
Chapter 3
Optimization and Regression

Abstract Linear regression is the simplest method to build a relationship between
input and output features. While many relationships are non-linear in science and
engineering, linear regression is fundamental to understanding more advanced
regression methods. In particular, gradient descent will be discussed as a technique
with a wide range of applications. Key to understanding linear regression are
concepts of optimization. In this chapter, the fundamentals of linear regression will
be introduced, including least squares optimization through gradient descent. Exten-
sions of linear regression to tackle some nonlinear relationships will also be
discussed, including piecewise linear regression, and moving least squares. The
ease and strength of linear regression will be demonstrated through example prob-
lems in baseball and material hardness.

Keywords Linear regression · Least squares optimization · Coefficient of
determination · Minimum · Gradient descent · Multivariable linear regression ·
Baseball · Indentation · Vickers hardness · Bacteria growth · Piecewise linear
regression · Moving average · Moving least squares · Regularization · Cross-
validation

3.1 Least Squares Optimization

Least squares optimization is a method for determining the best relationship between
variables making up a set of data. For example, if data is collected for measuring the
shoe size and height of people, the raw data could be plotted on a graph, with shoe
size on one axis and height on the other axis. The raw data may be interesting, but it
would be more useful if a mathematical relationship can be found between these
variables. If the data points fall in approximately a row, then a straight line can be
drawn through the points. To determine the best placement for the straight line, least
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squares optimization (or linear regression) can be used. The details of this method
are shown in this chapter. If the points do not fall in approximately a straight line,
then some form of nonlinear optimization must be used. This chapter will focus on
piecewise linear regression, the moving average, and moving least squares optimi-
zation for nonlinear optimization.

The least squares method for optimization and regression was first published by
Adrien-Marie Legendre (1805) and Carl Friedrich Gauss (1809) [1]. They were both
studying the orbits of celestial bodies such as comets and minor planets about the sun
based on observations. The term regression is a commonly-used word for least
squares optimization. The term was coined by Sir Francis Galton from his work in
genetics in the 1800’s. Galton was initially studying the genetics of sweet peas, in
particular comparing the weights of planted and harvested peas. He found that when
he plotted the data for the planted and harvested weights, the slope was less than
unity, meaning that the offspring of the largest and smallest peas did not demonstrate
the same extremes, but “regressed” to the mean. His concept of regression to the
mean based on the evaluation of data on graphs led to the use of the term regression
to describe the mathematical relationship developed based on data [2].

3.1.1 Optimization

Optimization is the process of finding the minimum (or maximum) value of a set of
data or a function. This can be accomplished by analyzing extensive amounts of data
and selecting the minimum (or maximum) value, but this is generally not practical.
Instead, optimization is generally performed mathematically. A cost function, c(w),
is written as a relation between variables of interest and the goal of the optimization
is to find the minimum (or maximum) value of the function over the range of interest.

The minimum (or maximum) value of the function corresponds to the location
where the tangent slope becomes zero. To find the tangent slope, the first derivative
of cost function is computed using differential calculus

dc w�ð Þ
dw

¼ 0 ð3:1Þ

Setting this derivative equal to zero leads to the value of w� as the location of the
minimum (or maximum) of the function.

In general, the location where the first derivative equals zero is a potential
minima, maxima, or inflection point. The second derivative of the original function
is used to distinguish between these three types of points

d2c w�ð Þ
dw2 > 0, convex minimumð Þ ð3:2aÞ
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d2c w�ð Þ
dw2 < 0, non� convex maximumð Þ ð3:2bÞ

d2c w�ð Þ
dw2 ¼ 0, inflection pointð Þ ð3:2cÞ

Example: Consider the following function

c wð Þ ¼ 2w2 þ 3wþ 4 ð3:3Þ

where c(w) is a quadratic function of the independent variable w (see blue curve in
Fig. 3.1). The minimum of this quadratic equation is the point where the slope
tangent to the curve is horizontal. The slope is computed using differential calculus
to find the first derivative as

dc
dw

¼ 4wþ 3 ¼ 0 ð3:4Þ

Setting this equation for the first derivative equal to zero and solving for
w provides the location of w� ¼ � 3/4 as the location of zero slope (minimum
point), as shown in Fig. 3.1.

Fig. 3.1 A function (blue line) and its derivative (red line)
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For this function with the minimum located at w� ¼ � 3/4, the second derivative
is

d2c w�ð Þ
dw2 ¼ 4,minimum ð3:5Þ

Convex functions are preferred for optimization problems because they converge to
a solution much easier. Non-convex functions can havemultiple minima, maxima, and
inflection points. The global minimum is defined as the absolute minimum across the
span of interest. As shown in Fig. 3.2, finding a global minimum in a non-convex
equation is challenging because a local minimum can be chosen erroneously instead of
the global minimum.

3.1.2 Linear Regression

A straight line can easily be drawn through two data points and a simple linear
expression can be written as

y ¼ w1xþ w0 ð3:6Þ

where w1¼ (y2� y1)/(x2� x1) is the slope of the line and w0 is the location where the
line crosses the y-axis. If there are more than two points and the points are not all
aligned, it is obviously not possible to draw a straight line through all the data points.
This common challenge often arises where the data points generally lie along a
straight path, but it is not possible to fit a straight line through all the data points. One
option is to try to draw a complicated curve through all the data points, but this
option is generally not preferred due to the complex mathematics of such a curve.
Instead, a straight line can be drawn through the data in such a way that it is close to
as many points as possible. The process of determining the best fit of a straight line to
the data is called linear regression (Fig. 3.3).

Fig. 3.2 Non-convex
function with multiple local
minima
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Linear regression is used to model a best-fit linear relationship between variables
by fitting a linear equation to observed data. Consider a set of N data points

x1, y1ð Þ, x2, y2ð Þ, . . . , xN , yNð Þ ð3:7Þ

A generic equation through these points can be written as

where the coefficients w0, w1 are called weights (the constant weight w0 is often
called the bias) and yn� is the computed approximate value of the “true” value of yn.
The best fit approximation for yn� is found through linear regression by determining
the optimum values for the weights and bias based on the data. Note that when using
regression for developing mechanistic data science models, it is important to assess
the quality of the model through cross validation. The cross validation will be
introduced in Sect. 3.3.

Fig. 3.3 Straight line through two data points
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3.1.3 Method of Least Squares Optimization for Linear
Regression

The optimum values for the coefficients w0, w1 are determined by minimizing the
total error between the computed approximate value, yn� and the “true” value, yn.
Each data point, xn, is multiplied by the weight, w1, and the bias, w0, is added to it as
the approximation, yn�, to the “true” value, yn. The approximation error at data point
n in this linear regression model can be evaluated by subtracting the true value yn and
squaring the difference. The total error is found by repeating this for all data points

total error ¼
XN

n¼1
yn� � ynð Þ2 ¼

XN

n¼1
w0 þ w1xn � ynð Þ2 ð3:8Þ

The best fit line will be the one which minimizes the total error and is determined
by performing a least squares optimization. This optimization begins with a cost
function, c(w0,w1), which is the average of the total error for all data points

cost function ¼ c w0,w1ð Þ ¼ 1
N

XN
n¼1

w0 þ w1xn � ynð Þ2 ð3:9Þ

The weights and bias for a best fit line are determined by finding the minimum
(or maximum) of a function or a set of data. In this case, the goal is to minimize the
total error. The minimum value can be determined experimentally by collecting an
extensive amount of data and selecting the lowest overall value, but that is generally
not practical. Instead, the minimum value is usually determined mathematically
using a functional relationship between variables of interest.

3.1.4 Coefficient of Determination (r2) to Describe Goodness
of Fit

Goodness of fit describes how closely the data points, yi, are to the line drawn
through them. If the line goes through the points like Fig. 3.3, the fit is perfect. If the
points do not lie directly on the line but are generally evenly clustered along the
length of the line like Fig. 3.4, the fit shows a linear relationship (adequate precision
of the data is generally dependent on the application). Conversely, if the points do
not evenly cluster along the length of the line, there may be no correlation between
the variables or a nonlinear correlation between the variables.

A common way to quantify goodness of fit is by the coefficient of determination,
r2
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r2 ¼ regression sum of squares
total sum of squares

¼
P

i y
�
i � y

� �2P
i yi � yð Þ2

ð3:10Þ

where y is the average of the data points yi. A good fit of the regression to the data
will result in an r2 value closer to one.

3.1.5 Multidimensional Derivatives: Computing Gradients
to Find Slope or Rate of Change

As shown above, computing the slope or the rate of change is important for
optimization problems. Gradient is the slope or rate of change in a particular
direction. For one-dimensional problems, determining the rate of change is trivial,
but for problems involving multiple variables, determining the slope is more chal-
lenging since the slope can be different in each direction.

The rate of change is the amount one variable changes when one or more other
variables change. Consider the mountain in Fig. 3.5 below. If a skier follows the
red-dotted path, a short amount of forward motion will result in a big vertical drop
(and more speed) as the skier goes from red dot to red dot. On the other hand, if a

Fig. 3.4 Linear regression through non-colinear points
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skier follows the yellow-dotted path, the vertical change with respect to the forward
motion is less going from yellow dot to yellow dot. It can be seen that because of
this, the route from the top of the mountain to the orange X is shorter and more direct
when following the red-dotted path.

The rate of change, or slope, can be determined on an average sense (vertical
change from the top of the mountain to the orange X relative to the horizontal change
in position) or instantaneously (different slope at every red and yellow dot). If
measured data are used, the instantaneous rate of change is estimated by dividing
the change in vertical height by the change in horizontal distance. If an equation is
available, the instantaneous rate of change can be computed mathematically by
taking the derivative of the equation for the hill in the direction of travel. More
generally, a coordinate system is defined and partial derivatives with respect to each
of the coordinates are taken. This set of partial derivatives forms a vector and is the
mathematical definition of the gradient. Once the expression for the gradient is
computed, the gradient in any specific direction can be computed.

The gradient of a cost function is needed to perform a multivariate optimization.
For the ski mountain in Fig. 3.5, the optimization values can be visualized, with the
maximum corresponding to the top of the mountain and the minimum corresponding
to the bottom of the mountain.

Optimization can be performed mathematically if a functional relationship is
available. Using the mathematical function, the global minima for higher dimension
functions requires defining the gradient of the function. The gradient is the derivative

Fig. 3.5 Ski mountain with two possible paths. The red-dotted path is steeper than the yellow-
dotted path. (Photo courtesy of Rebecca F. Boniol.) A video is available in the E-book, Supple-
mentary Video 3.1
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of the function in multiple directions. Consider a vector w containing all the
independent variables or features w0. . .wS

w ¼

w0

w1

w2

⋮

wS

2666666664

3777777775
ð3:11Þ

and a scalar function c(w) made of these variables. The gradient of the scalar
function c(w) is a vector composed of the partial derivatives1 with respect to each
variable or feature:

∂c wð Þ
∂w

¼ ∇c wð Þ ¼

∂c wð Þ
∂w0

∂c wð Þ
∂w1

⋮
∂c wð Þ
∂wS

266666666664

377777777775
ð3:12Þ

where the symbol ∇ is shorthand notation for the gradient and the symbol ∂ denotes
the partial derivative.

Example: Consider the following function with two variables, w0 and w1

c wð Þ ¼ w0ð Þ2 þ 2 w1ð Þ2 þ 1 ð3:13Þ

The independent variable, w, and gradient of the function, c(w), can be written in
matrix form as

w ¼
w0

w1

" #
ð3:14aÞ

∇c wð Þ ¼
∂c wð Þ
∂w0

∂c wð Þ
∂w1

26664
37775 ¼

2w0

4w1

" #
ð3:14bÞ

1Partial derivatives are derivatives taken with respect to one variable while holding all other
variables constant.
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The point w� where the gradient equals zero is found by setting the gradient equal
to zero

2w0

4w1

" #
¼ 0 ! w� ¼

0

0

" #
ð3:15Þ

3.1.6 Gradient Descent (Advanced Topic: Necessary for Data
Science)

Computing the minimum or maximum of a function by setting the gradient equal to
zero works well for basic functions but is not efficient for higher order functions.
Gradient descent is a more efficient way to determine the minimum of a higher order
function.

The minimum of a cost function, c(w), can be determined through an explicit
update algorithm. The process begins by writing an explicit update equation for the
independent variable, w, as

wkþ1 ¼ wk � α
dc wk
� �
dw

ð3:16Þ

where wk + 1 is the value of w to be computed at the next step, wk is the current value

of w, and
dc wkð Þ
dw is the derivative of the cost function evaluated at the current time

step. The parameter, α, is a user-defined learning rate. This is illustrated using the
function plotted in Fig. 3.6. The gradient descent algorithm is shown in the following
five steps:

1. Select an arbitrary starting point w0

2. Find the derivative of the cost function c(w) at w0

3. Descend to the next point through the gradient descent equation w1 ¼
w0 � α

dc w0ð Þ
dw

4. Repeat the process for the next point w2 ¼ w1 � α
dc w1ð Þ
dw

5. Continue doing so until the minimum is reached (i.e. negligible change in w)
(Fig. 3.7)

Example: Consider a function g wð Þ ¼ 1
50 wð Þ4 þ wð Þ2 þ 10w
� �

1. Start at w0 ¼ 2 and use α ¼ 1

2. Take the derivative dg wð Þ
dw ¼ 1

50 4 wð Þ3 þ 2wþ 10
� �

and evaluate at the current

position of w, dg 2ð Þ
dw

3. Use the gradient descent formula to calculate w at the next step.
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Fig. 3.6 Gradient descent methodology. A video is available in the E-book, Supplementary Video
3.2

Fig. 3.7 Gradient descent example for g wð Þ ¼ 1
50 wð Þ4 þ wð Þ2 þ 10w
� �

3.1 Least Squares Optimization 59



w1 ¼ w0 � α
dg w0ð Þ
dw

¼ 2� 1
dg 2ð Þ
dw

¼ 1:08

4. Repeat the process for the next step, w2 ¼ w1 � α
dg w1ð Þ

dw ¼ 1:08� 1 dg 1:08ð Þ
dw ¼

:736
5. Continue until the minimum is reached at g(w) ¼ � 0.170

When using gradient descent method for higher dimensions, the explicit update
formula is written as

wkþ1 ¼ wk � α∇c wk
� � ð3:17Þ

where the univariate derivative has been replaced with the gradient and the inde-
pendent variable w is now a vector. The gradient descent steps in multiple dimen-
sions are

1. Start at an arbitrary vector w0

2. Find the gradient of function c (w) at w0

3. Descend to the next point using the gradient descent equation
w1 ¼ w0 � α ∇ c(w0)

4. Repeat the process for w2 ¼ w1 � α ∇ c(w1)
5. Continue until minimum is reached (negligible change in w).

3.1.7 Example: “Moneyball”: Data Science for Optimizing
a Baseball Team Roster

Baseball is a game in which tradition is strong and data and statistics carry great
weight. This allows baseball fans to compare the careers of Ty Cobb in 1911 to Pete
Rose in 1968 (or anyone else for that matter). Historically, the worth of a player was
largely dictated by their batting average (how many hits compared to how many time
batting) and runs batted in (how many runners already on base were able to score
when the batter hit the ball). However, through the use of data science, a new trend
emerged (Fig. 3.8).

The game of baseball is played with 9 players from one team in the field playing
defense (Fig. 3.8). A pitcher throws a baseball toward home plate where a batter
standing next to home plate tries to hit the ball out into the field and then run to first
base. If the batter hits the ball and makes it to first base before the ball is caught or
picked up and thrown to first base, then the batter is awarded a hit and allowed to stay
on the base, becoming a base runner. If the ball is caught in the air, picked up and
thrown to first base before the batter arrives, or the batter is tagged when running to
first base then the batter is out. The runner can advance to second, third, and home
bases as other batters get hits. When the runner reaches home base, the team is
awarded a run. The batting team continues to bat until they make three outs, at which
point they go out to the field and the team in the field goes to bat.
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As mentioned previously, batting average (BA) and runs batted in (RBI) have
traditionally been a very important statistic for baseball teams to evaluate the worth
of a player. Players with high BA’s and high RBI’s were paid very large salaries by
the richest teams (usually large market teams) and the small market teams had
trouble competing.

In 2002, Billy Beane, the general manager of the Oakland Athletics, utilized data
science to build a competitive team. Although Major League Baseball (MLB)
generates around $10 billion in annual revenue, the smaller market MLB teams
have much lower budgets with which to recruit and sign players. In 2002, Oakland
A’s general manager, Billy Beane, found himself in a tough situation because of this.
The Oakland A’s were a small market team without a large budget for player salaries.
Beane, and his capable data science assistant, Paul DePodesta, analyzed baseball
data from previous seasons and determined that they needed to win 95 games to
make the playoffs. To achieve this goal, they estimated they needed to score
133 more runs than their opponents. The question they had to answer was “what
data should they focus on”.

To build a competitive team, Beane and DePodesta looked at a combination of a
player’s on-base percentage (OBP), which is the percentage a batter reaches base,
and the slugging percentage (SLG), which is a measure of how many bases a batter is
able to reach for a hit. In formulaic terms: SLG ¼ (1B + 2B � 2 + 3B � 3 + HR � 4)/
AB, where 1B, 2B, and 3B are first, second, and third base, respectively, HR is a

Fig. 3.8 Baseball field (https://entertainment.howstuffworks.com/baseball2.htm)
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“home run”, and AB is an “at bat”. Through these two measures, it is possible to
assess how often a player is getting on base in any possible way (and thus in a
position to score) and how far they go each time they hit the ball.

It is possible to show through linear regression that SLG and OBP provide a good
correlation with runs scored (RS). Using a moneyball baseball dataset available from
Kaggle (https://www.kaggle.com/wduckett/moneyball-mlb-stats-19622012/data), a
regression analysis was performed to compare the number or runs scores as a
function of the batting average, and then as a function of the on base percentage
and slugging percentage. A sampling of the moneyball data used for the analysis is
shown below (Table 3.1).

A linear regression analysis was first performed on the RS vs. BA. The results,
which are plotted in the Fig. 3.10, showed that the correlation between the RS and
BA was only 0.69. BA was deemed a marginally useful statistic because it does not
account for players hitting singles versus home runs and does not account for players
getting on base by walks or being hit by a pitch.

By contrast, a linear regression between the RS and OBP shows a correlation of
0.82. OBP accounts for all the ways a player can get on base, and as such, provides a
more meaningful measure of the number or runs scored than does the batting
average.

Finally, a multivariate linear regression was performed with the RS vs the OBP
and the SLG. The results of this linear regression showed a correlation of 0.93,
meaning that OBP combined with SLG provided a better indicator or run scoring
performance than BA or the OBP by itself. It should be noted that the linear
combination of OBP and SLG is called On-base Plus Slugging (OPS), and is a
commonly used baseball statistic in the game today (OPS ¼ OBP + SLG). With this
measure of OPS, the amount of time a player reaches base is accounted for as well as
how many bases they are able to reach when they do get on base.

Using these data science techniques, Beane and DePodesta and the Oakland A’s
were able to win 103 games in 2002 (including a record-setting 20-game win streak),
finish in first place, and make the playoffs. Today, OPS and OBP and SLG are some
of the most closely watched baseball statistics by baseball insiders and fans alike.

3.1.7.1 Moneyball Regression Analysis Steps

Step 1: Multimodal Data Generation and Collection

Baseball statistics are readily available. One such database is in Kaggle (a sample of
data is shown in Table 3.1).

Step 2: Feature Engineering

Various features are present in baseball sports analytics. However, we will restrict to
team averaged stats for a few indicators. These include runs scored (RS), wins (W),
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on base percentage (OBP), slugging percentage (SLG), and on base plus slugging
(OPS). RS corresponds to how much a team scores. W is the number of games a
team wins in a season. OBP corresponds to how frequently a batter reaches base.
SLG corresponds to the total number of bases a player records per at-bat. OPS is the
sum of OBP and SLG.

Step 3: Dimension Reduction

Reduce the dimension of the problem by only considering the aforementioned stats/
features.

Step 4: Reduced Order Modeling

Reduce the order of the model by assuming it is linear for the purposes of this
demonstration.

Step 5: Regression and Classification

Use regression to determine model parameters and decide whether a linear hypoth-
esis is adequate and offers any insight.

Module 6: System and Design

Use OBP and SLG to predict performance (RS) and, therefore, potential recruitment.
Returning to the baseball example, it is possible to find a relationship between

OBP and RS (Fig. 3.9). Use the cost function

c wð Þ ¼ 1
N

XN
n¼1

w0 þ w1xn � ynð Þ2 ð3:18aÞ

c wð Þ ¼ 1
N

w0 þ w10:327� 691ð Þ2 þ w0 þ w10:341� 818ð Þ2 þ . . .
h i

ð3:18bÞ

and the gradient descent equation

wk ¼ wk�1 � α∇c wk�1
� � ð3:19Þ

to find the optimal weights w for the model.
Figure 3.10 shows the regression model results for RS vs. BA, OBP, SLG, and

OPS. There is a good correlation between the runs scored and the on base
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percentage. The correlation can be quantified by the r2 value, with r2 closer to 1.0
indicating a better the correlation of the linear regression to the data. Figure 3.10 also
shows the regression for RS and SLG and RS and BA. Historically, BA was used by
baseball scouts to recruit potential players. Billy Beane was correct in using OBP

Fig. 3.9 Sample data for
runs scored (RS) and on
base percentage (OBP)

Fig. 3.10 Moneyball analysis results for runs scored (RS) vs. four different statistic—batting
average (BA), on base percentage (OBP), slugging percentage (SLG), and on base plus slugging
(OPS)
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and SLG (or a combination of them) instead of BA to do his recruitment as these
statistics have a better correlation with RS.

One other logical question is why not perform the analysis based on wins
(W) instead of just runs scores (RS) since that is the ultimate metric. As can be
seen in Fig. 3.11, the correlation between W and any of these statistics is not good.
These are only offensive statistics and do not account for pitching and defense,
which are other important parts of winning baseball games.

The regression analysis performed thus far has been performed using one statis-
tical variable at a time. It is possible to perform linear regression using multiple
variables, such as performing a linear regression of RS versus both OBP and SLG.
Using two variables for linear regression will result in a planar fit through the data
instead of a straight line (Fig. 3.12).

Note that the dependent variable yn (runs scored) depends on a vector of inde-
pendent variables xn (baseball statistics such as OBP and SLG)

x1, y1ð Þ, x2, y2ð Þ, . . . , xn, ynð Þ ð3:20Þ

For a multivariate linear regression, the model equation is

w0 þ w1x1,n þ w2x2,n þ . . .þ wSxS,n � yn for n ¼ 1, . . . ,N ð3:21Þ

Fig. 3.11 Regression analysis results for wins (W) vs. four different statistic—batting average
(BA), on base percentage (OBP), slugging percentage (SLG), and on base plus slugging (OPS)
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Note that for this specific problem of performing a linear regression of RS with
OBP and SLG, the above equation reduces to

w0 þ w1OBPn þ w2SLGn � RSn for n ¼ 1, . . . ,N ð3:22Þ

However, for generality, the arbitrary form is still used. Use the two following
vectors to compact the equation:

bxn ¼
1

x1,n

x2,n

x3,n

⋮

xS,n

2666666666664

3777777777775
w ¼

w0

w1

w2

w3

⋮

wS

2666666666664

3777777777775
ð3:23Þ

The model can be written in matrix notation as

bxnTw � yn for n ¼ 1, . . . ,N ð3:24Þ

After summing the squared differences and dividing by the number of points, the
following cost function is obtained

c wð Þ ¼ 1
N

XN
n¼1

bxnTw2 yn
� �2 ð3:25Þ

Fig. 3.12 Sample data for
runs scores (RS), on base
percentage (OBP) and
slugging percentage (SLG)
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The gradient of the cost function is

∇c ¼ 2
N

XN
n¼1

bxnTw2 yn
� �

� bxn ð3:26Þ

Using the gradient descent method to find the minimum weights leads to

wk ¼ wk�1 � α∇c wk�1
� � ð3:27aÞ

wk ¼ wk�1 � α
2
N

XN
n¼1

bxnTwk�1 2 yn
� �

� bxn ð3:27bÞ

Applying the gradient descent method to determine the weights and bias results in

RS ¼ �803þ 2729 � OBPþ 1587 � SLG ð3:28Þ

with r2 ¼ 0.93 (Fig. 3.13).
It is interesting to note that this result is essentially identical to the linear

regression result between RS and OPS shown in Fig. 3.10. The OPS variable is
the On Base Plus Slugging, and as the name implies, it is equal to the sum of the OBP
and the SLG. As such, the results are the same when the analysis is performed
either way.

Fig. 3.13 Moneyball analysis results in 3D plot format for RS vs OBP and SLG
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As a result of these various regression models, it can be seen that Billy Beane’s
hypothesis of evaluating players based on their OBP and SLG is more accurate in
terms of their offensive potential to score runs. Using these data science techniques,
Beane’s Oakland A’s were able to win 103 games in 2002 (including a record-setting
20-game win streak), finish in first place, and make the playoffs. Today, OPS and
OBP and SLG are some of the most closely watched baseball statistics by baseball
insiders and fans alike.

3.1.8 Example: Indentation for Material Hardness
and Strength

Stress (σ) is the distribution of force in a material with a load applied to it. Strain (ε)
is the relative displacement of a material that results from an applied load. For a
uniform rod of material being pulled in tension, the stress is equal to the applied
force divided by the cross-sectional area and the strain is equal to the change in
length divided by the original length. A plot of the stress versus strain demonstrates
some useful material relationships for material performance when loaded. To under-
stand the relevance of stress in material deformation picture this scenario. Two
people of equal weight step on your foot. One person is wearing sneakers while
the other is wearing heels. Which case would hurt most? Getting stepped on with
heels will hurt more since the force (equal in both cases) is concentrated of a smaller
area (the heel piece), therefore having a higher stress.

An example of a stress vs. strain curve for a metal is shown in Fig. 3.14. At first
the sample is not loaded a. Then comes the initial linear portion, known as Young’s
modulus, is the elastic, or recoverable, part of the curve b – when the load is
removed, both the stress and strain return to zero in this region. The yield strength

Fig. 3.14 Typical stress vs. strain curve for a metal
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c is at the upper end of the linear portion of the curve and defines the onset of
permanent (or plastic) deformation (nonlinear function between stress and strain/
state variables S) d-g – when loaded beyond this point and then unloaded some
permanent shape change will occur. In engineering metals the yield strength is
calculated by offsetting the Young’s modulus line 0.2% percent. The peak of the
curve is the ultimate tensile strength e, which is the stress when the peak load is
applied. After the ultimate tensile strength is the region where neck (or visible
deformation) f occurs (at which point some damage D occurs), and finally, the
fracture point g. Note that the parts of the curve after the yield point are generally
not linear but can be approximated as piecewise linear.

Indentation is an experimental method to measure the hardness of a material, or
its the resistance to plastic deformation. This test is done using an indenter of a
pre-determined shape, such as hemispherical or diamond-shaped. The indenter is
pressed into the surface of a material with a specified force. One such hardness test is
the Vickers Hardness (HV) test, which uses a diamond-shaped indenter. After the
indentation mark is made, the average diagonal distance is measured and the Vickers
Hardness is computed as

HV ¼ F
A
¼ F

d2

2 sin 68ð Þ
¼ 1:8544

F

d2 ð3:29Þ

where F is applied force, A is the surface area of the indentation, and d is the average
diagonal dimension of the diamond shaped indentation. As shown in Fig. 2.10, the
Vickers indenter is diamond-shaped, with the faces making a 68

�
angle from the

indentation axis. It has been shown that for some materials, HV and ultimate tensile
strength (TS) are well correlated.

3.1.9 Example: Vickers Hardness for Metallic Glasses
and Ceramics

Vickers hardness measurements were reported for different material by Zhang et al.
[3]. Some of the representative values for metallic glasses are shown in Fig. 3.15.
The Vickers hardness vs. ultimate tensile strength for metallic glasses and ceramics
is shown in Fig. 3.16. Inspection of the data shows that the measurements for the
metallic glasses are generally oriented in a linear pattern, but the measurements for
the ceramic materials are much more scattered.

Regression analysis using least squares optimization is performed on the data for
the metallic glasses and the ceramics. Results show that a linear relationship works
very well for metallic glasses (r2¼ 0.949), but not for ceramics (r2¼ 0.0002) for this
data set (see Fig. 3.16). The difference in indentation results between these two types
of materials is to be expected. Indentation is measuring the amount of force for local
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Fig. 3.15 Representative metallic glass material data from Zhang et al. [3]

Fig. 3.16 Vickers Hardness (HV) vs ultimate tensile strength for metallic glass and ceramic
materials
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plastic flow on the surface. Metallic materials will demonstrate this type of defor-
mation, but ceramics are generally brittle and will experience surface cracking and
fragmentation instead of plastic deformation.

3.2 Nonlinear Regression

A simple straight line relationship often does not exist between two variables. In
these cases, it is necessary to employ some form of regression capable of building a
nonlinear relationship, such as piecewise linear regression analysis, moving average
analysis, or a moving least squares regression analysis.

3.2.1 Piecewise Linear Regression

Piecewise linear regression is one of the most basic nonlinear regression techniques
since it consists of subdividing a set of nonlinear data into a series of segments that
are approximately linear. Once that is done, a linear regression can be done on these
sections one by one. This can be illustrated by planning a route on a map. As shown
in Fig. 3.17, if one were to plot a route from Chicago to Los Angeles, there is not a
straight route to follow. Instead, there are roads filled with curves that go west for a
long way, then roads that traverse in a west southwest direction for a long way, and
finally roads that go in a southwest orientation for the remainder of the route. If a

Fig. 3.17 Map from Chicago to Los Angeles with piecewise linear route overlaid
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person wanted to estimate the distance, the route could be broken into several linear
segments (three in this case) to quickly estimate travel distance and compare routes.

A global piecewise linear regression equation can be developed as a series of line
segments with continuity at the common points. Consider the following set of data
with two straight lines in Fig. 3.18 fit through different parts of the data

yn� ¼ w0 þ w1xn

yn� ¼ w2 þ w3xn

x < c1

x > c1

If the equation in red applies to the line left of point c1 and the blue equation
applies to the line right of c1, at the common point x ¼ c1

w0 þ w1c1 ¼ w2 þ w3c1 ð3:30Þ

which leads to

yn� ¼ w0 þ w1xn x < c1

yn� ¼ w0 þ w1 � w3ð Þc1 þ w3xn x > c1
ð3:31Þ

Using these equations, a global cost function can be written as

c wð Þ ¼ 1
N1

XN1

n¼1

yn� � ynð Þ2 þ 1
N2 � N1

XN2

n¼N1þ1

yn� � ynð Þ2 ð3:32Þ

Fig. 3.18 Piecewise linear regression through data
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which can be used for a least squares optimization for linear regression as discussed
earlier in this chapter.

3.2.2 Moving Average

A moving average provides a good method to smooth out data and mute the effects
of spikes in the data. This is a popular method for analyzing trends with stock prices
in order to smooth out the effects of day to day movement of the stock price. As
shown in Fig. 3.19, the price of the S&P 500 stock index goes up and down on a
daily basis, but the overall trend is upward for the time period shown.

As such, if a financial analyst wanted to evaluate the long term performance of the
stock, a moving average provides a good tool for doing so. In addition, evaluating
different moving averages can also provide insight into stock trends. In Fig. 3.19, the
50 and 200 day moving averages smooth out the data to show the overall trend. The
200-day can also act as a “floor” or lower limit—buying opportunities exist when the
price drops down to that level or below.

A basic form of a moving average is a simple moving average, which is computed
by summing a quantity of interest over a range and dividing by the number of
samples

Fig. 3.19 S&P 500 stock index price with two rolling averages (50 and 200 days) overlaid. The
spread between these moving averages provides insight into stock trends
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SMAc ¼
P

Pc þ Pc�1 þ ::Pc�kð Þ
k

ð3:33Þ

where Pc is the stock price at time c and k is the number of points used for the
averaging. It should be noted that performing a moving average on one variable of a
plot results in the graph giving an appearance of being off of the original data. To
prevent this effect, the averaged value can be plotted at the average of the indepen-
dent variable instead of at the extent (Fig. 3.20).

3.2.3 Moving Least Squares (MLS) Regression

Moving least squares (MLS) regression is a technique to perform regression analysis
on data that does not necessarily demonstrate a linear relationship between the
variables. The technique is similar to the least squares linear regression already
shown, but the inclusion of a weight function allows it to be performed point by
point with the data weighted to the point being evaluated. In other words, the
regression is “bent” to the data by only using a few points at a time. The weight
function results in a localized point-by-point least square fit instead of a global least
squares fit as shown previously. Common weight functions include bell-shaped
curves such as cubic splines and truncated Gaussian functions.

AnMLS curve fit through the Apple stock data is shown in Fig. 3.21. The original
data (plotted with the blue curve) consisted of 252 data points. An MLS approxi-
mation was performed using only 45 evenly spaced points. The weight function used
was a cubic spline with a coverage radius of 3 (approximately 3 points on each side
of the point of interest were involved in each calculation). The results show that the
MLS approximation with this set of parameters is able to accurately capture the
trends of the data but results in smoothing the data similar to the moving average
calculation shown earlier.

start = '2016-01-01'
df2 = web.DataReader('^GSPC', 'yahoo',start)
df2.to_csv('gspc.csv')
df2['Close'].plot()
df2['Close'].rolling(50).mean().plot()
df2['Close'].rolling(200).mean().plot()
plt.legend(['Daily close','50-day moving average','200-day 
moving average'])
plt.ylabel('Price ($)')
plt.show()
plt.grid()

Fig. 3.20 Sample Python code for rolling average in Fig. 3.19
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3.2.4 Example: Bacteria Growth

Recall the discussion on bacteria from Chap. 2. The growth of bacteria is an example
of a nonlinear relationship. If food is left out at room temperature and not refriger-
ated, bacteria will begin to grow. As shown by the blue circles in Fig. 3.22, the
number of bacteria will increase slowly at first (lag phase), but after some period of
time the rate of increase will become much more rapid (exponential phase). Later on,
the rate of increase will become much slower again (stationary phase). A simple
linear regression shown by the red line in Fig. 3.22 obviously provides a poor fit to
the data and would not provide a useful predictive tool. However, if the data can be
fit using piecewise linear regression as shown by the green lines. As shown in
Fig. 3.22, the lag and stationary phases can be fit using a single line for each, but
the exponential phase requires at least two line segments due to the nonlinear nature
of the bacteria growth during this phase.

Figure 3.23 shows the results for the application of a MLS approximation to the
bacteria growth data. The original data contained 45 data points, but the MLS
approximation was done using only 15 data points.

Fig. 3.21 Apple stock price with moving least squares (MLS) approximation overlaid
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Fig. 3.23 Moving least squares (MLS) approximation of bacteria growth data

Fig. 3.22 Bacteria growth
model
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3.3 Regularization and Cross-Validation (Advanced Topic)

Nonlinear regression methods require complicated, higher order regression models
to achieve accuracy. These methods may lose generality for the regression models.
In order to find a good balance between model complexity and accuracy, regulari-
zation is introduced into the regression model. The regularized loss function intro-
duces and extra term and is given by

L wð Þ= 1
N

XN
n¼1

y�n � ynð Þ2 þ λ wk kpp ð3:34Þ

where λ is a predefined regularization parameter with nonnegative value, a positive
number,yn is the original data, y�n is the regression model, and N is the number of
data points.

This equation shows that besides the first MSE term, a p-norm regularization term
is added. This term acts as a “penalty” for having w be too large. In theory, the
regularization term seeks to balance on the seesaw of simplicity and accuracy. The λ
parameter is analogous to the fulcrum location of the seesaw. A larger λ implies more
simplicity in the model, and smaller λ implies more accuracy in the model. If the

import pandas as pd
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# Load team data
df = pd.read_csv('baseball.csv',sep=',').fillna(0)
df['OPS'] = df.OBP + df.SLG

df2002 = df.loc[df.Year < 2002]

# Linear regression for Runs scored

slBA, intBA, r_valBA, p_valBA, ste_errBA = 
stats.linregress(df2002.BA,df2002.RS)
rsqBA = r_valBA**2
slOBP, intOBP, r_valOBP, p_valOBP, ste_errOBP = 
stats.linregress(df2002.OBP,df2002.RS)
rsqOBP = r_valOBP**2
slSLG, intSLG, r_valSLG, p_valSLG, ste_errSLG = 
stats.linregress(df2002.SLG,df2002.RS)
rsqSLG = r_valSLG**2
slOPS, intOPS, r_valOPS, p_valOPS, ste_errOPS = 
stats.linregress(df2002.OPS,df2002.RS)

Fig. 3.24 Linear regression Python code for baseball example
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rsqOPS = r_valOPS**2

plt.plot(df2002.BA,df2002.RS,'.',label='BA ($r^2$=%.3f)' 
%rsqBA)
plt.plot(df2002.OBP,df2002.RS,'o',label='OBP ($r^2$=%.3f)' 
%rsqOBP)
plt.plot(df2002.SLG,df2002.RS,'.',label='SLG ($r^2$=%.3f)' 
%rsqSLG)
plt.plot(df2002.OPS,df2002.RS,'*',label='OPS ($r^2$=%.3f)' 
%rsqOPS)
plt.xlabel('Statistic')
plt.ylabel('Runs scored')
plt.legend(loc='lower right')
plt.grid()

yBA = slBA*df2002.BA + intBA
plt.plot(df2002.BA,yBA,'k-')

yOBP = slOBP*df2002.OBP + intOBP
plt.plot(df2002.OBP,yOBP, 'k-')

ySLG = slSLG*df2002.SLG + intSLG
plt.plot(df2002.SLG,ySLG, 'k-')

yOPS = slOPS*df2002.OPS + intOPS
plt.plot(df2002.OPS,yOPS, 'k-')

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

ax.scatter(df2002.OBP,df2002.SLG,df2002.RS,marker='*',color='r'
)
ax.set_xlabel('On base percentage (OBP)')
ax.set_ylabel('Slugging percentage (SLG)')
ax.set_zlabel('Runs scored (RS)')

x = df2002.OBP
y = df2002.SLG
x,y = np.meshgrid(x,y)
z = -803 + 2729*x + 1587*y

# Linear regression for Wins

slWBA, intWBA, r_valWBA, p_valWBA, ste_errWBA = 
stats.linregress(df2002.BA,df2002.W)

Fig. 3.24 (continued)

3.3 Regularization and Cross-Validation (Advanced Topic) 79



regularization parameter is λ ¼ 0, the problem is a standard least square regression
problem, (i.e., regression without regularization). The choice of λ will be introduced
in Sect. 3.3.4. A diagram of how the regularization term balances model complicity
and accuracy is shown in Fig. 3.25. With the increase of the model complexity, the
MSE term typically decreases while the regularization term increases. The sum of
them can achieve a minimum when an appropriate model complexity is selected.
Two commonly used regularization approaches are the L1 and L2 norm regularized
regression methods.

3.3.1 Review of the Lp-Norm

The Lp-norm is a measure of a vector size, which is defined as the p-th root of the
sum of the p-th-powers of the absolute values of the vector components

wk kp ¼
XN

i¼1
w j

�� ��p� �1=p
ð3:35Þ

Example:

If p ¼ 1, wk kp¼1 ¼
XN

i¼1
j w j j¼ w1j j þ w2j j þ . . .þ j wN j ð3:36Þ

If p ¼ 2, wk kp¼2 ¼
XN

i¼1
w j

�� ��2� �1=2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w1j j2 þ w2j j2 þ . . .þ wNj j2

q
ð3:37Þ

For the limit case when p ¼ 1,

Fig. 3.25 How the regularization term balances model complicity and accuracy
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wk k1 ¼ max w j

�� ��� � ¼ max w1j j, w2j j, . . . , wNj jð Þ ð3:38Þ

The shape of Lp-norm is illustrated for a vector containing only two components,
i.e. N ¼ 2. For comparison, it is required that kwkp ¼ 1.

wk kp¼1 ¼ 1 wk kp¼2 ¼ 1 wk kp¼1 ¼ 1

The contour indicates for the possible points (w1, w2) that satisfy kwkp ¼ 1. In
general, as p approaches infinity, the contour approaches a square, that is
kwk1 (Fig. 3.26).

3.3.2 L1-Norm Regularized Regression

The L1-norm can be used to relieve overfitting by adding a regularization term to the
regression equation. A two-dimensional polynomial example is used to demonstrate
the recovery of the true function with independently and identically distributed
Gaussian noise for each term

y� ¼ 1 xþ E1ð Þ5 � 4 xþ E2ð Þ2 � 5 xþ E3ð Þ ð3:39Þ

where y� is the simulated data, and the noise Ei~Normal (0, 0.05) for all i ¼ 1; 2;
3. To simulate noise, 81 linearly spaced x-coordinates are spaced between interval
[�2,2]. The noise data are used to define uncertainties and reflect inaccuracies in
measurements.

At the beginning of this section, the general form of regularized regression
function is given in Eq. (3.34). For p ¼ 1, the expression of L1-norm regularized
regression is

L wð Þ= 1
N

XN
n¼1

y�n � ynð Þ2 þ λ wk k1p¼1 ð3:40Þ

A comparison showing the advantages of regularized regression is shown for two
regressive methods, which are tested and recover the correct function in Eq. (3.39).
Firstly, for non-regularized regression, the mean square error (MSE) is used to find
weights w0, . . ., w5 in polynomial yn ¼ w0 + w1xn + w2xn

2 + . . . + w5xn
5. Secondly,

(1,0)

(0,1) (0,1)

(1,0) 

(1,1)Fig. 3.26 Geometric
interpretation of L1, L2 and
1 norm (https://en.
wikipedia.org/wiki/Lp_
space)
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regularization term with L1-norm is added to find weights of L1-norm regularized
regression. The results are shown in Fig. 3.27.

The blue dots represent the original data based on Eq. 3.39, the blue line is
L1-norm regularized regression result, and the red line is non-regularized regression
result. The regression model obtained by the regularization is

y ¼ 0:9671x5 � 3:9175x2 � 4:6723x with λ ¼ 0:074 ð3:41Þ

The regression without regularization is

y ¼ 1:0498x5 þ 0:2190x4 � 0:1003x3 � 4:5166x2 � 4:8456x� 0:0018 ð3:42Þ

Results show that both the models fit the data very well. However, the predicted
functions are very different. The main difference is that L1 regularization can
eliminate some high order terms in the regression model (w0, w3, w4 equal to
zero). This shows sparsity and thus can be used for feature selection (or model
selection), e.g., the order of x. Also, note that in this problem, an appropriate value of
λ is 0.074. One approach of choosing appropriate λ is through the K-fold cross-
validation, details will be introduced in Sect. 3.3.4.

3.3.3 L2-Norm Regularized Regression

Similarly, L2-norm can be used instead of L1-norm for the regularization term. The
L2-norm regularized regression is defined as

L ωð Þ= 1
N

XN
n¼1

y�n � ynð Þ2 þ λ ωk k2p¼2 ð3:43Þ

Fig. 3.27 Comparisons
between L1-norm
regularization regression
and non-regularized
regression
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L2-norm uses the concept of “sum of squares”, and thus has useful properties
such as convexity, smoothness and differentiability. L2-norm regularized regression
also has an analytical solution because of these properties. Using the same polyno-
mial model y�n for regression, the results are depicted in Fig. 3.28.

Similarly, the blue dots are generated as the original data based on Eq. (3.39), the
blue line is L2-norm regularized regression result, and the red line is non-regularized
regression result. The regression model obtained by the regularization is

y¼ 1:0119x5 � 0:0800x4 þ 0:0495x3 � 3:7368x2 � 5:3544x� 0:0707 with λ¼ 1 ð3:44Þ

The regression without regularization is the same as Eq. (3.42)

y ¼ 1:0498x5 þ 0:2190x4 � 0:1003x3 � 4:5166x2 � 4:8456x� 0:0018

Both models fit the data well, and the weights of L2-norm regularized regression
are nonzero, but smaller than non-regularized regression weights (different from
L1-norm regularized regression). That is, where the L1-regularized regression may
squeeze sufficiently small coefficients to zero, it may omit the intricate details. The
L2-norm seeks to capture those details, and thus L2-norm regression can preserve
details and detect sophisticated patterns in data.

Comparing L1-norm and L2-norm regressions, it is found that L1-norm regres-
sion has a better performance in selecting key features of model. However, the
L2-norm can preserve details and detect sophisticated patterns in data.

3.3.4 K-Fold Cross-Validation

Cross-validation, sometimes called rotation estimation or out-of-sample testing, is an
important model validation technique for assessing how the results of a statistical
analysis will generalize to an independent data set.

Fig. 3.28 Comparisons
between L2-norm
regularization regression
and non-regularized
regression
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One commonly used cross-validation method is K-fold cross-validation, in which
the original sample is randomly partitioned into K equally sized subsamples. Con-
sider the example in Sect. 3.3.2. Eighty-one (81) equally spaced x-coordinates are
spaced between interval [�2,2] through Eq. (3.39). If K¼ 10-fold cross-validation is
used, each data set has 8 data points (9 for the last data set). Of the K ¼ 10
subsamples, a single subsample is retained as the validation data for testing the
model, and the remaining 9 subsamples are used as training data [4].2 The cross-
validation process is then repeated ten times, with each of the ten subsamples used
exactly once as the validation data. The MSE for ten data sets can then be averaged
to produce a single estimation. The advantage of this method over repeated random
sub-sampling is that all observations are used for both training and validation, and
each observation is used for validation exactly once. K ¼ 10-fold cross-validation is
commonly used [5], but in general K remains an unfixed parameter [6]. The divided
data sets are in Table 3.2.

Table 3.2 Divided data sets

Data set number Training data Test data

Set 1 Point 9 to 81 Point 1 to 8

Set 2 Point 1 to 8 and 17 to 81 Point 9 to 16

Set 3 Point 1 to 16 and 25 to 81 Point 17 to 24

. . . . . . . . .

Set 10 Point 1 to 72 Point 73 to 81

Fig. 3.29 Comparison result of different λ

2Newbie question: confused about train, validation and test data! Archived from the original on
14 March 2015. Retrieved 14 November 2013.
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The corresponding MSE of each set can be calculated. Thus, for those K ¼ 10
sets, an error bar is computed with the corresponding mean value and standard
deviation. It is used to evaluate the goodness of fit for the regression model. The error
bar results of different regularization parameter λ are used to find an appropriate λ.
For example, if 50 different λs are evaluated from 0.01 to 10, the comparison result is
shown in Fig. 3.29. The appropriate λ value with the minimum MSE is 0.0745.

%% L1 and L2 norm regression example 

%% Generation of data 
clc 
clear 
x0 = -2:0.05:2; % 81 linearly spaced x-coordinates are spaced between 
interval [-2,2] 
n = length(x0); % The total number of data points (81) 
x1 = x0+randn(1,n)*0.05; % x+epsilon1  
x2 = x0+randn(1,n)*0.05; % x+epsilon2  
x3 = x0+randn(1,n)*0.05; % x+epsilon3  
x = [x1.^5;x0.^4;x0.^3;x2.^2;x3;ones(1,n)]';  
weights = [1;0;0;-4;-5;0]; % Weights 
y = x*weights; % Simulated data y = x^5 - 4*x^2 - 5*x  

%% Regressions 
[b_lasso,fitinfo] = lasso(x,y,'CV',10); % L1-norm regularized regression 
lam = fitinfo.Index1SE; % Index of appropriate Lambda 
b_lasso_opt = b_lasso(:,lam) % Weights for L1-norm regularized regression 

lambda = 1; % Set lambda equals to 1 for L2-norm regularized regression 
(You can also find an appropriate Lambda yourself) 
b_ridge = (x'*x+lambda*eye(size(x, 2)))^-1*x'*y % Weights for L2-norm 
regularized regression (Has analytical solution) 

b_ols = polyfit(x1',y,5) % Weights for non-regularized regression 
(Ordinary Least Squares) 

xplot = [x0.^5;x0.^4;x0.^3;x0.^2;x0;ones(1,n)]'; 
y_lasso = xplot*b_lasso_opt; % L1 norm regression result 
y_ols = xplot*b_ols'; % Non-regularized regression result 
y_ridge = xplot*b_ridge; % L2 norm regression result 

%% Plots 
plot(x0,y,'bo') % Plot of origin data 
hold on 
plot(x0,y_lasso,'LineWidth',1) % Plot of L1 norm regression 
hold on  
plot(x0,y_ridge,'LineWidth',1) % Plot of L2 norm regression 
hold on 
plot(x0,y_ols,'LineWidth',1)  % Plot of non-regularized regression 
ylabel('Y','fontsize',20) 
xlabel('X','fontsize',20) 
legendset = legend('Original data','L1 norm regression','L2 norm 
regression','Noregularization','location','southeast'); 
set(gca,'FontSize',20);  
lassoPlot(b_lasso,fitinfo,'PlotType','CV'); % Cross-validated MSE 
legend('show') % Show legend 

Fig. 3.30 Matlab code for regularization regression
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The steps to find the appropriate value of λ using K-fold cross-validation are
summarized below:

1. For each regularization parameter, divide the original data set into K equal folds
(parts).

2. Use one part as the test set and the rest as the training set.
3. Train the model and calculate the mean square error (MSE) with the test set.
4. Repeat steps 2 and 3 K times, and each time use a different section as the test set.
5. Compute the average and standard deviation of the set of MSE including K

MSEs. Take the average accuracy as the final model accuracy.
6. Compare MSE for different λ values to find the appropriate regularization

parameter.

The Matlab code for this section is given in Fig. 3.30.

3.4 Equations for Moving Least Squares (MLS)
Approximation (Advanced Topic)

Consider an approximation function written as

yn� xð Þ ¼ p xð ÞTa xð Þ

where yn� is an approximation to be computed, p(x) is a basis vector and
a(x) is a vector of unknown coefficients. For a polynomial basis vector

p xnð ÞT ¼ 1, xn, xn
2 . . ., xn

d�1ð Þ, xn
d

h i

a xð Þ ¼

a0 xð Þ
a1 xð Þ
a2 xð Þ
⋮

ad xð Þ

26666664

37777775
Note that the coefficients a(x) are not constant as they are for linear regression,

and vary with the position.

(continued)
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The cost function for MLS is

c a xð Þð Þ ¼
XN
I¼1

w x2 xIð Þ p xIð ÞTa xð Þ � yn
� �2

where w(x � xI) is a weight function and yn is the discrete data being
used for the regression analysis. The minimum of the cost function can be
determined by taking the derivative as

∂c
∂a xð Þ ¼ A xð Þa xð Þ � B xð Þy ¼ 0

where

A xð Þ ¼
XN
I¼1

w x� xIð Þp xIð ÞpT xIð Þ

B xð Þ ¼ w x� x1ð Þp x1ð Þ,w x� x2ð Þp x2ð Þ, . . . ,w x� xNð Þp xNð Þ½ �

and y is the vector of raw datapoints.
The coefficients a(x) can be solved as

a xð Þ=A2 1 xð ÞB xð Þy

which can be used to solve a reduced order nonlinear MLS approxima-
tion to the original data

yn� ¼
XN
I¼1

ϕI xð ÞyI

where yn� is the reduced order MLS approximation, and ϕI(x) ¼ pT(x)
A�1(x)BI(x) is the MLS approximation function.
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