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5. Orthogonal Matrices and Subspaces

• Orthogonal vectors x and y

• Orthogonal basis for a subspace

– Standard basis is orthogonal (even orthonormal) in Rn (i, j, k in R3) 

– Hadamard matrices Hn containing orthogonal bases of Rn

• Are those orthogonal matrices?

– Every subspace of Rn has an orthogonal basis: Gram-Schmidt idea

• Two independent vectors a and b in the plane: aTc=0
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• Orthogonal subspace R (row space) and N (null space)

– Ax=0: The row space of A is orthogonal to the nullspace of A

– ATy=0: The column space of A is orthogonal to the nullspace of AT
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• Tall thin matrices Q with orthonormal columns: QTQ=I
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if  multiplies any vector , the length of the vector does not change: 
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• Orthogonal matrices are square with orthonormal 

columns: QT=Q-1
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Examples

– Rotations

– Reflections

– Hadamard matrices

– Haar wavelets

– Discrete Fourier Transform (DFT)

– Complex inner product
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6. Eigenvalues and Eigenvectors
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8. Singular Value Decomposition (SVD)

best matrices (real symmetric matrices ): real eigenvalues and orthogonal eigenvectors 

other matrices (  is not square, ): complex eigenvalues and not orthogonal eigenvectors

key point: two sets of

m n

S

A

( )

( )

( )
1 2

1

1

1 1 1

rank
0

 right singular vectors , ,  orthogonal in 
 singular vectors 

 left singular vectors , ,  orthogonal in 

connection between  's and  's

, ,

r

n

m

r r r

n

m

r

n m

n

m

  

 

=
   





= =

A

v v R

u u R

v u

Av u Av u

( ) ( )
( ) ( )

1

1

 's in 

 's in 

1

1 1

1 1 1

square orthogonal unit vector: 

, , ,

0

0

T

T

r n

n r N

m r N

T

r n r m r T






−

+

−

−

=

= =

      =
     
      =
     = →

=     
     
     
     

v A

u A

V V

Av 0 Av 0

AV UΣ

A UΣV
A v v v u u u

u v

( )

1
reduced form

1 1

row space column space

 pieces of rank 1

T
r r r

r r r r r

r

r












+ +
 →

     
     

= ⎯⎯⎯⎯⎯→ = → =
     
          

u v

A

AV UΣ AV U Σ A v v u u



Applied Mathematics for Deep Learning Highlights of Linear Algebra - 23

Proof of SVD
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• Columns of V are orthogonal eigenvectors of ATA

• Av=u gives orthonormal eigenvectors u of AAT

• 2 = eigenvalue of ATA = eigenvalue of AAT ≠ 0

• Why is the SVD so important?

– It separates the matrix into rank one pieces like the other 

factorizations A=LU, A=QR, S=QΛQT

– Those pieces come in order of importance

– First piece σ1u1v1
T is the closest rank one matrix to A

– Sum of the first k pieces is best possible for rank k

1 1 1  is the best rank  approximation to :

If  has rank k then 
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Example

• If S=QΛQT is symmetric positive definite, what is its SVD?

• If S=QΛQT has a negative eigenvalue(Sx=-x), what is the 

singular value and what are the vectors v and u?

• If A=Q is an orthogonal matrix, why does every singular value 

equal 1?

• Why are all eigenvalues of a square matrix A less than or equal 

to σ1?

• If A=xyT has rank 1, what are u1, v1, σ1? Check that | λ1 |≤ σ1
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Geometry of SVD

• A = (rotation)(stretching)(rotation) UVT for every A

• If A is m by n and B is n by m, then AB and BA have 

the same nonzero eigenvalues
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First singular vector v1
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Polar decomposition
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9. Principal Components and

the Best Low Rank Matrix

• major tool in understanding a matrix of data

– Schmidt(1907)→ Eckart and Young(1936, ||A||F)→Mirsky(1955)

• Eckart-Young low rank approximation theorem

– The norm of A−Ak is below the norm of all other A−Bk

– Ak = σ1u1v1
T + …+ σkukvk

T
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Eckart-Young Theorem

• Best approximation by Ak
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Principal Component Analysis

• Understand n sample points in m-dimensional space

• Data matrix A0: n samples, m variables

– Find the average (the sample mean) along each row of A0

– Subtract that mean from m entries in the row

– Centered matrix A=A0-(mean)

– How will linear algebra find that closest line through (0,0)? It 

is in the direction of the first singular vector u1 of A?
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• Statistics behind PCA

– Variances: diagonal entries of the matrix AAT

– Covariances: off- diagonal entries of the matrix AAT

– Sample covariance matrix: S=AAT/(n-1)

• Geometry behind PCA

– Sum of squared distances from the data points to the line is 

a minimum

• Linear algebra behind PCA

– Singular values σi and singular vectors ui of A

– Total variance: 
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11. Norms of Vectors and Matrices

– The norm of a nonzero vector v is a positive number ||v||

– That number measures the “length” of the vector

every norm for vectors or functions or matrice must share these two properties 

of the absolute value  of a number

multiply  by  (rescaling)
All norms 

add  to  (Triangle inequality)
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• Important vector norms and a failure



Applied Mathematics for Deep Learning Highlights of Linear Algebra - 35

• Minimum of ||v||p on the line a1v1+ a2v2 =1

• Inner products and S=norm
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Norm of Matrices

• Frobenius Norm

• Matrix Norm ||A|| from vector norm ||v||

• Nuclear Norm
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