Graph (1)

« Consist of a set of nodes and a set of edges between those nodes

* Incidence matrix A (mxn) continuous discrete
— medges and n nodes function vector
— Dimensions of the four subspaces derivative difference
« Graph Laplacian matrix ATA integral sum
— Symmetric, positive semidefinite caleulus Linear algebra

— Degree matrix D, adjacency matrix B
L1

(N(A): constant vector 1

(AT ) n 1 rows of A that produce a tree in the graph (a tree has no loop)
C(A):(n—1) columns of A
T

®

=

(A ) flows around the (m—n+1) small loops in the graph
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Graph (2)

« Complete graph: every pair of nodes is connected by an edge
« Tree: there are no loops in the connected graph
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Kirchhoff’'s Current Law

« KCL = balance of currents (forces, money)

— flow into each node equals flow out from that node

— Key to solving ATy=0 is to look at the small loops in the graph

— (m-n+1) independent solutions
— (number of nodes) — (number of edges) + (number of loops) = 1
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ATCA Framework in Applied Mathematics

« Graphs are perfect examples for three equations in engineering,
sclence, economics

* Weighted graph Laplacian

» Describe a system in steady state equilibrium

Jvoltages x =(x,,x,,X,;,x,) at the four nodes

currents y = (31,5, Y5, V45 Vs s ) atalong the six edges
Voltage differences across edges e = Ax e, = (voltage at end node 2)—(voltage at end node 1)

J Ohm's law on each edge y =Ce current y, = (conductance ) (voltage)

| Kirchhoff's Law with current sources f = A’y current sources f into nodes balance the internal currents y

—>A'CAx=f > Kx=f

K : symmetric, positive semidefinite —2udveondiion o peqyced K : symmetric, positive definite

X4 :0
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Example with Two Clusters

* How to understand a graph with many nodes?
— Separate nodes into two or more clusters
— Human Genome project: cluster genes that show highly correlated
* Break a graph in two pieces
— Forload balancing in high computing, assign equal work to two processors
— For social networks, identify two distinct groups
— Segment an image
— Reorder rows and columns of a matrix to make off-diagonal blocks sparse

(0,2) A {o 1 30 —3}{—1 2 2 -1 —1}

o112 0] |23 11 23 23
, Approximate an mx n matrix of A by CR = (mxk)(kxn)

-1 271 0 0 1 1
(0,0) (1,17 o AzCR{z/s J{o 110 o}
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Linear Algebra

Four Methods for Clustering

Find the Fiedler vector z that solves ATCAz=ADz. D normalizes the Laplacian.
Positive and negative components of eigenvector of A, indicate two clusters of
nodes.

Replace the graph Laplacian by the modularity matrix M=(adjacency matrix)-
dd'/2m. Choose the eigenvector that comes with the largest eigenvalue of M.
vector d gives the degrees of the n nodes.

Find the minimum normalized cut the separates the nodes in two clusters P and Q.
The unnormalized measure of a cut is the sum of edge weights wij across that cut.
Those edges connect a node in P to a node outside P.

K-means
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Linear Algebra

Spectral Clustering

ATCA—2m=d 1, =D 2 A"CAD"? =I-N where n, = —— (normalized weights)

dd.

i
L =1—N is like a correlation matrix in statistics

L is symmetric positive semidefinite

The eigenvectors for A =0 is u = (\/dT, . ,\/cTn) Then Lu=D"?A’CA1=0.

The second eogenvector v of L minimizes the Rayleigh quotient on a subspace.

x’Lx Vv'Lv

A, = smallest nonzero eigenvalue of L - min ——=——=4, atx=v
subjectto ¥’ x V'V
x’ u=0
_ _ _pV2 :
Lv=D"A"CAD v = Av 2D >A"CAz=ADz with1'Dz=0
normalized Fiedler vector
T T AT 2
O XLx e _ y'A’CcAy 22w (3-y)
min ———=>% > min > ™ Yy _ Ud =} aty=z
subjectto ¥’ Y subject to Z .
x u=0 1" Dy=0 y oy 2
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Code: MATLAB

N=10; W=zeros(2*N,2*N); % Generate 2N nodes in two clusters
rand('state',100) % rand repeats to give the same graph
fori=1:2*N-1

for j=i+1:2*N

p=0.7-0.6*mod(j-i,2); % p=0.1 when j-i is odd, 0.7 else
W(i,j)=rand<p; % Insert edges with probability p

end % The weights are wi,j=1 (or 0)

end % So far W is strictly upper triangular

W=W+W'; D=diag(sum(W)); % Adjacency matrix W, degress in D
G=D-W; [V,E]=eig(G,D); % Eigenvalues of Gx=(lambda)Dx in E
[a,b]=sort(diag(E)); z=V(:,b(2));% Fiedler eigenvector z for (lambda)2
plot(sort(z),'.-'); % Show +- groups of Fiedler components

theta=[1:N]*2*pi/N; x=zeros(2*N,1); y=x; % Angles to plot graph
X(1:2:2*N-1)=cos(theta)-1; x(2:2:2*N)=cos(theta)+1;
y(1:2:2*N-1)=sin(theta)-1; x(2:2:2*N)=sin(theta)+1;

print theta,x,y

subplot(2,2,1), gplot(W,[x,y]), title('Graph')

subplot(2,2,2), spy(W), title('Adjacency matrix W')

subplot(2,2,3), plot(z(1:2:2*N-1),'ko"), hold on

plot(z(2:2:2*N),'r*"), hold off, title('Fiedler components’)
[c,d]=sort(z); subplot(2,2,4), spy(W(d,d)), title('Reordered Matrix W')

Linear Algebra
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Minimum Cut

(edge) weight across cut: links(P)=>_w, foriin P andj notin P
size of cluster: Szze = Z w, foriinP

links (P) lmks( )
Szze(P) Slze( )
(

K
normalized K -cut: Neut(F,...,P,) = Z links (P)

i Slze(R)

normalized cut weight: Ncut (P Q)

| cuts connected to eigenvectors |
1 : mPify =p
perfect indicator of a cut: vector y with all components equal to p or —¢g (two values only) — node i goes n 0 if
Ly, =-q
1" Dy will multiply one group of d, by p and the other group by —g.)
The first d, add to size(P)=sum of d, (i in P). - — 1" Dy =0 — psize(P) = gsize(Q)

The second group of d, add to Size(Q)

TATCAy ZZ ( ) B (p+q)2 linkS(P,Q) B (p+q)linkS(P,Q) B Iinks(P,Q) N links (P,Q)
y' Dy Zdyl - pzsize(P)+qzsize(Q) - pSize(P) N Size(P) Size(Q)
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Clustering by k-means

n points a,,...,a, in d-dimensional space — partition those points into & clusters
clusters B,...,P, have centroids ¢,,...,c,

sum of a's L. 2 )
C. = — minimize Z Hc — aH for all a's in cluster PJ

7 number of a's

2 .
for a, in cluster P,

k k
clustering: minimize D = ZD = Z Hc ;A
j=1 j=1

step 1: find the centroids ¢, of the (old) clustering £,...,5.

step 2: find the (new) clustering that puts a in P, if ¢, is the closest centroid.
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Weights and Kernel Method

2 _sz‘ai P
. C —(aim j)

=
Zwl.

weights in the distance: d (x,a,) =w, [x —a,

2

ch —a,| =c¢;-¢;—2¢c;-a,+a, a,
Kernel method: weighted kernel matrix K has entries a, - a,

nodes are point X, in input space - a, = ¢(xi) points 1n a high-dimensional feature space

2 ZWiWZKﬂ ZWiKz‘l o
e, —a, = YL -
Jj i 2 ZW ii O+ p
(Zwi) ! o+ 3 X /£ . Ak
o +
o , d Oo ODD —— . ﬁ
(vision) polynomial K, =(x,-x,+c) o - o o
HX' ~X, H2 Input space Kernel function Feature space
(statistics) Gaussian K, =exp| ———
20
@ © @ ® o © @ ®
. . . 0] ® ® @ @
(neural networks) ~ Sigmoid K, =tanh(cx; -x, +0) AR T o2o 6% o (e
® o0 % o e /
e0g ® @ 00 @, @ @eg @
oo%ooo g%oooooo oo%ooo

Non-linear separability ====» Use of a kernel mapping ¢ === Decision boundary in the original space
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Applications of Clustering

« Learning theory, training sets, neural networks, Hidden Markov Models
« Classification, regression, pattern recognition, Support Vector Machines

« Statistical learning, maximum likelihood, Bayesian statistics, spatial
statistics, kriging, time series, ARMA models, stationary processes

« Social networks, organization theory

« Data mining, document indexing, image retrieval, kernel-based learning
« Bioinformatics, microarray data, systems biology

« Cheminformatics, drug design, decision trees

« Information theory, vector quantization, rate distortion theory

* |mage segmentation, computer vision, texture, min cut

* Predictive control, feedback samples, robotics, adaptive control
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