
Linear Algebra Fourier Transform - 1

Graph (1)

• Consist of a set of nodes and a set of edges between those nodes

• Incidence matrix A (mxn)

– m edges and n nodes

– Dimensions of the four subspaces

• Graph Laplacian matrix ATA

– Symmetric, positive semidefinite

– Degree matrix D, adjacency matrix B
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Graph (2)

• Complete graph: every pair of nodes is connected by an edge

• Tree: there are no loops in the connected graph
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Kirchhoff’s Current Law

• KCL = balance of currents (forces, money)

– flow into each node equals flow out from that node

– Key to solving ATy=0 is to look at the small loops in the graph

– (m-n+1) independent solutions

– (number of nodes) – (number of edges) + (number of loops) = 1

1

2

3

1 1 1 1 2

4

5

6

1 1 0 0 1 0

1 0 1 0 1 1 0 0 0 1 1 0

0 1 1 0 1 0 1 1 0 0 1 1
0,  0 ,  

0 1 0 1 0 1 1 0 1 0 0 1

0 0 1 1 0 0 0 1 1 1 0 1

1 0 0 1 0 0

T

y

y

y

y

y

y

− −      
      

− − − −        
        − − − −
 = → = = = → = =      
 − − −      
        −  

      
−        

A A x A y y y 3

1

2 2

3

0

1

0
,  

0

1

1

1 1 0

1 0 1
0

0 1 0

0 0 1

T

y

y

y

 
 
−
 
 

=  
 
 −
 
 

− − 
  

−   = =
  
    

 

y

A y



Linear Algebra Fourier Transform - 4

ATCA Framework in Applied Mathematics

• Graphs are perfect examples for three equations in engineering, 

science, economics

• Weighted graph Laplacian

• Describe a system in steady state equilibrium
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Example with Two Clusters

• How to understand a graph with many nodes? 

– Separate nodes into two or more clusters

– Human Genome project: cluster genes that show highly correlated

• Break a graph in two pieces

– For load balancing in high computing, assign equal work to two processors

– For social networks, identify two distinct groups

– Segment an image

– Reorder rows and columns of a matrix to make off-diagonal blocks sparse
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Four Methods for Clustering

– Find the Fiedler vector z that solves ATCAz=λDz. D normalizes the Laplacian. 

Positive and negative components of eigenvector of λ2 indicate two clusters of 

nodes.

– Replace the graph Laplacian by the modularity matrix M=(adjacency matrix)-

ddT/2m. Choose the eigenvector that comes with the largest eigenvalue of M. 

vector d gives the degrees of the n nodes.

– Find the minimum normalized cut the separates the nodes in two clusters P and Q. 

The unnormalized measure of a cut is the sum of edge weights wij across that cut. 

Those edges connect a node in P to a node outside P.

– K-means
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Spectral Clustering
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Code: MATLAB

N=10; W=zeros(2*N,2*N); % Generate 2N nodes in two clusters
rand('state',100) % rand repeats to give the same graph
for i=1:2*N-1
for j=i+1:2*N
p=0.7-0.6*mod(j-i,2); % p=0.1 when j-i is odd, 0.7 else
W(i,j)=rand<p; % Insert edges with probability p
end % The weights are wi,j=1 (or 0)
end % So far W is strictly upper triangular
W=W+W'; D=diag(sum(W)); % Adjacency matrix W, degress in D
G=D-W; [V,E]=eig(G,D); % Eigenvalues of Gx=(lambda)Dx in E
[a,b]=sort(diag(E)); z=V(:,b(2));% Fiedler eigenvector z for (lambda)2
plot(sort(z),'.-'); % Show +- groups of Fiedler components

theta=[1:N]*2*pi/N; x=zeros(2*N,1); y=x; % Angles to plot graph
x(1:2:2*N-1)=cos(theta)-1; x(2:2:2*N)=cos(theta)+1;
y(1:2:2*N-1)=sin(theta)-1; x(2:2:2*N)=sin(theta)+1;
print theta,x,y
subplot(2,2,1), gplot(W,[x,y]), title('Graph')
subplot(2,2,2), spy(W), title('Adjacency matrix W')
subplot(2,2,3), plot(z(1:2:2*N-1),'ko'), hold on
plot(z(2:2:2*N),'r*'), hold off, title('Fiedler components')
[c,d]=sort(z); subplot(2,2,4), spy(W(d,d)), title('Reordered Matrix W')
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Minimum Cut
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Clustering by k-means
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Weights and Kernel Method
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Applications of Clustering

• Learning theory, training sets, neural networks, Hidden Markov Models

• Classification, regression, pattern recognition, Support Vector Machines

• Statistical learning, maximum likelihood, Bayesian statistics, spatial 

statistics, kriging, time series, ARMA models, stationary processes

• Social networks, organization theory

• Data mining, document indexing, image retrieval, kernel-based learning

• Bioinformatics, microarray data, systems biology

• Cheminformatics, drug design, decision trees

• Information theory, vector quantization, rate distortion theory

• Image segmentation, computer vision, texture, min cut

• Predictive control, feedback samples, robotics, adaptive control
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