
Linear Algebra Fourier Transform - 1

Graph (1)

• Consist of a set of nodes and a set of edges between those nodes

• Incidence matrix A (mxn)

– m edges and n nodes

– Dimensions of the four subspaces

• Graph Laplacian matrix ATA

– Symmetric, positive semidefinite

– Degree matrix D, adjacency matrix B

continuous discrete

function vector

derivative difference

integral sum

calculus Linear algebra

()

() ()

() ()

() ()

: constant vector

: 1 rows of that produce a tree in the graph (a tree has no loop)

: 1 columns of

: flows around the 1 small loops in the graph

T

T

N

C n

C n

N m n




−


−


− +

A 1

A A

A A

A

Linear Algebra Fourier Transform - 2

Graph (2)

• Complete graph: every pair of nodes is connected by an edge

• Tree: there are no loops in the connected graph

()

()

() ()1 2 3

tree: 1

1
complete graph: 1

2

1 1 0 0

1 0 1 0
1 1 0 0 1 1 0 0

0 1 1 0 1
, 1 0 1 0 , 1 0 1 0 any graph: 1 1

0 1 0 1 2
0 1 0 1 1 0 0 1

0 0 1 1

1 0 0 1
n

m n n

n m n n

−

= −

− 
 
−
  − −   
 −    

= = − = − → −   −     −     − −    −
 
− 

A A A

Linear Algebra Fourier Transform - 3

Kirchhoff’s Current Law

• KCL = balance of currents (forces, money)

– flow into each node equals flow out from that node

– Key to solving ATy=0 is to look at the small loops in the graph

– (m-n+1) independent solutions

– (number of nodes) – (number of edges) + (number of loops) = 1

1

2

3

1 1 1 1 2

4

5

6

1 1 0 0 1 0

1 0 1 0 1 1 0 0 0 1 1 0

0 1 1 0 1 0 1 1 0 0 1 1
0, 0 ,

0 1 0 1 0 1 1 0 1 0 0 1

0 0 1 1 0 0 0 1 1 1 0 1

1 0 0 1 0 0

T

y

y

y

y

y

y

− −      
      

− − − −        
        − − − −
 = → = = = → = =      
 − − −      
        −  

      
−        

A A x A y y y 3

1

2 2

3

0

1

0
,

0

1

1

1 1 0

1 0 1
0

0 1 0

0 0 1

T

y

y

y

 
 
−
 
 

=  
 
 −
 
 

− − 
  

−   = =
  
    

 

y

A y

Linear Algebra Fourier Transform - 4

ATCA Framework in Applied Mathematics

• Graphs are perfect examples for three equations in engineering,

science, economics

• Weighted graph Laplacian

• Describe a system in steady state equilibrium

()

()

() ()

1 2 3 4

1 2 3 4 5 6

1

voltages , , , at the four nodes

currents , , , , , atalong the six edges

Voltage differences across edges voltage at end node 2 voltage at end node 1

Ohm's law on each edg

x x x x

y y y y y y

e

=


=

= = −

x

y

e Ax

()()1

boundary co

e current conductance voltage

Kirchhoff's Law with current sources current sources into nodes balance the internal currents

: symmetric, positive definits emi e

T

T

y




= =
 =

→ = → =

y Ce

f A y f y

A CAx f Kx f

K
4

ndition

0
reduced : symmetric, positive definite

x =
⎯⎯⎯⎯⎯⎯→ K

Linear Algebra Fourier Transform - 5

Example with Two Clusters

• How to understand a graph with many nodes?

– Separate nodes into two or more clusters

– Human Genome project: cluster genes that show highly correlated

• Break a graph in two pieces

– For load balancing in high computing, assign equal work to two processors

– For social networks, identify two distinct groups

– Segment an image

– Reorder rows and columns of a matrix to make off-diagonal blocks sparse

()()

0 1 3 0 3 1 2 2 1 1

0 1 1 2 0 2 3 1 1 2 3 2 3

Approximate an matrix of by

1 2 1 0 0 1 1

2 3 1 0 1 1 0 0

m n m k k n

− − − −   
=    
   

 =  

−   
 =    

   

A

A CR

A CR

Linear Algebra Fourier Transform - 6

Four Methods for Clustering

– Find the Fiedler vector z that solves ATCAz=λDz. D normalizes the Laplacian.

Positive and negative components of eigenvector of λ2 indicate two clusters of

nodes.

– Replace the graph Laplacian by the modularity matrix M=(adjacency matrix)-

ddT/2m. Choose the eigenvector that comes with the largest eigenvalue of M.

vector d gives the degrees of the n nodes.

– Find the minimum normalized cut the separates the nodes in two clusters P and Q.

The unnormalized measure of a cut is the sum of edge weights wij across that cut.

Those edges connect a node in P to a node outside P.

– K-means

Linear Algebra Fourier Transform - 7

Spectral Clustering

()

()

normalized 1 2 1 2

1

 where normalized weights

 is like a correlation matrix in statistics

 is symmetric positive semidefinite

The eigenvectors for 0 is , , . The

ijT T

ij

i j

n

w
n

d d

d d

− −⎯⎯⎯⎯→ = = − =

= −

= =

A CA L D A CAD I N

L I N

L

u
1 2

2 2
subject to

0

1 2 1 2

n 0.

The second eogenvector of minimizes the Rayleigh quotient on a subspace.

smallest nonzero eigenvalue of min at
T

T

T T

T T

T

 



−

=

− −

= =

 
 = → = = =
 
 

= =

x u

Lu D A CA1

v L

x Lx v Lv
L x v

x x v v

Lv D A CAD v v

()

1 2

1 2

normalized Fiedler vector

2

22subject to subject to

0 0

 with 0

min min at
T T

T T

T T T
ij i j

T T

i i

w y y

d y





−=

=

= =

⎯⎯⎯⎯⎯⎯⎯→ = =

−
⎯⎯⎯→ = = =




z D v

x D y

x u 1 Dy

A CAz Dz 1 Dz

x Lx y A CAy
y z

x x y Dy

Linear Algebra Fourier Transform - 8

Code: MATLAB

N=10; W=zeros(2*N,2*N); % Generate 2N nodes in two clusters
rand('state',100) % rand repeats to give the same graph
for i=1:2*N-1
for j=i+1:2*N
p=0.7-0.6*mod(j-i,2); % p=0.1 when j-i is odd, 0.7 else
W(i,j)=rand<p; % Insert edges with probability p
end % The weights are wi,j=1 (or 0)
end % So far W is strictly upper triangular
W=W+W'; D=diag(sum(W)); % Adjacency matrix W, degress in D
G=D-W; [V,E]=eig(G,D); % Eigenvalues of Gx=(lambda)Dx in E
[a,b]=sort(diag(E)); z=V(:,b(2));% Fiedler eigenvector z for (lambda)2
plot(sort(z),'.-'); % Show +- groups of Fiedler components

theta=[1:N]*2*pi/N; x=zeros(2*N,1); y=x; % Angles to plot graph
x(1:2:2*N-1)=cos(theta)-1; x(2:2:2*N)=cos(theta)+1;
y(1:2:2*N-1)=sin(theta)-1; x(2:2:2*N)=sin(theta)+1;
print theta,x,y
subplot(2,2,1), gplot(W,[x,y]), title('Graph')
subplot(2,2,2), spy(W), title('Adjacency matrix W')
subplot(2,2,3), plot(z(1:2:2*N-1),'ko'), hold on
plot(z(2:2:2*N),'r*'), hold off, title('Fiedler components')
[c,d]=sort(z); subplot(2,2,4), spy(W(d,d)), title('Reordered Matrix W')

Linear Algebra Fourier Transform - 9

Minimum Cut

() ()

()

()
()

()

()

()

()
()

()
1

edge weight across cut: for in and not in

size of cluster: for in

normalized cut weight: ,

normalized -cut: , ,

ij

ij

i

k

i i

links P w i P j P

size P w i P

links P links Q
Ncut P Q

size P size Q

links P
K Ncut P P

size P

=

=

= +

=





 

1

cuts connected to eigenvectors

in if
perfect indicator of a cut: vector with all components equal to or (two values only) node goes

in if

 will multiply one group of

K

i

i

T

P y p
p q i

Q y q

d

=

=
− → 

= −



y

1 Dy

() ()

()

() ()

() () ()

() ()

()
2 2

2 2 2

 by and the other group by .

The first add to sum of in . 0

The second group of add to

,

i

T

i i

i

T T
ij i j

T

i i

p q

d size P d i P psize P qsize Q

d size Q

w y y p q links P Q p q li

d y p size P q size Q

−


= → = → =



− + +
= = =

+




1 Dy

y A CAy

y Dy

()

()

()

()

()

()
()

, , ,
,

nks P Q links P Q links P Q
Ncut P Q

psize P size P size Q
= + =

Linear Algebra Fourier Transform - 10

Clustering by k-means

1

1 1

2

 points , , in d-dimensional space partition those points into clusters

clusters , , have centroids , ,

sum of 's
 minimize for all 's in cluster

number of 's

clustering: mi

n

k k

j j

n k

P P

P

→

= → −

a a

c c

a
c c a a

a

2

1 1

1

nimize for in cluster

step 1: find the of the (old) clustcentroids

(.

ering , , .

step 2: find the that puts in if c is the closest centroinew) lusterin dg

k k

j j i i j

j j

k

j j

j

D D P

P P

P

= =

= = −  c a

c

c

a

a

Linear Algebra Fourier Transform - 11

Weights and Kernel Method

() ()

()

2

2

weights in the distance: , , in

2

Kernel method: weighted kernel matrix has entries

nodes are point in input space points in a high-d

i i

i i i j i j

i

j i j j j i i i

i l

i i i

w
d w P

w



= − =

− =  −  + 



→ =




a
x a x a c a

c a c c c a a a

K a a

x a x

()

() ()

()

() ()

2

2

2

2

imensional

2

vision polynomial

statistics Gaussian exp
2

neural networks Sigmoid

e

tan

f ature space

h

i l il i il

j i ii

ii

d

il i l

i l

il

il i l

ww w

ww

c

c





− = − +

=  +

 −
= − 

 
 

=  +

 
 



K K
c a K

K x x

x x
K

K x x

Linear Algebra Fourier Transform - 12

Applications of Clustering

• Learning theory, training sets, neural networks, Hidden Markov Models

• Classification, regression, pattern recognition, Support Vector Machines

• Statistical learning, maximum likelihood, Bayesian statistics, spatial

statistics, kriging, time series, ARMA models, stationary processes

• Social networks, organization theory

• Data mining, document indexing, image retrieval, kernel-based learning

• Bioinformatics, microarray data, systems biology

• Cheminformatics, drug design, decision trees

• Information theory, vector quantization, rate distortion theory

• Image segmentation, computer vision, texture, min cut

• Predictive control, feedback samples, robotics, adaptive control

	슬라이드 1: Graph (1)
	슬라이드 2: Graph (2)
	슬라이드 3: Kirchhoff’s Current Law
	슬라이드 4: ATCA Framework in Applied Mathematics
	슬라이드 5: Example with Two Clusters
	슬라이드 6: Four Methods for Clustering
	슬라이드 7: Spectral Clustering
	슬라이드 8: Code: MATLAB
	슬라이드 9: Minimum Cut
	슬라이드 10: Clustering by k-means
	슬라이드 11: Weights and Kernel Method
	슬라이드 12: Applications of Clustering

