts)

$$\mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 & 3 \\ 2 & 0 \end{bmatrix}, \ \mathbf{C} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$

- 6. (1) What multiple of $\mathbf{a} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$ should be subtracted from $\mathbf{b} = \begin{bmatrix} 4 & 0 \end{bmatrix}^T$ to make the result \mathbf{A}_2 orthogonal to \mathbf{a} ? Sketch a figure to show \mathbf{a} , \mathbf{b} and \mathbf{A}_2 . (5 pts)
 - (2) Complete the Gram-Schmidt process by factoring into QR. (5 pts)

7. You are given a design matrix
$$\mathbf{X} = \begin{bmatrix} 6 & -4 \\ -3 & 5 \\ -2 & 6 \\ 7 & -3 \end{bmatrix}$$
. Let's use PCA to reduce the dimension from 2 to 1.

- Compute the covariance matrix for the sample points. (Warning: observe that X is not centered.) Then compute the unit eigenvectors, and the corresponding eigenvalues, of the covariance matrix. Hint: If you graph the points, you can probably guess the eigenvectors. (10 pts)
- (2) Suppose we use PCA to project the sample points onto a one-dimensional space. What one-dimensional subspace are we projecting onto? For each of the four sample points in \mathbf{X} , write the coordinate (in principal coordinate space, not in \mathbb{R}^2) that the point is projected to. (5 pts)
- (3) Given a design matrix X that is taller than it is wide, prove that every right singular vector of X with singular value σ is an eigenvector of the covariance matrix with eigenvalue σ^2 . (5 pts)