
Chapter 2
Multimodal Data Generation and Collection

Abstract Mechanistic data science is heavily reliant on the input data to guide the
analysis involved. This data can come from many shapes, sizes, and formats. This
process is a key part of the scientific process and generally involves observation and
careful recording. Costly data collection from physical observation can be enhanced
by taking advantage of the modern computer hardware and software to simulate the
physical experiments and generate further complementary data. Efficient data col-
lection and management through a database can expedite the problem- solving
timeline and help in rapid decision-making aspects. This chapter shows data collec-
tion and generation from different sources and how they can be managed efficiently.
Feature-based diamond pricing and material property testing by indentation are used
to demonstrate key ideas.
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As the name suggests, data is the key input for mechanistic data science. The
question though is “where does the data come from”. The answer is “it can come
from many sources and in many formats”, which gives rise to the term multimodal
data collection and generation.

As discussed in Chap. 1, scientific investigation starts with observation, which
invariably leads to data collection to test hypotheses that are developed. Analysis of
the data leads to a proven hypothesis and the discovery of new scientific theory.
Collecting data from physical observation can be very costly and difficult to control
independent variables, but it is possible to take advantage of the modern computer
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hardware and software to simulate the physical experiments and generate further
complementary data. Efficient data collection and management through a database
can expedite the problem-solving timeline and help in rapid decision making
aspects. In this chapter, the data collection and generation process are discussed
from different sources and how they can be managed efficiently. The data collection
and generation process will be demonstrated through example problems such as
diamond features and prices, and material property testing by indentation.

2.1 Data as the Central Piece for Science

Data provides evidence to supports the scientific knowledge and distinguish it from
conjecture and opinion. As discussed in Chap. 1, this practice goes back centuries to
the times of Copernicus, Kepler, Brahe, and Galileo. Galileo has been called the
Father of the Scientific Method, in part for his structured use of data in his scientific
pursuits. This can be illustrated in his classic beam problem. In his book The Two
New Sciences, Galileo presented a drawing of a cantilever beam bending test as
shown in Fig. 2.1.

Galileo’s analysis centered on the question “how forces are transmitted by
structural members?” To answer this question, his unique approach led him to a
conclusion that holds true for all structural member used even today. His approach
can be seen in the following four steps:

1. Observation: he observed that as the strength of the beam were affected by the
length of the beam and the cross section of the beam.

2. Hypothesis: he noted that the beam strength decreased with length, unless the
thickness and breadth were increased at an even greater rate.

3. Testing and Data collection: he performed many experiments on different size
and shapes of the structural member and tried to collect data on their ability to
carry and transmit loads.

4. Scientific theory: From the data and observations (understanding the mecha-
nisms) he came to a conclusion which is applicable irrespective of the length,
size, shape, materials for the structural member carrying loads. This also led to the
scaling law that holds regardless of the size, shape, and material.

Galileo reported his finding as “the breaking force on a beam increases as the
square of its lengths.” A more familiar version of his findings is typically taught the
undergraduate engineering students in a strength of materials class as the deflection
formula for cantilever beam. The deflection of the tip of a beam can be related with
the applied force (F), length of the beam (L ), material property (Elastic modulus, E),
and geometric factor (area moment of inertia for the beam cross-section, I ). The
equation of the tip deflection is δ ¼ FL3/3EI, which works regardless of material,
size, shape, and load.

Another example of data to empiricism or mechanism is the Kepler’s three laws
(1609–1619) of planetary motion. Kepler observed the solar system for many years,
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based on his observations, came up with three laws to describe the motion of the
planets in the solar system (see Fig. 2.2). Described succinctly, the laws are (1) the
law of orbits, (2) the law of areas, and (3) the law of periods. All his laws are
empirical in nature and describe the mechanism for planetary motion from direct
observation of his collected data. This is the mechanistic part of this problem which
explains the mechanisms of the planetary motions; however, these laws do not
explain the reason behind such planetary motions. The science behind this is later
discovered by Sir Isaac Newton through the law of gravity in 1687. The theory was
further questioned by Einstein in his research from 1907 to 1917 in which he
explained the motion of the planet Mercury and developed the theory of general
relativity and gravity [2]. This remains the latest understanding of gravity and the
motion of planets.

From these two examples of Kepler and Galileo, it can be seen that data comes
from physical observation of the system and provides the basis for finding governing

Fig. 2.1 An excerpt from
Galileo’s The Two New
Sciences [1]
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mechanisms. On the other hand, science explains the detailed reasoning behind such
observations. The intermediate step is finding the mechanisms and justify the
scientific hypothesis, which is the “Mechanistic” aspect of a problem. Combining
data with the underlying scientific mechanism results in a unique scientific approach
defined in this book as Mechanistic Data Science. The goal of mechanistic data
science is twofold: (1) mining the data intelligently to extract the science, (2) com-
bining data and mechanisms for decision making.

One can easily understand the amount of time (approximately 300 years from
Kepler to Einstein) and effort necessary to develop science from just raw data
observation with the devotion of great scientific minds. We can break down this
process into two parts: Data to empiricism or mechanism and mechanism to science.

• Data to empiricism or mechanism: Collected data are analyzed and the rela-
tionship between data samples are established using mathematical tools and
intuition.

• Mechanism to science: Once the mechanisms of a problem is clearly understood,
the theory is further questioned to find the reasoning of such behavior found in
nature.

Fig. 2.2 Discovery of law of gravitation from planetary motion data. Gravity working among two
different objects can be described by the Newton’s universal law of gravitation. The gravity of earth
and moon are 9.807 and 1.62 m/s2, respectively. The weight is mass times the gravity force acting
on her. If she measures her weight in moon, she will be definitely happy to see her weight loss.
However, if she is intelligent enough, she will realize that it is her mass which matters not the weight
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Here mechanistic data science clearly establishes the links between the data and
science through identifying the governing mechanisms. But it all starts from the data.
In the next section, we will discuss about the data and some commonly used
databases to search for data. However, finding appropriate data may be very chal-
lenging and sometimes consume years to find the appropriate data to solve the
problem. Hence, having a clear idea on what data to collect and how to collect
them make a significant difference on problem solving.

2.2 Data Formats and Sources

Data is a collection of information (numbers, words, measurements) or descriptions
that describes a system or problem. It is an integral part of daily life, including
financial data for tracking the stock market, climate data for predicting seasonal
changes, or transportation data in the form of automobile accident records, train
schedules, and flight delays. This information may take many forms – text, numbers,
images, graphs, etc.—but it is all data.

Data is divided into two categories: qualitative and quantitative. Qualitative data
is descriptive information. For example, saying “it’s too hot outside” describes the
temperature without giving an exact value. In contrast, quantitative data is numerical
information. Saying “it’s 90� outside” gives the precise temperature in terms of a
numerical value but does not give context.

Quantitative data can be further divided into discrete or continuous data. Discrete
data can only take certain values. For example, a dataset recording student heights
has a fixed number of datapoints corresponding to one per student. If there are
10 students being measured, there must be 10 data points, not some fractional
number like 10.7 data points. Continuous data can have any value within a given
range. For example, temperature changes continuously throughout the day and can
have any value (e.g. 47.783�, 65�, 32.6�). In summary, discrete data is counted,
while continuous data is measured.

Data that is used for a mechanistic data science analysis can be obtained in
multiple ways including measurements, computation or from existing databases.

• Measurement: this generally involves setting up a controlled experiment and
instrumenting the test to measure data. A test can be repeated multiple times to
evaluate consistency (e.g. does a coil of aluminum used to make soda cans meet
the specifications) or can be conducted with a varying set of parameters (e.g. what
is the effect of changing material suppliers). Making measurements has long been
one of the key endeavors of science. For example, Chap. 1 gave a historical
description of the data collection for planetary motion and falling objects and how
that led to fundamental laws of science.

• Computation: in many cases there is a tremendous amount of mechanistic
knowledge that can be used to compute data. For example, as described in the
indentation example later in this chapter, finite element analysis can be used to
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perform detailed calculations of how a structure will perform under different
loading conditions.

• Existing database: as data is collected, it can be compiled into a large dataset that
can be used for reference or for further analysis.

A database is an organized collection of data, generally stored and accessed
electronically from a computer system. Mechanistic data science relies on several
engineering and machine learning databases, spanning a wide range of industries,
disciplines, and problems. For example, Kaggle contains various datasets for
machine learning, Materials Project contains materials data such as compounds
and molecules, the National Climate Data Center (NCDC) contains datasets on
weather, climate, and marine data, and the National Institute of Standard and
Technology (NIST) has materials physical testing databases [3].

Figure 2.3 is a snapshot listing some Kaggle databases which can be used for data
science and machine learning. As can be seen from this list, there is a wide range of
data available, including the stock market, earthquakes, global diseases, and other
engineering and social topics.

A typical dataset is composed of features and data. Features are distinctive
variables that describe part of the data, and are typically arranged in columns, such
as “country” or “earthquake magnitude” [4]. It should be noted that real data that is
used for machine learning is not perfect; many “good” datasets are not complete, and
often need to be prepared before being used for analysis. A dataset might often have
noisy data, with some outliers that come from sensor errors or other artifacts during
the data collection process. While it is very tempting to ignore or discard those
outliers from the dataset, it is recommended that they be given careful attention
before deciding how to treat them. It is the role of the data scientist to interpret those
data and check the influence of those outliers on the hypothesis of the problem and
population statistics of the data. Typically, regression-based models are well suited

Fig. 2.3 Sample machine learning database Kaggle
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to identify outliers in linearly correlated data; clustering methods and principal
component analysis are recommended if the data does not show linearity on the
correlation planes [5]. Regression models are discussed in Chap. 3; clustering
techniques and principal component analysis are discussed in Chap. 5 of this
book. Steps involved in data preparation are captured in Fig. 2.4 and described
below [6]. The extraction of mechanistic features is discussed more extensively in
Chap. 4.

• Raw Data: collected data in an unmodified form.
• Data Wrangling: transforming and mapping data from one “raw” data form into

another format with the intent of making it more appropriate and valuable for
analysis.

– Data wrangling prepares data for machine interpretation. For example, a
computer may not recognize “Yes” and “No,” so this data is converted to
“1” and “0,” respectively. The meaning of the raw data is unchanged, but the
information is mapped to another form.

• Data Formatting: formatting data for consistency, associating text data with
labels, etc.

• Data Cleansing: providing attributes to missing values and removing unwanted
characters from the data.

• Database Preparation: adding data from more than one source to create a
database.

Fig. 2.4 Data preparation
for analysis
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While many of these steps are performed with automated data processing tech-
niques, user input is still required. For example, after data is transformed, cleaned,
and prepared, it should be visualized. Plotting data, displaying images, and creating
graphs often reveal key trends, leading to better understanding of data. This knowl-
edge allows data scientists to manually evaluate data science results, ensuring
machine learning trends reflect data.

2.3 Data Science Datasets

Data science consists of using data to find a functional relationship between input
and output data. As shown in Fig. 2.5, an input dataset XN

i with i features is used for
developing the functional relationship yNj = f XN

i

� �
.

The function development starts by dividing the input dataset XN
i into a training

set, a validation set, and a test set (Fig. 2.6), with the training set generally being the
largest. The inputs and outputs from the training set are fit to a mapping function
f XN

i

� �
using regression analysis to develop a mechanistic data science model. The

validation set measures the accuracy of the model after the training step. This
process is repeated with the updated model until the error between the predicted
output and the actual output is below a required threshold. Once the error is
minimized, the final functional form is established, the function is evaluated against
the test set. Choosing the training, testing, and validation set from the data can be
done either randomly or systematically. One systematic approach uses K-fold cross
validation, where the data set is divided in K number of bins and different bins are
used for training, testing, and validation. Cross validation makes the model more

Fig. 2.5 Fitting dataset inputs and outputs to a functional form with machine learning

Fig. 2.6 Data division into training, validation, and test sets for machine learning. In this figure, the
training set comprises 70% of the data, the validation set comprises 20% of the data, and the test set
comprises 10% of the data
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robust and removes bias in model training. More details on the K-fold cross
validation are discussed in Chap. 3 and applied in the some of the examples in
Chap. 7.

Data modality refers to the source (or mode) of the data. Mechanistic data science
is able to incorporate multimodal data (data from multiple sources and test methods).
Data deviations between various sources are resolved through calibration. For
example, indentation data can be obtained through physical experiments and
computer simulations [7]. An example of this is shown later in the chapter.

Data fidelity describes the degree to which a dataset reproduces the state and
behavior of a real-world object, feature or condition. Fidelity is therefore a measure
of the realism of a dataset [8]. It can be categorized as high fidelity or low fidelity.
This is a somewhat subjective measure which depends on the application, but high
fidelity data is generally more accurate and more expensive to obtain. For example,
micro-indentation data is high fidelity compared to macro-indentation data, but low
fidelity compared to nanoindentation data.

Machine learning techniques can improve the resolution of low fidelity data,
transforming it into high fidelity data without the large collection cost [9].

2.4 Example: Diamond Data for Feature-Based Pricing

Diamond pricing analysis using regression techniques is shown in Chap. 1. Dia-
monds can be described with several features such as cut, color, clarity, and carat,
and the price of a diamond is a function of all of these features. A dataset was
downloaded from Kaggle containing data for 53,940 diamonds with 10 features. A
sample of this dataset is shown in Fig. 2.7. For this diamond dataset to be used for
predicting prices based on features, the input feature index, i ¼ 9, represents the
number of independent variables (in this example, features including cut, color,
clarity, and carat). Similarly, the output feature index, j¼ 1, represents the number of
dependent variables (i.e. price). The number of data points in the dataset is
N ¼ 53,940.

Cut, color, clarity, and carat are four features known as the 4 C’s. They are
defined as:

• Cut: the proportions of the diamond and the arrangement of surfaces and facets.
• Color: color of the diamond, with less color given a higher rating
• Clarity: the amount of inclusions in a diamond
• Carat: the weight of the diamond

Some diamond features such as cut, color, and clarity are not rated using
numerical values. They must be converted to numerical values in order to be used
in a calculation. In this case, the cut, color, and clarity are assigned numerical values
based on the number of individual classifications for each.
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Cut Rating Numerical value

Premium 1

Ideal 2

Very Good 3

Good 4

Fair 5

Clarity Rating Numerical value

IF—Internally Flawless 1

VVS1,2—Very, Very Slightly Included 1,2 2

VS1,2—Very Slightly Included 1,2 3

SI1,2—Slightly Included 1,2 4

I1—Included 1 5

The color rating scale ranges from D to Z, where D is colorless and Z is a light
yellow or brown color. For the given dataset, the diamond colors ranged from D to J
and the numerical values were as assigned as: Color (D, E, F, G, H, I, J)! (1, 2, 3, 4,
5, 6, 7).

Once all the feature data is converted to numerical values, data normalization can
be performed to scale all the data features from 0 to 1 if a regression analysis is to be
performed (this will be discussed in more detail in Chap. 4).

Fig. 2.7 A sample of data extracted from diamond features and prices
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2.5 Example: Data Collection from Indentation Testing

Material hardness testing by indentation is a multimodal data collection technique.
Hardness testing consists of pressing a hardened tip into the surface of a material
with a specified load and measuring the dimensions of the small indentation that is
made. The indentation is generally very small and, as such, the test is considered
non-destructive. Furthermore, since the resistance to surface indentation is related to
the stress required to permanently deform the material, the measured hardness can
often be correlated to other material properties like the ultimate tensile strength.

Indentation testing varies with sample size and shape, but the fundamental
process remains the same. As shown in Fig. 2.8, the indenter is pressed into the
surface of the material with a specified force and leaves a small impression. The
hardness is determined by measuring the size of the indent for the applied load [10].

Macro-indentation is used to test large samples, with applied load exceeding
1 kgf. Small samples are tested using micro-indentation, using applied load ranging
from 1–1000 gf. For even smaller scales, nanoindentation (also known as
instrumented indentation) is used. For the nanoindentation scale, the applied load
is less than 1 gf [11]. Common indenter tips (see Fig. 2.9) include hemispherical
balls (used for the Brinell hardness test) and various pointed tips (used for the
Vickers hardness test and nanoindentation test).

The load vs. indentation depth for a typical nanoindentation test is plotted in
Fig. 2.10 [13]. The decrease in the indentation depth when the load is removed is
determined by the elasticity of the material. The sample results in Fig. 2.10 show
some elasticity since the final (or residual) depth, hr, is less than maximum depth, hm.
The net result is that the indenter tip leaves a permanent impression of depth hr in the
surface of the material due to localized surface deformation [12].

The contact area of the indentation depends on the indentation depth and indenter
shape. Figure 2.11 shows several indenter tips and the corresponding contact area
equations, where d is the indentation depth [12].

Fig. 2.8 (a) Indentation testing experimental set-up and (b) impression data (https://matmatch.
com/learn/property/vickers-hardness-test)
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The indentation data can come from experiments and computer simulations (see
Fig. 2.12). The experimental data is collected using imaging and sensing.

• Experimental data is obtained through the indentation. Typically, indentation
experiments record the load-displacement data.

– High resolution Atomic Force Microscopes (AFM) are used for imaging of the
indented surface. The surface fracture pattern provides critical information on
the material deformation during the indentation process. Additionally, the
contact area of the indenter can be measured from these high-resolution
microscope images.

Fig. 2.9 Experimental set-ups for (a) Brinell hardness test, (b) Vickers microhardness test, and
(c) nanoindentation test [11, 12]

Fig. 2.10 Load vs.
indentation depth data
generated by
nanoindentation testing
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– Sensing is accomplished using various force and displacement measurements.
A common displacement sensor is the Linear Variable Differential Trans-
former (LVDT), which measures the movement of the indenter shaft through

Fig. 2.11 Common indenter tips and corresponding contact area equations [12]

Fig. 2.12 Indentation data sources: (a) experiments, (b) imaging, (c) sensing using LVDT sensor,
(d) computer simulation using FEM (a video is available in the E-book, Supplementary Video 2.1)
[14]
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electric voltage change and provides the load and displacement data. Other
displacement measurement techniques include differential capacitors or opti-
cal sensors. Force can be measured through a spring-based force actuation
system.

• Computer simulations are powerful tools to compute the load displacement data
and materials behavior. Computational simulation methods, such as the Finite
Element Method (FEM), has been used extensively to compute mechanical
properties of materials through indentation simulation. FEM is a well-known
computer simulation method for computing deformation and stress given the
geometry and the material properties. It has successfully replaced or augmented
physical testing for many areas of engineering product development.

Computer simulations of surface indentation can also provide valuable data for
material characterization. A physical test result and a finite element computer
simulation are shown in Fig. 2.13. With proper calibration, the two methods produce
nearly identical triangular indentations in the material and the simulation can be used
to provide additional insight and data for the indentation process.

Machine learning databases often combine information for different modes of
data collection and levels of fidelity. For example, Table 2.1 summarizes

Fig. 2.13 Indentations produced by (a) physical nanoindentation experiment, and (b) finite
element method computer simulation [7]

Table 2.1 Summary of nanoindentation testing data [15]

Material Experiment Computation

Al-6061 alloy 7 experiments 2D FEM (Axisymmetric): 100 simulations each
for conical indenter half angle of 50, 60, 70, 80o

3D FEM: 15 simulations for Berkovich indenter
Al-7075 alloy 7 experiments

3D printed Ti-6Al-4V
alloys (six samples)

144 experiments
for each sample

Not available
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nanoindentation testing data for three different materials [15]. The aluminum alloy
data consisted of 422 load-displacement curves (7 physical tests, 400 2D axisym-
metric FEM simulations, and 15 3D FEM simulations). The data for the 3D printed
Ti-6Al-4V material consisted of 864 load-displacement curves (144 experiments on
each of six samples).

The mix of experimental and computational data represent different modalities
(or sources). In addition, the 2D and 3D FEM simulations also represent different
levels of fidelity (or resolution). The 3D FEM simulations are more comprehensive
but are computationally intensive. The 2D axisymmetric simulations assume that the
indentation is axisymmetric but afford a much higher level of model refinement.
Consequently, the fidelity of 2D and 3D simulation must be understood within the
context of the physical test being modeled.

2.6 Summary of Multimodal Data Generation
and Collection

Mechanistic data science analysis frequently utilizes multimodal and multi-fidelity
data as one data source rarely provides sufficient data to fully represent an engineer-
ing problem. Experimental data obtained through direct observation is considered
the most reliable but may be too expensive or complicated to obtain. Limited
experimental data may need to be supplemented with simulations or published
experimental results. As a result, data scientists must identify, collect, and synthesize
required information from a variety of modes and fidelities to solve engineering
problems. This idea will be further developed in Chap. 3 Optimization and
Regression.
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