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5. Orthogonal Matrices and Subspaces

• Orthogonal vectors x and y

• Orthogonal basis for a subspace

– Standard basis is orthogonal (even orthonormal) in Rn (i, j, k in R3) 

– Hadamard matrices Hn containing orthogonal bases of Rn

• Are those orthogonal matrices?

– Every subspace of Rn has an orthogonal basis: Gram-Schmidt idea

• Two independent vectors a and b in the plane: aTc=0

( ) 2 2 2

2 2 2

test
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• Orthogonal subspace R (row space) and N (null space)

– Ax=0: The row space of A is orthogonal to the nullspace of A

– ATy=0: The column space of A is orthogonal to the nullspace of AT

 
( )

( )

 
row 1 0 column 1 0

 means
,

each row
row  0 0column 
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Tm n
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⎯⎯→ = = =         =                

Ax 0
x A y y

x 0



Applied Mathematics for Deep Learning Highlights of Linear Algebra - 13

• Tall thin matrices Q with orthonormal columns: QTQ=I

1 2 3

if  multiplies any vector , the length of the vector does not change: 

if  mthe  rows cannot be orthogonal in : 

2 2 2 2 2 1
1 1 1

2 , 2 1 , 2 1 2
3 3 3

1 1 2 1 2 2

n Tm n m

 =


 

−     
    
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    
    − − −    

Q x Qx x

R QQ I

Q Q Q

"least squares"2

?

projection matrix: 

 is the orthogonal projection of  onto the column space of 

T
i i

T T


→ =


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Q Q I

P QQ P P P

Pb b P
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• Orthogonal matrices are square with orthonormal 

columns: QT=Q-1

1

rotate reflect

rotation through an angle 
reflection across the  line 

2

1 2

 is square

cos sin cos sin
,  

sin cos sin cos

, :  orthogonal

T

T
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   
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−
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Q Q I
Q Q Q

QQ I

Q Q

Q Q 1 2 :  orthogonal→Q Q
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All reflection matrices have eigenvalues 1 and 1
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Examples

– Rotations

– Reflections

– Hadamard matrices

– Haar wavelets

– Discrete Fourier Transform (DFT)

– Complex inner product
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6. Eigenvalues and Eigenvectors

( ) ( ) ( ) 2

1

eigenvectors of  don't change direction when you multiply them by 

:  eigenvector of 

:  eigenvector of 

 matrices n independent eigenvectors  to  with  diffe
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solution of differential equations

How useful? similar matrices same eigenvalues
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( ) ( )

( )

( ) 1
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1   controls a system of linear differential equations:  with 0

0
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( )
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3  diagonalize a matrix
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( )divide by 10 1 1 1 2

1 1Markov matrix with
positive columns adding to 1

1
18 3 0.8 0.3

Example: 2
2 7 0.2 0.7
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Geometric Multiplicity GM : count the independent eigenvectors, dim

Algebraic Multiplicity AM : count the repetitions of eigenvalues, d
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8. Singular Value Decomposition (SVD)

best matrices (real symmetric matrices ): real eigenvalues and orthogonal eigenvectors 

other matrices (  is not square, ): complex eigenvalues and not orthogonal eigenvectors

key point: two sets of

m n

S
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0
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 singular vectors 

 left singular vectors , ,  orthogonal in 
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
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     
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Proof of SVD

( )

2 2
1
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
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det
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 

 

 
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+ = + − = +     
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   
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• Columns of V are orthogonal eigenvectors of ATA

• Av=u gives orthonormal eigenvectors u of AAT

• 2 = eigenvalue of ATA = eigenvalue of AAT ≠ 0

• Why is the SVD so important?

– It separates the matrix into rank one pieces like the other 

factorizations A=LU, A=QR, S=QΛQT

– Those pieces come in order of importance

– First piece σ1u1v1
T is the closest rank one matrix to A

– Sum of the first k pieces is best possible for rank k

1 1 1  is the best rank  approximation to :

If  has rank k then 

T T
k k k k

k

k = + +

−  −

A u v u v A

B A A A B
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Example

• If S=QΛQT is symmetric positive definite, what is its SVD?

• If S=QΛQT has a negative eigenvalue(Sx=-x), what is the 

singular value and what are the vectors v and u?

• If A=Q is an orthogonal matrix, why does every singular value 

equal 1?

• Why are all eigenvalues of a square matrix A less than or equal 

to σ1?

• If A=xyT has rank 1, what are u1, v1, σ1? Check that | λ1 |≤ σ1

1 1 1 2 2 2

3 0 25 20 9 12
Find the matrices , ,  for ,

4 5 20 25 12 41

1 3 45 1 11 1
, ,

3 1 1 110 25

T T

T T 

     
= → = =     
     

 − −   
= = =    

     

+ =

U Σ V A A A AA

U Σ V

u v u v A
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Geometry of SVD

• A = (rotation)(stretching)(rotation) UVT for every A

• If A is m by n and B is n by m, then AB and BA have 

the same nonzero eigenvalues

  
numbers  twoangles,  two:parameters 4

2

1
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








−















 −
=





















dc

ba
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First singular vector v1

( )

( )

1 1

1 1 1 1 1 1 1

2

2

Maximize the ratio The maximum is  at the vector 

maximizing  is :  the longest axis of the ellipse ,  1
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Polar decomposition

( )( )

polar formcomplex number

2 2

:  orthogonal matrix 

0: positive semideinite matrix 

if  is invertible, then  and  are also invertible
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9. Principal Components and

the Best Low Rank Matrix

• major tool in understanding a matrix of data

– Schmidt(1907)→ Eckart and Young(1936, ||A||F)→Mirsky(1955)

• Eckart-Young low rank approximation theorem

– The norm of A−Ak is below the norm of all other A−Bk

– Ak = σ1u1v1
T + …+ σkukvk

T

( )

( )

1 1 1

2

12 0

2 2

1

1

Eckart-Young: If  has rank , then 

:  the closest rank  matrix to 

Spectral norm: max  norm

Frobenius norm: 

Nuclear norm: the trace norm
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−  −

= + +

= =

= + +

= + +
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I
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
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Eckart-Young Theorem

• Best approximation by Ak

( )
( )

2

1
0

Eckart-Young in : 

If rank  , then max

Eckart-Young in the Frobenius norm: 

If  is closest to , then  is closest to 

,
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T
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
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    
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k
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Principal Component Analysis

• Understand n sample points in m-dimensional space

• Data matrix A0: n samples, m variables

– Find the average (the sample mean) along each row of A0

– Subtract that mean from m entries in the row

– Centered matrix A=A0-(mean)

– How will linear algebra find that closest line through (0,0)? It 

is in the direction of the first singular vector u1 of A?
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• Statistics behind PCA

– Variances: diagonal entries of the matrix AAT

– Covariances: off- diagonal entries of the matrix AAT

– Sample covariance matrix: S=AAT/(n-1)

• Geometry behind PCA

– Sum of squared distances from the data points to the line is 

a minimum

• Linear algebra behind PCA

– Singular values σi and singular vectors ui of A

– Total variance: 
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11. Norms of Vectors and Matrices

– The norm of a nonzero vector v is a positive number ||v||

– That number measures the “length” of the vector

every norm for vectors or functions or matrice must share these two properties 
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• Important vector norms and a failure
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• Minimum of ||v||p on the line a1v1+ a2v2 =1

• Inner products and S=norm
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Norm of Matrices

• Frobenius Norm

• Matrix Norm ||A|| from vector norm ||v||

• Nuclear Norm
2 2 2

11 1

2 2

1

2 2 2

1

0

2

12

1 1

1

trace of sum of eigenvalues

max largest growth factor

 norm :  largest singular value  of 

 norm:  largest  

n mnF

T T

rF FF F

T

rF

a a a

 

 





 = + + + +



= = = = + +


= = = + +


= =

=

=

v

A

A UΣV ΣV Σ

A A A

Av
A

v

A A

A

1

1

norm of the columns of 

 norm :  largest  norm of the rows of 

trace normrN
 












 =

= + + =

A

A A

A


	슬라이드 1: Highlights of Linear Algebra
	슬라이드 2: 1. Multiplication Ax Using Columns of A
	슬라이드 3
	슬라이드 4: 2. Matrix-Matrix Multiplication AB
	슬라이드 5: Insight from Column times Row
	슬라이드 6: 3. Four Fundamental Subspaces
	슬라이드 7
	슬라이드 8
	슬라이드 9
	슬라이드 10: 4. Elimination and A=LU
	슬라이드 11: 5. Orthogonal Matrices and Subspaces
	슬라이드 12
	슬라이드 13
	슬라이드 14
	슬라이드 15
	슬라이드 16: Examples
	슬라이드 17: 6. Eigenvalues and Eigenvectors
	슬라이드 18
	슬라이드 19
	슬라이드 20: 7. Symmetric Positive Definite Matrices
	슬라이드 21
	슬라이드 22: 8. Singular Value Decomposition (SVD)
	슬라이드 23: Proof of SVD
	슬라이드 24
	슬라이드 25: Example
	슬라이드 26: Geometry of SVD
	슬라이드 27: First singular vector v1
	슬라이드 28: Polar decomposition
	슬라이드 29: 9. Principal Components and the Best Low Rank Matrix
	슬라이드 30: Eckart-Young Theorem
	슬라이드 31: Principal Component Analysis
	슬라이드 32:                                                                     
	슬라이드 33: 11. Norms of Vectors and Matrices
	슬라이드 34:                                                                       
	슬라이드 35:                                                                                  
	슬라이드 36: Norm of Matrices
	슬라이드 37: Ax=b in Many Variations
	슬라이드 38: Least Squares: Four Ways (1)
	슬라이드 39: Least Squares: Four Ways (2)
	슬라이드 40: Least Squares: Four Ways (3)
	슬라이드 41
	슬라이드 42: 인공지능(AI), 기계학습(ML)
	슬라이드 43: 학습방법
	슬라이드 44: 교사학습
	슬라이드 45: 손실함수와 구배강하법
	슬라이드 46
	슬라이드 47
	슬라이드 48: 대표적 분류모델
	슬라이드 49: 공통 특징 (LR, NN, DL)
	슬라이드 50: 예측모델의 구조
	슬라이드 51: 신경망모델의 구조
	슬라이드 52: 딥러닝모델의 구조

