
Chapter 5
Knowledge-Driven Dimension Reduction
and Reduced Order Surrogate Models

Abstract This chapter focuses on the knowledge-driven dimension reduction
aspect of mechanistic data science. Two types of dimension reduction methods
that are introduced in this chapter: clustering and reduced order modeling. Clustering
aims to reduce the total number of data points in a dataset by grouping similar data
points into clusters. The datapoints within a cluster are considered to be more like
each other than datapoints in other clusters. There are multiple methods and algo-
rithms for clustering. In the first part of this chapter, three clustering algorithms are
presented, ranging from entry level to advanced level: the Jenks natural breaks,
K-means clustering, and self-organizing map (SOM). Clustering is a form of dimen-
sion reduction that reduces the total number of data points. In the second part of this
chapter, Singular Value Decomposition (SVD) and Principal Component Analysis
(PCA) will be introduced as a reduced order modeling technique that reduce the
number of features by eliminating redundant and dependent features, leading to a
new set of principal features. The resulting model is called a reduced order model.
Proper Generalized Decomposition (PGD) is a higher order extension of PCA and
will also be introduced.

Keywords Dimension reduction · K-means clustering · Self-organizing map
(SOM) · Reduced order surrogate model · Singular value decomposition (SVD) ·
Principal component analysis (PCA) · Proper generalized decomposition (PGD) ·
Spring mass system · Variance · Covariance · Modal superposition · Eigenvalues ·
Eigenvectors

Supplementary Information: The online version of this chapter (https://doi.org/10.1007/978-3-
030-87832-0_5) contains supplementary material, which is available to authorized users.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
W. K. Liu et al., Mechanistic Data Science for STEM Education and Applications,
https://doi.org/10.1007/978-3-030-87832-0_5

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87832-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-87832-0_5#DOI
https://doi.org/10.1007/978-3-030-87832-0_5#DOI
https://doi.org/10.1007/978-3-030-87832-0_5#DOI

5.1 Introduction

Clustering (sometimes called cluster analysis) is a general task of grouping a set of
datapoints so that datapoints within the same group (called a cluster) are more similar
to each other than datapoints in other clusters. Cluster analysis originated in the field
of anthropology by Driver and Kroeber in 1932 [1] and was later introduced to
psychology by Joseph Zubin in 1938 [2] and Robert Tryon in 1939 [3]. It was
famously used by Cattell beginning in 1943 [4] for trait theory classification in
personality psychology. In 1967, George Frederick Jenks proposed the Jenks opti-
mization method [5], also called the Jenks natural breaks classification method,
which is a data clustering method designed to determine the best arrangement of
values into different classes. The term “k-means“was first used by James MacQueen
in 1967 [6]. In recent years, a lot of clustering methods have been developed
including k-medians clustering [7], hierarchical clustering [8] (1977), and self-
organizing map (2007) [9].

Reduced order modeling is a second type of dimension reduction technique that
aims to reduce the number of features by eliminating redundant and dependent
features and obtaining a set of principal features. Two classical and highly related
dimension reduction methods, Singular Value Decomposition (SVD) and Principal
Component Analysis (PCA), are introduced in this chapter. SVD was originally
developed by differential geometry researchers Eugenio Beltrami and Camille
Jordan in 1873 and 1874, respectively [10]. PCA was independently invented by
Karl Pearson (1901) [11] and Harold Hotelling (1933) [12]. The resulting model
after dimension reduction is called a reduced order model (ROM). Proper General-
ized Decomposition (PGD) (2006) [13] is introduced as a generalized ROM that is a
higher order extension of PCA and SVD.

5.2 Dimension Reduction by Clustering

5.2.1 Clustering in Real Life: Jogging

The analysis of jogging performance is used to as an application of clustering.
Figure 5.1 below shows a sample of some jogging data collected by smartphone
apps. The data include the jogging date, distance, duration, and the number of days
since the last workout. The days since last workout vs. distance is plotted. The data
were clustered into five groups using a k-means clustering algorithm (to be discussed
later in this chapter), with each cluster indicated by the different colors.

Clustering allows the identification of similar workout sessions and the relation-
ship to overall performance. For example, the days since last workout vs. distance
shows that the jogging distance was shortest after a large number of rest days
(Cluster 3 in the Fig. 5.1), but also after only a few days of rest. The longest jogging
distances were achieved when there was approximately 6 days since last workout

132 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

(Cluster 5 in the Fig. 5.1). Therefore, clustering analysis shows that resting 5–7 days
between workouts results in the best performance in terms of jogging distance.

5.2.2 Clustering for Diamond Price: From Jenks Natural
Breaks to K-Means Clustering

Jenks natural breaks is a very intuitive data clustering algorithm proposed by George
Frederick Jenks in 1967 [14]. “Natural breaks” divides the data into ranges that
minimize the variation within each range. To illustrate the idea of the Jenks natural
breaks, consider four diamonds shown in Fig. 5.2. The goal of the clustering is to

Fig. 5.1 The jogging workout session dataset clustered into five distinct groups

Fig. 5.2 Classifying four diamonds with known prices

5.2 Dimension Reduction by Clustering 133

form two groups or clusters from these four diamonds based on their prices, i.e.,
$300, $400, $1000, and $1200.

The first step of the Jenks natural breaks is calculating the “sum of squared
deviations from array mean (SDAM)” based on the data array (order from smallest
to largest):

array ¼ 300, 400, 1000, 1200½ � ð5:1Þ

The mean of the array can be computed first:

mean ¼ 300þ 400þ 1000þ 1200ð Þ=4 ¼ 725 ð5:2Þ

SDAM is equal to variance of the data:

SDAM ¼ 300� 725ð Þ2 þ 400� 725ð Þ2 þ 1000� 725ð Þ2 þ 1200� 725ð Þ2
¼ 587, 500

ð5:3Þ

The second step is to compute all possible range combinations and calculate the
“sum of squared deviations from class means” (SDCM) and identify the smallest
one. For this diamond price data, there are three range combinations:

1. group 1 : [300] and group 2 : [400,1000,1200]

SDCM¼ 300�300ð Þ2þ 400�867ð Þ2þ 1000�867ð Þ2þ 1200�867ð Þ2 ¼ 346,667

ð5:4Þ

2. group 1 : [300, 400] and group 2 : [1000, 1200]

SDCM¼ 300�350ð Þ2þ 400�350ð Þ2þ 1000�1150ð Þ2þ 1200�1150ð Þ2¼25,000

ð5:5Þ

3. group 1 : [300, 400, 1000] and group 2 : [1200]

SDCM¼ 300�567ð Þ2þ 400�567ð Þ2þ 1000�567ð Þ2þ 1200�1200ð Þ2¼286,667

ð5:6Þ

Based on this calculation, combination 2 has the smallest SDCM, implying that it
is the best clustering.

134 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

The final step is to calculate the “goodness of variance fit” (GVF) [15], defined as

GVF ¼ SDAM� SDCM
SDAM

ð5:7Þ

GVF ranges from 1 (perfect fit) to 0 (poor fit).
The GVF for range combination 2 is

587, 500� 25, 000ð Þ
587, 500

¼ 0:96 ð5:8Þ

The GVF for range combination 1 is

587, 500� 346, 667
587, 500

¼ 0:41 ð5:9Þ

In this data set, the range combination group 1 : [300, 400] and
group 2 : [1000, 1200] is best because it has the lowest SDCM of all possible
combinations and has a GVF close to 1. The two groups are shown in Fig. 5.3
highlighted with different colors (red and blue).

The goal of the Jenks natural breaks (and many other clustering methods) is to
minimize the SDCM. A lower SDCM equates to better clustering because SDCM is
related to the distance of the data points from the means of their clusters. Thus, a
lower SDCM indicates that the data points within a cluster are close together
and more similar. For example, Fig. 5.4 shows two different clustering results for
the diamond dataset. Figure 5.4(a) has an SDCM of 25,000 while Fig. 5.4(b)
has an SDCM of 286,667 (the calculations for mean and SDCM are also marked
in the figure). It can be noticed that the data points are closer to the means (marked
as stars with different colors for different clusters) in Fig. 5.4(a) than that in
Fig. 5.4(b).

From this example, it is evident that Jenks natural breaks method works well for
1D data. However, it is inefficient because it has to go through all the possible
arranging combinations. For example, clustering 254 data points into six clusters has
C(253,5)¼ 8,301,429,675 possible range combinations. It is very time consuming to
calculate the means and SDCMs for the more than eight billion combinations.

Fig. 5.3 Clustering of diamonds based on Jenks Natural Breaks method

5.2 Dimension Reduction by Clustering 135

Where does C(253,5) ¼ 8,301,429,675 come from?

Recall: Stars and Bars Combinatorics
Suppose n stars are to be divided into k distinguishable groups, in which each

group contains at least one star. Additionally, the stars have a fixed order.
k – 1 bars are needed to divide n stars into k groups. See the example below
of seven stars divided into 3 groups:

★|★|★★★★★ (n ¼ 7, k ¼ 3)
The position of the bars between the stars matters. There are n – 1 gaps

between the stars, each which may or may not contain a bar. Thus, this
becomes a simple combination problem, in which the total number of
possibilities for choosing which k – 1 gaps out of n – 1 gaps contain a
bar can be calculated.

This can be represented as (n – 1, k – 1),
n� 1

k � 1

� �
, or n�1ð Þ!

k�1ð Þ! n�kð Þ!

To overcome the limitation of the Jenks natural breaks, a more efficient and
widely used clustering method, called k-means clustering, is introduced. This clus-
tering method divides the data points into k clusters (hence the “k” in k-means) and

Fig. 5.4 Visualization of two different clustering results: (a) [300,400] and [1000, 1200] and (b)
[300,400,1000] and [1200]. Each box indicates a cluster. The stars are mean of each cluster

136 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

finds the center point for each of the clusters. The center points are moved around,
and some points are moved from cluster to cluster until the tightest collection of data
points is found for each cluster center point (or mean). When written mathematically,
the goal of k-means clustering is to minimize the SDCM

argminμj
XK
j¼1

X
xi2Sj

xi � μj
�� ��2 ð5:10Þ

where xi is data point i in the jth cluster Sj, μj is the center point (or mean) of the
cluster Sj, k∙k2 is the square distance, and K is the number of clusters.

The same diamond data from the Jenks natural breaks example is used to explain
k-means clustering with two clusters.

1. For the first iteration, the center points of the two clusters are randomly assigned,
for example initial means ¼ [1100, 1200] (marked as stars in Fig. 5.5).

2. The distance of each data point to each of the k means is calculated:

Distance to the mean 1 ¼ 800, 700, 100, 100½ � ð5:11Þ
Distance to the mean 2 ¼ 900, 800, 200, 0½ � ð5:12Þ

3. Based on the distance to the mean, each data point is labeled as belonging to the
nearest mean:

Label ¼ 1, 1, 1, 2½ � ð5:13Þ

4. The means for the groups of labeled points then can be updated

means ¼ 567, 1200½ � ð5:14Þ

5. The updated means in Step 4 are compared with the previous iteration. If the
difference is less than a specified tolerance, the optimum clustering is found. If
not, the algorithm returns to step 2.

Fig. 5.5 The initial means are randomly assigned at the first iteration

5.2 Dimension Reduction by Clustering 137

For this example, only three iterations are needed for the converged result of
means ¼ [350, 1100] (see Fig. 5.6). Note that k-means clustering ends up with the
same result as the Jenks natural breaks.

The k-means clustering is much more efficient than the Jenks natural breaks. In
summary the procedure of the k-means clustering is shown in Fig. 5.7.

5.2.3 K-Means Clustering for High-Dimensional Data

Higher dimension data can be clustered very similarly using k-means clustering. The
dimension of the data is determined by the number of features. Table 5.1 lists the
differences in clustering for 1D, 2D, and 3D data. It can be seen that for higher
dimensional clustering the data points and the means are vectors instead of scalars.

Fig. 5.6 The cluster means at the second iteration

Fig. 5.7 The procedure of the k-means clustering

Table 5.1 Comparing
k-means clustering for one-,
two-, and three-dimensional
data

1D 2D 3D

Data x
x ¼ x1

x2

� �
x ¼

x1
x2
x3

0
B@

1
CA

Mean
y ¼

P
x

N y ¼
P

x
N y ¼

P
x

N

Distance |x � y| kx � yk kx � yk
x ¼ data point, N ¼ number data points, y ¼ mean. Bold indicates
vector

138 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

5.2.3.1 Example: Clustering of Diamonds Based on Multiple Features

The diamond dataset from Chap. 2 is clustered based on multiple key features.
Initially, two key features (price and carat) are used, and the data is divided into four
clusters. The results of this 2D clustering are shown in Fig. 5.8. Based on the
k-means clustered data, the clusters of high-end diamonds (black cluster) and
economical diamonds (yellow cluster) can be identified.

Additional features can be used for clustering. Clustering for 3D data follows a
similar method. Figure 5.9 shows the data for 2695 diamonds clustered based on
price, clarity, and carat.

5.2.4 Determining the Number of Clusters

Before performing k-means clustering, the ideal number of clusters should be
determined to properly represent the data. This can be accomplished using the
“elbow method”. This method is based on the goodness of variance fit (GVF) as
discussed previously. The GVF is defined as

GVF ¼ SDAM� SDCM
SDAM

ð5:15Þ

Fig. 5.8 Diamond dataset is clustered into four groups based on carat and price. There are 539 data
points used for the clustering

5.2 Dimension Reduction by Clustering 139

where GVF ranges from 1 (perfect fit) to 0 (poor fit), SDAM is the sum of squared
deviations from array mean, and SDCM is the sum of squared deviations from
class mean.

If GVF is graphed versus the number of clusters, an “elbow” will appear in the
curve when the effect of increasing k begins to have a decreased effect on the GVF.
For example, as shown in Fig. 5.10 the elbow appears to occur at K ¼ 3 or 4 for the
diamond data.

Fig. 5.9 Diamonds are clustered into four groups based on price, clarity, and carat. There are 2695
data points used for the clustering. The order of the colors is randomly generated by the algorithm. It
might be different for each run

Fig. 5.10 Using the elbow
method on GVF vs. the
number of clusters to
determine the best number
of clusters

140 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

It is noted that the elbow method is somewhat subjective because the elbow
occurs in a region and not a precise location. This is one of the limitations of k-means
clustering. Other limitations of the k-means clustering will be discussed in the next
section.

5.2.5 Limitations of K-Means Clustering

Although k-means clustering is a widely used way to reduce data dimension, there
are a couple of notable limitations. First, the user must specify the number of
clusters, K. Some methods such as elbow method can be used to determine the
best number of clusters, but most of them are done visually by the user’s judgment
and not automatically by the method itself. This makes it difficult to completely
automate the clustering process. Next, k-means clustering can only handle numerical
or categorical data. It cannot handle images or words. Finally, k-means clustering
assumes that we are dealing with spherical clusters and that each cluster has roughly
an equal number of observations. Those limitations can be overcome (or partially
overcome) by other types of advanced clustering methods such as Hierarchical
Clustering/Dendrograms [16] and Self-organizing maps (SOM) [17], in which the
number of clusters does not need to be specified before the clustering. The SOM and
its applications will be introduced in the next section as an advanced topic.

5.2.6 Self-Organizing Map (SOM) [Advanced Topic]

The self-organizing map (SOM) is an unsupervised machine learning algorithm that
is able to map high-dimensional data to two-dimensional (2D) planes while preserv-
ing topology [18]. The main advantage of the SOM is that it can visualize high-
dimensional data in the form of a low-dimensional map, which helps researchers to
visually identify underlying relations between the features. As a tool to visualize
high-dimensional datasets, the SOM is beneficial for the cluster analysis of engi-
neering design problems as well.

The goal of a self-organizing map (SOM) is to reduce the dimension of data
points by representing the topology of the data with fewer points, using a map of
neurons, and converting the dataset into two dimensions. The topology refers to the
relative distance between points, meaning that there will be more neurons in areas
where data is more condensed. These neurons can be treated as mini-clusters. In the
map, each neuron is connected to its surrounding neurons, which are referred to as
“neighbors.” Because the map preserves the topology of the data, neighboring
neurons will describe a similar number of data points. The maps are always
two-dimensional, even when used on higher dimensional data, allowing us to assess
the clustering of higher dimensions in just two dimensions.

5.2 Dimension Reduction by Clustering 141

The goal of the SOM is to put “similar” datapoints into the same SOM neuron
(mini-cluster) and weight Wij of each neuron represents the average of the included
datapoints. For example, an illustrative 8*8 SOM is shown in Fig. 5.11. The labels of
the X and Y axes are the integers 1 � i � SizeX, and 1 � j � SizeY, respectively.

To achieve a convergent result, SOM uses competitive learning, rather than error-
correction learning (like back propagation [19]). The training procedure can be
described by a pseudo code as shown in Fig. 5.12. Initially, the weights of the
neurons are set to be Wi,j

0 with random number [0, 1]. The elements of each input
vector are normalized linearly to [0, 1]. After initialization, the SOM is trained for a
number of T epochs. For the current epoch t and each input vector xm, first, the best
matching unit (BMU) is determined by calculating the distance between the input
vector and each neuron weight using Eq. (5.1) in Fig. 5.12. The BMU is a map unit
has the shortest distance to input vector xm. Second, the diameter of the neighbor-
hood around the BMU can be determined by Eq. (5.2) in Fig. 5.12, where d(t) is a
function that decreases monotonously with time. The initial distance coefficient is
d0, and the decrease rate is λ. Third, the weights Wi,j

m in the BMU and its neighbor-
hoods are updated according to Eqs. (5.3) and (5.4) in Fig. 5.12. In Eqs. (5.3) and
(5.4), hBMU, i, j represents the Gaussian kernel function, where α(t) is a learning rate
parameter, ri, j is the position of each unit, and rBMU is the position of the BMU. The
current epoch is finished after all the xm have been calculated to the SOM. By
selecting a large enough number of epochs, for example 100, the SOM can converge.
When the training is finished, the map can reorder the original datasets while
preserving the topological properties of the input space.

Fig. 5.11 An illustrative 8*8 SOM

142 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

5.2.6.1 An Engineering Example: Data-Driven Design for Additive
Manufacturing Using SOM

The SOM algorithm is demonstrated for visualizing high-dimensional data in addi-
tive manufacturing (AM). These data are obtained from well-designed experimental
measurements and multiphysics models. The SOM is introduced to find the relation-
ships among process-structure-properties (PSP) in AM, including laser power, mass
flow rate, energy density, dilution, cooling rate, dendrite arm spacing, and
microhardness. These data-driven linkages between process, structure, and proper-
ties have the potential to benefit online process monitoring control in order to derive
an ideal microstructure and mechanical properties. In addition, the design windows
of process parameters under multiple objectives can be obtained from the visualized
SOM. A schematic diagram of this work is shown in Fig. 5.13.

Sixty single-track AM experiments using various process parameters were
conducted for data generation. Materials characterization in this case included
cooling rate measurements, dilution measurements, dendrite arm spacing measure-
ments, and hardness testing. In addition, a computational thermal-fluid dynamics
(CtFD) model was developed to simulate the AM process. In total, 25 simulation
cases with various laser power levels and mass flow rates were computed. For each
case, the structures and properties observed were the melt pool geometry, dilution,

Fig. 5.12 SOM algorithm

5.2 Dimension Reduction by Clustering 143

cooling rate, secondary dendrite arm spacing (SDAS), and microhardness. Details of
experiments and simulations can be found in Refs [20, 21].

The SOM Toolbox in Matlab [22] was used to simultaneously visualize high-
dimensional datasets and design process parameters. Using physics-based simula-
tions and experimental measurements, seven-dimensional (7D) AM dataset was
obtained for data mining including laser power, mass flow rate, energy density,
cooling rate, dilution, SDAS, and microhardness. The Matlab code for SOM is
shown below. The file ‘Training data from AM (all).xlsx’ includes the 7D AM
dataset.

Matlab code for SOM:
Dataset=xlsread('Training data from AM (all).xlsx','data');
SOM = selforgmap([8 8],100,6);
SOM = train(SOM, Dataset’);
view(SOM);
y = SOM(Dataset’);

classes = vec2ind(y);

The simulation and experimental data points were used as input vectors to train a
single 8 � 8 SOM indistinctively. It is found that the 8 � 8 SOM has the best

Fig. 5.13 A schematic description of the workflow typically employed in current computational
efforts (top row) and of experimental efforts (bottom row), along with a description of how this can
be augmented with a data-mining approach to recover high-value PSP linkages of interest to
material innovation efforts

144 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

performance. If the map size is too small, the map resolution is very low; however,
an SOM that is too large results in overfitting. Trained SOMs are shown in Fig. 5.14.
The relation between the PSP variables can be understood visually. For example,
the mass flow rate and SDAS are positively correlated, as the component planes of
the mass flow rate and SDAS have similar values at similar positions. Conversely,
the mass flow rate and dilution are highly negatively correlated. Thus, according to
the visualized SOM in Fig. 5.14, several results are obtained (1) the mass flow rate,
more than laser power, greatly contributes to the cooling rate and SDAS; (2) the
dilution and microhardness depend on both the mass flow rate and laser power;
(3) the microhardness is dominated by the dilution, rather than by the SDAS or
cooling rate.

Obtained through the data-mining approach, these relations provide valuable
insight into the complex underlying physical phenomena and material evolution
during the AM process. In addition, it is possible to obtain the desired process
parameter window with multiple objective microstructure and property ranges. In
this study, the objective dilution is from 0.1 to 0.3. In this range of dilution, the
solidified track can avoid both lack of fusion due to low dilution and property
degradation due to high dilution [23]. The SDAS should be minimized and the
microhardness should be maximized in order to maintain good mechanical proper-
ties. An iteration procedure through all the units is undertaken in order to seek units
that satisfy these restrictions. An objective cluster that includes multiple units can be
selected as a white wireframe, as shown in Fig. 5.14. Thus, the. Following desired
process parameters can be obtained: a laser power ranging from 1000 W to 1100 W
and a mass flow rate ranging from 22.4 g � min�1 to 24.8 g � min�1. The desired
energy density, which is defined as laser power divided by mass flow rate, ranges
from 2.4� 106 J � kg�1 to 2.9� 106 J � kg�1. The SOM approach can be applied to a
broad variety of PSP datasets for AM and other data-intensive processes. Data-

Fig. 5.14 Contour plots of all design variables with the optimized design window outlined by a
white wireframe

5.2 Dimension Reduction by Clustering 145

driven relationships between process, structure, and property can provide online
monitoring and process control to derive ideal microstructure and mechanical
properties.

5.3 Reduced Order Surrogate Models

5.3.1 A First Look at Principal Component Analysis (PCA)

Principal component analysis (PCA) is a dimension reduction or reduced order
modeling technique that seeks to determine the directions or components with
maximum variability. This can be explained conceptually by considering the images
of the teapot in Fig. 5.15. After observing the teapot from all angles, it can be seen
that the orientation showing the most variation is the one that goes from the handle to
the spout (see the direction with the blue arrow). The directions showing the second
and third most variation are bottom to top (see red arrow), and from handle to spout
viewed from the top (see green arrow) in Fig. 5.15. These directions are vectors, and

Fig. 5.15 Images of the teapot to conceptually explained principal component

146 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

the technical terms used to describe the directions of these vectors are principal
components. In this example, the blue arrow is the first principal component.

The principal components for a set of data can be computed and printed using the
following Python code (assume 3 principal components are desired):

Python code for PCA:
from sklearn.decomposition import PCA

pca = PCA(n_components=3,svd_solver='auto')
coordinates = pca.fit_transform(B)
print("principal components=\n",pca.components_)

Principal component analysis can be demonstrated using the steel material prop-
erty data shown in Table 5.2. There are four datapoints in the dataset (i.e., four kinds
of steel). Each datapoint includes two features that are material properties (elonga-
tion and UTS) of the steel.

A reduced order model including only one feature can be constructed using PCA.
Based on the principal component (the orientation indicating the most variation)
computed from PCA, the data points can be projected to the principal component
that is treated as a new coordinate. This creates a new reduced order model to
represent the original dataset. The procedure of PCA is

1. calculate the mean of each feature of the data:

Elongation : average ¼ 0:19 ð5:16Þ
UTS : average ¼ 766:25 ð5:17Þ

2. normalize data for each feature around the center point and put into a matrix B

B ¼

0:3� 0:19 350� 766:25

0:21� 0:19 450� 766:25

0:18� 0:19 760� 766:25

0:07� 0:19 1500� 766:25

2
666664

3
777775 ¼

0:11 �416:25

0:02 �316:25

�0:01 �6:25

�0:12 733:75

2
666664

3
777775 ð5:18Þ

Table 5.2 Steel material property data [24]

Steel material Elongation Ultimate Tensile Strength (UTS) (MPa)

ASTM A36 0.3 350

API 5 L X52 0.21 450

High strength alloy steel 0.18 760

Boron steel 0.07 1500

5.3 Reduced Order Surrogate Models 147

3. compute the eigenvalues and eigenvectors for the covariance matrix of B (this
step requires linear algebra, see Sect. 5.4)

λ ¼
λ1

λ2

" #
¼ eigenvalues ¼

2:70eþ 05

9:20e� 04

" #
ð5:19Þ

P= p1 p2½ � ¼ eigenvectors ¼
�1:73e� 04 0:999

0:999 1:73e� 04

" #
ð5:20Þ

where the eigenvectors are the principal components (e.g., arrows of the teapot in
Fig. 5.15). The magnitude of each principal direction is indicated by the eigenvalue.
Inspection of the eigenvalues shows that the first eigenvalue is nine orders of
magnitude larger than the second. The first principal component for the steel material
properties is computed and plotted in Fig. 5.16. The blue points are the original raw
data, and the red arrow represents the first principal component considering only the
first eigenvalue. A reduced order model R can be created by projecting the datapoints
to the new coordinate: the principal component (eigenvector)

R ¼ Bp1 ð5:21Þ

Fig. 5.16 The first principal component of the steel material properties

148 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

5.3.2 Understanding PCA by Singular Value Decomposition
(SVD) [Advanced Topic]

Singular value decomposition (SVD) is amongst the most important matrix factor-
izations and is the foundation for many other data-driven methods (such as PCA).

5.3.2.1 Recall Matrix Multiplication

The concept of matrix multiplication is important for understanding SVD and PCA.
Thus, the multiplication operation of matrix is recalled in this section. Consider a
two-by-two matrix A

A=
1 2

�1 1

" #
ð5:22Þ

The values in matrix A are assigned arbitrarily. The matrix A can be multiplied

with a vector x=
1

2

� �
to get another vector y

y=Ax=
1 2

�1 1

" #
1

2

" #
¼

5

1

" #
ð5:23Þ

To illustrate the meaning of the multiplication y = Ax, this operation is plotted in
Fig. 5.17. After the multiplication with matrix A, the original vector x is transformed
to y. This transform can be divided into two parts: (1) rotate the vector x by angle θ,

Fig. 5.17 Illustration of a matrix multiplication

5.3 Reduced Order Surrogate Models 149

and (2) stretch the resulting vector to y. Thus, multiplying a matrix by a vector
simply means two “actions”: rotating and stretching this vector.

5.3.2.2 Singular Value Decomposition

The SVD decomposes any real matrix A into three matrices (a complex matrix can
also be decomposed by SVD, but in this book, the real matrix is the only focus):

A ¼ UΣVT ð5:24Þ

where U and V are orthogonal matrices, i.e., UTU= I and VTV= VVT= I, and Σ is a
diagonal matrix including zero off-diagonals. The superscript T denotes the trans-
pose of the matrix. For example, consider a matrix A with assigned values:

A=
1 2

�1 0

" #
! AT =

1 �1

2 0

" #
ð5:25Þ

The SVD can be very easily implemented using Matlab or Python as shown in the
below code section:

Matlab code for SVD:
[U, S, V]=SVD(A);
Python code for SVD:
U, S, VT=svd(A,full_matrices=False);

To explain the matrices in the SVD, decompose a 2 � 2 matrix:

A=
1 2

�1 1

" #
ð5:26Þ

Using SVD, matrix A can be decomposed into three matrices:

A=
1 2

�1 1

" #
¼

0:957 0:29

0:29 �0:957

" #
2:3 0

0 1:3

" #
0:29 0:957

0:957 �0:29

" #
ð5:27Þ

To illustrate the meaning of the matricesU, Σ and V, a vector x is used to multiply
with the matrix A, which is equivalent to multiplying with the three decomposed
matrices. This process can be visualized in Fig. 5.18. Through the SVD original
operationAx can be decomposed into three separated operations: (1)VTx, (2) ΣVTx,
and (3) UΣVTx that is equal to Ax. In Fig. 5.18, there is a vector x = [3 2]T. The
operation (1) rotates the vector x to VTx = [2.78 2.29]T. It is a rotation because it
only changes the direction of the vector and the module of the two vectors remain

150 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

identical, i.e., kxk ¼ kVTxk. Multiplying the matrix Σ stretches the vector VTx to
ΣVTx = [6.41 2.99]Tas (2) in Fig. 5.18. It is an anisotropic stretching in x and
y directions. The stretching factor in the x direction and y direction is equal to the first
and second diagonal in matrix Σ, respectively. The operation (3) is another rotation
from vector ΣVTx to the final vector UΣVTx = Ax = [7 � 1]T. Demonstrating by
this example, the SVD decomposes the original matrix into three matrices: a
“rotation” matrix U, a “stretching” matrix Σ, and another “rotation” matrix VT.
The diagonal components in matrix Σ are called singular values representing the
stretching factors at different coordinates. The singular values are typically ordered
from the largest to the smallest. Vertical vectors in U and V are called singular
vectors.

5.3.2.3 Matrix Order Reduction by SVD Truncation

The singular values in matrix Σ are defined as σ1, σ2, . . ., σm. The rows and columns
corresponding to specific singular value(s) in U, Σ, and VT can be truncated to
reduce the order of the original matrix. These truncated matrices give an approxi-
mation of the original A matrix. A simple example is used to demonstrate the SVD
truncation. Consider a three-dimensional matrix A:

A=

1 2 3

6 5 4

8 7 9

2
664

3
775 ð5:28Þ

Fig. 5.18 Visualization of Ax¼ UΣVTx (A video is available in the E-book)

5.3 Reduced Order Surrogate Models 151

The matrix A is also equal to a product of three matrices based on SVD:

A=UΣVT ¼
�0:20 0:61 �0:75

�0:51 �0:72 �0:45

�0:83 0:29 0:47

2
664

3
775

16:73 0 0

0 2:14 0

0 0 0:58

2
664

3
775

�0:59 �0:52 �0:60

�0:63 �0:15 0:75

0:48 �0:83 0:24

2
664

3
775

ð5:29Þ

Since the third singular value (0.58) is smaller than the other two (16.73 and
2.14), a truncated SVD can be built by truncating the third singular value in matrix Σ
and corresponding column in matrix U (third column) and corresponding row in
matrix VT (third row). It is called the first order reduction of the matrix A:

A � A0 ¼
�0:207 0:618

�0:516 �0:727

�0:831 0:297

2
664

3
775 16:734 0

0 2:145

" # �0:595 �0:527 �0:608

�0:639 �0:150 0:755

" #

=

1:21 1:63 3:11

6:13 4:78 4:01

7:87 7:23 8:93

2
664

3
775

ð5:30Þ

The first order reduction A0 is an approximate of the original A. A further order
reduction can be conducted by truncating the second singular value in matrix Σ and
corresponding column in matrix U and corresponding row in matrix VT:

A�A00 ¼
�0:207

�0:516

�0:831

2
664

3
775 16:734½ � �0:595 �0:527 �0:608½ � ¼

2:06 1:83 2:11

5:13 4:54 5:24

8:27 7:33 8:45

2
664

3
775

ð5:31Þ

In this example, the matrix A’s can be represented by a product of three vectors,
with little loss in R2 [25] (see Table 5.3). In fact, after two reductions, the R2 score is
still above 0.9. The R2 score is a metric to quantify the similarity of two datasets (two
matrices in this case). If R2 ¼ 1, it indicates the two matrices are identical. If R2 ¼ 0,
it indicates that the two matrices are quite different. Mean Square Error (MSE) is
defined as

152 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

MSE ¼ 1
n

Xn

i¼1
Ai � A0

i

� �2 ð5:32Þ

where Ai is the i
th component in matrix A and n is the number of components.

5.3.2.4 Example: Spring-Mass Harmonic Oscillator

A spring-mass system shown in Fig. 5.19 is ideally a one-dimensional system. For
an ideal system, when the mass is released a small distance away from equilibrium
(i.e., the spring is stretched), the mass will oscillate along the length of the spring
indefinitely at a set frequency. However, the reality is that the measured results are
not one dimensional because the mass swings back and forth, and the camera
recording the motion is not held perfectly still.

The actual three-dimensional motion is recorded using three cameras (see
Fig. 5.20). This 3D motion capture enables more accurate identification of system
properties such as spring constant or damping factor. Moreover, it benefits the

Table 5.3 MSE and R2 of reduced A matrices

Matrix
Mean Square Error (MSE)
due to order reduction R2

Original A

A ¼
1 2 3

6 5 4

8 7 9

2
64

3
75

0 1

1st order reduction

A � A0 ¼
1:21 1:63 3:11

6:13 4:78 4:01

7:87 7:23 8:93

2
64

3
75

0.038 0.992

2nd order reduction

A � A00 ¼
2:06 1:83 2:11

5:13 4:54 5:24

8:27 7:33 8:45

2
64

3
75

0.549 0.923

Fig. 5.19 A schematic of
ideal spring-mass system

5.3 Reduced Order Surrogate Models 153

analysis of system uncertainties and sensitivities. The position of the ball tracked by
each camera is depicted in each panel. The local coordinate system can be defined for
each phone and record the projected displacement of the spring with respect to each
coordinate spring (see Fig. 5.21). The time-dependent displacement of the spring
from each camera video is extracted using an opensource software: Tracker
[26]. The software interface is shown in Fig. 5.22. The goal is to get
one-dimensional motion data from the two-dimensional projection data collected
from three different angles (different cameras). This new basis will filter out the
noise and reveal hidden structure (i.e., determine the unit basis vector along the
z-axis). After the important dimension (axis) is identified, it is possible to estimate
the key properties of the system, such as damping coefficient and effect of mass,
from the collected noisy data.

All the local projection data can be put into a single data matrix. The data matrix
is six dimensional:

X ¼ xa ya xb yb xc yc½ � ð5:33Þ

where xa and ya are local displacement vectors (each vector includes positions at
different time) from the first camera, xb and yb are local displacement vectors from
the second camera, and xc and yc are local displacement vectors from the third
camera. The vectors are vertical. This system can be ideally described by a single
direction (i.e., one-dimensional system). Therefore, there should be some redun-
dancy between the six measurements. The SVD and PCA will be used to reduce the
redundancy and recover the dominant one-dimensional data.

Fig. 5.20 A spring-mass motion example. The position of a ball attached to a spring is recorded
using three cameras 1, 2 and 3. The projected position of the ball tracked by each camera is depicted
in each panel

154 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

5.3.3 Further Understanding of Principal Component
Analysis [Advanced Topic]

Principal component analysis (PCA) pre-processes the data by mean subtraction
before performing the SVD. To apply PCA to reduce redundancy between data
coordinates, a covariance matrix is required to be built from the data matrix X.

5.3.3.1 Variance and Covariance

The concept of variance and covariance must be introduced before it can be applied.
Variance describes how much a variable varies with respect to its mean. Consider
two vectors, x and y (each vector’s mean is assumed to be zero),

Fig. 5.21 Projection data from three different cameras. x and y are local coordinates. Shaded
regions in different colors indicate the projection paths (A video is available in the E-book)

5.3 Reduced Order Surrogate Models 155

x= x1, x2, . . . , xn½ �T ð5:34Þ
y= y1, y2, . . . , yn½ �T ð5:35Þ

The variance of x and y can be defined as

σ2x ¼
1

n� 1
xxT
� � ¼ 1

n� 1
x21 þ x22 þ . . .þ x2n
� � ð5:36Þ

σ2y ¼
1

n� 1
yyT
� � ¼ 1

n� 1
y21 þ y22 þ . . .þ y2n
� � ð5:37Þ

Variance is proportional to the square of the magnitude of a (zero-mean) vector.
Covariance is expressed very similarly to variance, which is proportional to the

inner product of two vectors:

Fig. 5.22 Using an opensource software, Tracker [27], to extract local displacement of the mass
from a filmed video. (A video is available in the E-book)

156 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

σ2xy ¼
1

n� 1
xyT
� � ¼ 1

n� 1
x1y1 þ x2y2 þ . . .þ xnynð Þ ð5:38Þ

Therefore, the covariance is positive and large if the two vectors point to the same
direction. Otherwise, the covariance is small if the two vectors are perpendicular.

Consider the matrix of data described previously that has six features (each
vector’s mean is assumed to be zero):

X ¼ xa ya xb yb xc yc½ � ð5:39Þ

A covariance matrix CX can be built to find how each column varies with others
(if the covariance between the rows of the matrix is of interest, the definition of
covariance matrix is CX ¼ 1

n�1XX
T):

CX ¼ 1
n� 1

XTX ¼

σ2xaxa σ2xaya σ2xaxb

σ2yaxa σ2yaya σ2yaxb

σ2xbxa

σ2ybxa

σ2xcxa

σ2ycxa

σ2xbya

σ2ybya

σ2xcya

σ2ycya

σ2xbxb

σ2ybxb

σ2xcxb

σ2ycxb

σ2xayb σ2xaxc σ2xayc

σ2yayb σ2yaxc σ2yayc

σ2xbyb

σ2ybyb

σ2xcyb

σ2ycyb

σ2xbxc

σ2ybxc

σ2xcxc

σ2ycxc

σ2xbyc

σ2ybyc

σ2xcyc

σ2ycyc

2
666666666666666664

3
777777777777777775

ð5:40Þ

It is noted that values along the diagonal are the variance of the features
(coordinates). The off-diagonals are the covariance between pairs of features. The
covariance matrix is symmetric.

The goal of PCA is to get a diagonal covariance matrix because this means
minimizing the covariance between different features, i.e., reducing the redundancy
between different features. Specifically, the goal is to find a matrix P to transform the
data matrix X to XP so that the covariance matrix of XP, i.e., CXP, is diagonal.

5.3.3.2 Identifying Intrinsic Dimension of Spring-Mass System Using
PCA/SVD

Referring to the previous example, to apply PCA for dimension reduction the data
matrix has to be centralized by subtracting the mean of each vector:

5.3 Reduced Order Surrogate Models 157

B ¼ X2

1

. . .

1

2
664

3
775 xT ð5:41Þ

where X is the data matrix and each component of the x is the mean of each data
feature. For example, if X = [xa ya] X and B are plotted in Fig. 5.23.

The principal components can be obtained by solving the eigenvectors and
eigenvalues problem (eigenvectors are indeed the principal components, see Appen-
dix A). However, this solution is sometimes computationally expensive. A more
efficient way is to solve the SVD for the mean-subtracted data matrix directly and
obtain the principal components since SVD and PCA are mathematically consistent
(Sect. 5.4). Thus, the mean-subtracted data matrix B is divided into three matrices
by SVD:

B ¼ UΣVT ð5:42Þ

The V is the matrix that can transform the data matrix to a new matrix with
diagonal covariance matrix, i.e., CBV is a diagonal matrix. This means the column
vectors of the matrix BV is independent (the proof is provided in Sect. 5.4). For this
case, the covariance matrix of the matrix BV is

CBV =

10294 0 0 0 0 0

0 188 0 0 0 0

0 0 55 0 0 0

0 0 0 4:3 0 0

0 0 0 0 4:2 0

0 0 0 0 0 1:3

2
666666666664

3
777777777775

ð5:43Þ

Fig. 5.23 Plots of (a) 2D data matrix and (b) mean-subtracted data

158 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

Python code for computing covariance matrix:
U, S, VT=svd(B,full_matrices=False)
Y=B.dot(VT.T)
np.cov(Y.T)

Based on the diagonals in the covariance matrix, it is reasonable to conclude that
the spring-mass system of interest is intrinsically one dimensional because the first
diagonal is an order of magnitude larger than the others. As a comparison, the
covariance matrix of the data matrix B is also shown as

CB =

110 �607 �304 �723 323 �118

�607 3510 �1678 3983 �1786 649

�304 �1678 923 �2071 890 �325

�723 3983 �2071 4927 �2114 771

323 �1786 �890 �2114 979 �358

�118 649 �325 771 �358 136

2
666666666664

3
777777777775

ð5:44Þ

It can be seen that the none of the values are zero or mush smaller than others,
which means the column vectors of the data matrix are all dependent.

The same procedure can be conducted to identify the intrinsic dimension of the
spring-mass system. In practice, the intrinsic dimension of the spring-mass system

Fig. 5.24 Intrinsic dimension identified by covariance matrix and SVD/PCA

5.3 Reduced Order Surrogate Models 159

highly depends on the initial condition of the ball. As shown in Fig. 5.24a if the ball
is released very closed to the axis of symmetry (dot dash line in the figure). The
motion of the ball is up and down along the symmetry. In this case one coordinate is
good enough to describe the ball’s motion, i.e., the intrinsic dimension is 1D.
Correspondingly, the data matrix (captured by three cameras) can be transformed
so that the first diagonal of the covariance matrix is at least one order of magnitude
larger than the others. However, if the ball is released a distance away from the axis
of symmetry. The motion of the ball becomes complicate, and it is a three-
dimensional motion. In this case, the covariance matrix of the transformed data
matrix is shown in the Fig. 5.24b. The first three diagonals are at least one order of
magnitude larger than the other diagonals indicating that the intrinsic dimension of
the system of interest is three.

5.3.4 Proper Generalized Decomposition (PGD) [Advanced
Topic]

5.3.4.1 From SVD to PGD

Proper generalized decomposition (PGD) is an alternative method to SVD of finding
the principal components (or called modes) and reducing the dimensionality of the
dataset. To introduce the mathematical concept of the PGD, the SVD is recalled first.
Consider the matrix form of SVD for a three-by-three matrix A:

A ¼ UΣVT ¼ u1 u2 u3½ �
σ1 0 0

0 σ2 0

0 0 σ3

2
664

3
775

v1T

v2T

v3T

2
664

3
775 ð5:45Þ

where u1, u2 and u3 are three column vectors of matrix U, v1, v2 and v3 are three
column vectors of matrix V, and σ1, σ2, and σ3 are singular values. The vector form
of SVD can be derived from this matrix form as

A ¼ u1 u2 u3½ �
σ1 0 0

0 σ2 0

0 0 σ3

2
664

3
775

v1T

v2T

v3T

2
664

3
775 ¼ u1σ1v1

T þ u2σ2v2
T þ u3σ3v3

T

ð5:46Þ

where u1, u2 and u3 are orthonormal vectors and v1, v2 and v3 are principal
components (they are also orthonormal vectors). The PGD follows the similar
form as SVD but does not constrain the principal components to be orthonormal.
For example, the three-by-three matrix A can be decomposed by PGD as

160 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

A ¼ f 1g1
T þ f 2g2

T þ f 3g3
T þ . . .þ f ngn

T ¼ f 1 f 2 . . . f n½ �

g1
T

g2
T

. . .

gn
T

2
666664

3
777775 ð5:47Þ

where the vectors f1, f2,. . . fn, and g1, g2, . . . gn are not necessarily orthonormal. That
is where the name “generalized” comes from. It is noted that PGD is an iterative
algorithm rather than an analytical solution like SVD, which means the first term f1
and g1 are computed first, and then f2 and g2, and so on. There are two types of PGD
strategies: incremental approach [28] and modal superposition [29].

5.3.4.2 A Matrix Decomposition Example Using Incremental PGD

Consider a two-by-two matrix

A=
1 2

�1 1

" #
ð5:48Þ

A n-order PGD approximates the original matrix by decomposing it into the form:

A ¼ f 1g1
T þ f 2g2

T þ f 3g3
T þ . . .þ f ngn

T ð5:49Þ

Step (1) Rewrite An in a recursive form:

An ¼ An�1 þ f ngn
T ð5:50Þ

An�1 ¼ f 1g1
T þ f 2g2

T þ . . .þ f n�1gn�1
T ð5:51Þ

Step (2) The initial recursive term is assumed to be zero:

A0 ¼
0 0

0 0

" #
ð5:52Þ

Step (3) The residual R0 is defined as the difference of A and An 2 1. For example,

R0 ¼ A2A0 =
1 2

�1 1

" #
�

0 0

0 0

" #
¼

1 2

�1 1

" #
ð5:53Þ

Step (4) The first components f1 and g1 are computed by

5.3 Reduced Order Surrogate Models 161

f 1 ¼ R0g1 g1
Tg1

� ��1 ð5:54Þ

g1 ¼ RT
0 f 1 f 1

T f 1
� ��1 ð5:55Þ

A random initial of g1 is set and then the above two equations are used to compute
f1 and updated g1.

For example, if the random initial of g1 = 1 1½ �T (this step should be converged
to the same result no matter what the initial value is assigned.), the f1 and updated
g1 can be computed as

f 1 ¼
1 2

�1 1

" #
1

1

2
4

3
5 1 1½ �

1

1

2
4

3
5

0
@

1
A

�1

¼
1:5

0

2
4

3
5 ð5:56Þ

g1 ¼
1 �1

2 1

" #
1:5

0

2
4

3
5 1:5 0½ �

1:5

0

2
4

3
5

0
@

1
A

�1

¼
0:667

1:333

2
4

3
5 ð5:57Þ

This process is repeated multiple times until the changes in f1 and g1 are below a
certain value. That indicates the step (4) is converged. Two convergence factors,
C f
1 ið Þ and Cg

1 ið Þ, associated with f and g are defined as

C f
1 ið Þ ¼

norm f 1 ið Þ � f 1 i2 1ð Þ
	

norm f 1 ið Þ

	
 ð5:58Þ

Cg
1 ið Þ ¼

norm g1 ið Þ � g1 i2 1ð Þ
	

norm g1 ið Þ

	
 ð5:59Þ

where i is the iteration number. Table 5.4 shows the values of f1, g1 and convergence
factors at different iterations. The iteration is finalized when the convergence factors

Table 5.4 The values and convergence factors of f1 and g1 for seven iterations

i 1 2 3 4 5 6 7

f1 1:5

0

" #
1:5

0:3

" #
1:480

0:399

" #
1:472

0:430

" #
1:469

0:440

" #
1:469

0:440

" #
1:468

0:443

" #

g1 0:667

1:333

" #
0:513

1:410

" #
0:460

1:429

" #
0:443

1:435

" #
0:438

1:437

" #
0:436

1:437

" #
0:436

1:437

" #

C f
1 ið Þ 1.020 0.002 0.0002 2.32e�5 2.39e�6 2.44e�7

Cg
1 ið Þ 1.007 0.0007 0.0001 7.35e�6 7.53e�7 7.71e�8

162 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

are less than a specified value (10�6 in this case). Then the converged f1 and g1 can
be obtained as

f 1 ¼
1:468

0:443

2
4

3
5 ð5:60Þ

g1 ¼
0:436

1:437

2
4

3
5 ð5:61Þ

Step (5) Update the approximation with the computed components:

A1 =A0 þ f 1g1
T ¼

0 0

0 0

" #
þ

1:468

0:443

2
4

3
5 0:436 1:437½ � ¼

0:639 2:110

0:193 0:638

" #

ð5:62Þ

Step (6) Update residual R1 and check the matrix convergence factor C1

R1 =A2A1 =
1 2

�1 1

" #
�

0:639 2:110

0:193 0:638

" #
¼

0:361 �0:110

�1:193 0:362

" #
ð5:63Þ

C1 =
norm R1ð Þ
norm Að Þ ¼ 1:303

2:303
¼ 0:566 ð5:64Þ

Since the matrix convergence factor (typically 10�6 indicates a good conver-
gence) is too large meaning the first order approximation is not good enough for
this case.

Thus, steps (4)–(6) are repeated to compute the next components f2 and g2 (and
associated second order approximation A2). After the steps (4)–(6) are repeated, the
values of f2 and g2 are

f 2 ¼
0:126

�0:416

2
4

3
5 ð5:65Þ

g2 =
2:871

�0:871

2
4

3
5 ð5:66Þ

The second order approximation A2 can be computed by

5.3 Reduced Order Surrogate Models 163

A2=A1þ f 2g2
T ¼

0:639 2:110

0:193 0:638

" #
þ

0:126

�0:416

2
4

3
5 2:871�0:871½ �¼

1:000 2:000

�1:000 1:000

" #

ð5:67Þ

This result is very accurate as compared with the original matrix A, and thematrix
convergence factor C2 ¼ 2.16 � 10�16, which means two modes are good enough
for achieving a convergence (indicated by a small enough convergence factor).

This matrix deposition problem can be done by SVD. To compare the results

from SVD and PGD, the SVD result of the same matrix A ¼ 1 2

�1 1

� �
can be

expressed as

ASVD¼ u1 u2½ �
σ1 0

0 σ2

" #
v1T

v2T

" #
¼

0:957 0:290

0:290 �0:957

" #
2:30 0

0 1:30

" #
0:290 0:957

0:957 �0:290

" #

ð5:68Þ

PGD result of the matrix A can be expressed as

APGD ¼
1:468

0:443

" #
0:436 1:437½ � þ

0:126

�0:416

" #
2:871� 0:871½ �

¼
1:468 0:126

0:443 �0:416

" #
0:436 1:437

2:871 �0:871

" #
ð5:69Þ

It is noted that the vectors in PGD matrices are not normal. They can be
normalized so that the PGD result can be compared with SVD result

APGD ¼ 1:53 �
0:957

0:290

" #
0:43 �

0:290

�0:957

" #" #
1:5 � 0:290 0:957½ �
3:0 � 0:957 �0:290½ �

" #

¼ 1:53u1 0:43u2½ �
1:5v1T

3:0v2T

" #
¼ u1 u2½ �

2:30 0

0 1:30

" #
v1T

v2T

" #

ð5:70Þ

Thus, PGD can find the same principal components as SVD for the matrix
decomposition problem. In practice, the order of matrix can be higher, e.g., a n-
by-n matrix.

164 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

5.3.4.3 A PGD Example Using Modal Superposition

In the previous example using incremental PGD, the first mode (i.e., f1g1
T) is

completed solved first, and then the next components f2 and g2 are computed
based on the known first mode. In contrast, the modal superposition PGD updates
all the modes back and forth until all the modes are unchanged. In general, the modal
superposition is expected to obtain the optimal decomposition, which includes a
smaller number of modes than incremental PGD. But the modal superposition is
typically more computationally expensive for high-dimensional problems and some-
times encounters convergence difficulties because of its global iterative feature.
Consider the same two-by-two matrix

A=
1 2

�1 1

" #
ð5:71Þ

In modal superposition PGD, the number of modes is predetermined (two modes
in this case):

A ¼ f 1g1
T þ f 2g2

T ð5:72Þ

Step (1) The initial f2 and g2 are assumed to be

f 2 ¼
1

1

" #
ð5:73Þ

g2 ¼
1

1

" #
ð5:74Þ

Step (2) The residual R is defined as the difference of A and f2g2
T

R ¼ A2 f 2g2
T =

1 2

�1 1

" #
�

1 1

1 1

" #
¼

0 1

�2 0

" #
ð5:75Þ

Step (3) The first components f1 and g1 are computed by

f 1 ¼ Rg1 g1
Tg1

� ��1 ð5:76Þ

g1 ¼ RTf 1 f 1
T f 1

� ��1 ð5:77Þ

A random initial of g1 = 1 1½ �T is set and then the above two equations are used
to compute f1 and updated g1. The f1 and updated g1 can be computed as

5.3 Reduced Order Surrogate Models 165

f 1 ¼
0 1

�2 0

" #
1

1

2
4

3
5 1 1½ �

1

1

2
4

3
5

0
@

1
A

�1

¼
0:5

�1

2
4

3
5 ð5:78Þ

g1 ¼
0 �2

1 0

" #
0:5

�1

2
4

3
5 0:5� 1½ �

0:5

�1

2
4

3
5

0
@

1
A

�1

¼
1:6

0:4

2
4

3
5 ð5:79Þ

Step (4) The residual R is updated as the difference of A and f1g1
T

R ¼ A2 f 1g1
T =

1 2

�1 1

" #
�

0:8 0:2

�1:6 �0:4

" #
¼

0:2 1:8

0:6 0:4

" #
ð5:80Þ

Step (5) The first components f2 and g2 are computed by

f 2 ¼ Rg2 g2
Tg2

� ��1 ð5:81Þ

g2 ¼ RTf 2 f 2
T f 2

� ��1 ð5:82Þ

Step (6) The matrix convergence factor C1 is computed to check convergence. The
matrix convergence factor Ci at the i

th iteration is difeinde as

Ci ¼ norm A� f 1g1
T � f 2g2

Tð Þ
norm Að Þ ð5:83Þ

Thus, steps (2)–(6) are repeated for each iteration until the matrix convergence
factor Ci is less than a predetermined criterion (e.g., 10�6).

The values of f1, g1, f2, g2and convergence factor for five iterations are shown in
Table 5.5. The calculation reaches a convergence after five iterations so that the
addition of the two modes is equal to the original matrix

Table 5.5 The values of f1, g1, f2, g2 and convergence factors for seven iterations

i 1 2 3 4 5

f1 0:5

�1

" #
0:412

�0:912

" #
0:406

�0:905

" #
0:405

�0:905

" #
0:405

�0:905

" #

g1 1:6

0:4

" #
1:522

0:711

" #
1:517

0:722

" #
1:517

0:722

" #
1:517

0:722

" #

f2 1

1

" #
1:059

1:027

" #
1:061

1:028

" #
1:061

1:028

" #
1:061

1:028

" #

g2 0:4

1:6

" #
0:365

1:609

" #
0:363

1:609

" #
0:363

1:609

" #
0:363

1:609

" #

Ci 0.151 0.0073 3.33e�4 1.47e�5 6.52e�7

166 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

f 1g1
T þ f 2g2

T ¼
1 2

�1 1

" #
¼ A ð5:84Þ

5.3.4.4 PGD for High-Dimensional Tensor Decomposition

One benefit of PGD is that it can be used on high-dimensional tensor decomposition
rather than the matrix decomposition that can be handled by SVD/PCA. A tensor is
typically represented as a (potentially multidimensional) array, just as a vector (i.e.,
one-dimensional tensor) is represented by a one-dimensional array. The numbers in
the array are denoted by indices giving their position in the array as subscripts
following the symbolic name of the tensor. For example, a matrix can be treated as a
two-dimensional tensor represented by a two-dimensional array. The values of this
two-dimensional tensor (i.e., matrix) A could be denoted Aij, where i and j are
position indices.

An example is shown here: a four-dimensional tensor Aijkl can be decomposed by
PGD as

Aijkl �
Xn

m¼1
fm 	 gm 	 hm 	 pm ð5:85Þ

where fm, gm, hm, and pm are vectors in an index of m, and 	 is the operation of the
outer product which produces a tensor by inputting multiple vectors. For example,
(f 	 g 	 h)ijk ¼ figjhk. The number of modes is given as n.

The high-dimensional PGD can be solved using the same procedure demon-
strated above. The Matlab implementation of higher-dimensional PGD can be found
at a website created by Northwestern post-doctoral fellow Dr. Ye Lu [30]. This code
can automatically determine the optimal number of modes given an approximation
accuracy. In summary, PGD decomposes raw data into a series of 1D vectors
(functions) and performs reduced order modelling for high-dimensional tensors.
For 2D tensor (i.e., matrix) decomposition provides the same outcome (under
appropriate normalization) as the SVD/PCA. PGD can be applied to a dataset that
is described by a 3D, 4D, or even higher dimensional array (tensor). Therefore, PGD
can be seen as a higher dimensional extension of SVD/PCA. Moreover, the PGD
might provide more efficient solution for high-dimensional complex problems due to
its iterative feature during the solution.

5.4 Eigenvalues and Eigenvectors [Advanced Topic]

Consider a real n-by-p matrix B, if the covariances between the rows of the matrix
are of interest the covariance matrix of B can be computed by

5.4 Eigenvalues and Eigenvectors [Advanced Topic] 167

CB ¼ 1
n� 1

BTB ð5:86Þ

where n is the number of columns of the matrix B. Superscribe T denotes the matrix
transpose.

Since the matrix CB is a real symmetric p-by-p matrix, i.e., CB
T ¼ CB, it has real

eigenvalues and eigenvalues defined by [31]

CB ¼ GΛGT ¼ g1 g2 . . . gp
� �

λ1 0 . . . 0

0 λ2 . . . 0

. 0

0 0 0 λp

2
666664

3
777775

gT1

gT2

. . .

gTp

2
666664

3
777775 ð5:87Þ

where g1, g2, . . ., gp are eigenvectors and they are orthonormal, and λ1, λ2, . . ., λp are
eigenvalues. The eigenvalues and eigenvectors can be obtained by solving the
following equations

CB � λIj j ¼ 0 ð5:88Þ
CB � λIð Þg= 0 ð5:89Þ

where |∙| is the determinant of the matrix, and I is the unit matrix.

5.5 Mathematical Relation Between SVD and PCA
[Advanced Topic]

The principal components can be obtained by solving the eigenvectors and eigen-
values problem (eigenvectors are indeed the principal components). However, it is
sometimes computationally expensive to solve the eigenvectors and eigenvalues for a
covariance matrix CB because of the calculation of the determinant. It is more efficient
to solve the SVD for the mean-subtracted data matrix directly and obtain the principal
components (eigenvectors) because SVD and PCA are mathematically consistent.

Consider a mean-subtracted data n-by-p matrix B, the SVD of the matrix B is
expressed as

B ¼ UΣVT ¼ u1 u2 . . . up½ �

σ1 0 . . . 0

0 σ2 . . . 0

. 0

0 0 0 σp

2
666664

3
777775

vT1

vT2

. . .

vTp

2
666664

3
777775 ð5:90Þ

168 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

where u1, u2, . . ., up and v1, v2, . . ., vp are singular vectors, and σ1, σ2, . . ., σp are
singular values. It can be proven that there are the following relations between
singular values/vectors and eigenvalues/eigenvectors:

G ¼ V or gi ¼ vi ð5:91Þ

Λ ¼ Σ2

n� 1
or λi ¼ σ2i

n� 1
ð5:92Þ

Where G is the matrix including the eigenvectors g1, g2, . . ., gp, Λ is the matrix
including the eigenvalues λ1, λ2, . . ., λp, and n is the number of columns of the
matrix B.

Proof Given that UTU = I and VTV = VVT = I, and Σ is a diagonal matrix, the
covariance matrix of the matrix B can be expressed as

CB ¼ 1
n� 1

BTB= 1
n� 1

UΣVT
� �T

UΣVT ¼ 1
n� 1

VΣUTUΣVT

¼ V
1

n� 1
Σ2

	

VT

ð5:93Þ

Comparing with the form of eigenvectors and eigenvalues in PCA, i.e.,
CB ¼ GΛGT, two relations can be obtained:

G ¼ V ð5:94Þ

Λ ¼ Σ2

n� 1
ð5:95Þ

Q.E.D

In PCA, a transform is sought so that the covariance matrix of the transformed
matrix is diagonal. It can be proven that the covariance matrix of BV is diagonal.

Proof

CBV ¼ 1
n� 1

BVð ÞTBV= 1
n� 1

UΣVTV
� �T

UΣVTV ¼ 1
n� 1

ΣUTUΣ

¼ 1
n� 1

Σ2
ð5:96Þ

Q.E.D

References

1. Driver HE, Kroeber AL (1932) Quantitative expression of cultural relationships. University of
California Publications in American Archaeology and Ethnology, Berkeley, pp 211–256

2. Zubin J (1938) A technique for measuring like-mindedness. J Abnorm Soc Psychol
33(4):508–516

References 169

3. Tryon RC (1939) Cluster analysis: correlation profile and Orthometric (factor). In: Analysis for
the Isolation of Unities in Mind and Personality. Edwards Brothers, Ann Arbor

4. Cattell RB (1943) The description of personality: basic traits resolved into clusters. J Abnorm
Soc Psychol 38(4):476–506

5. Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartograp 7:186–
190

6. MacQueen JB (1967) Some methods for classification and analysis of multivariate
observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability, vol 1. University of California Press, Berkeley, pp 281–297

7. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, Englewood Cliffs
8. Defays D (1977) An efficient algorithm for a complete-link method. Comp J Br Comp Soc

20(4):364–366
9. Kohonen T, Honkela T (2007) Kohonen Network. Scholarpedia 2(1):1568

10. https://en.wikipedia.org/wiki/Singular_value_decomposition#History
11. Pearson K (1901) On lines and planes of closest fit to Systems of Points in space. Philos Mag

2(11):559–572
12. Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J

Educ Psychol 24:417–441 and 498–520
13. Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes

of multidimensional partial differential equations encountered in kinetic theory Modeling of
complex fluids. J Non-Newtonian Fluid Mech 139(3):153–176

14. Jenks GF (1967) The data model concept in statistical mapping. Int Yearbook Cartograp 7:186–
190

15. https://medium.com/analytics-vidhya/jenks-natural-breaks-best-range-finder-algorithm-8d190
7192051

16. https://en.wikipedia.org/wiki/Hierarchical_clustering
17. Kohonen T (1990) The self-organizing map. Proc IEEE 78(9):1464–1480
18. Rauber A, Merkl D, Dittenbach M (2002) The growing hierarchical self-organizing map:

exploratory analysis of high-dimensional data. IEEE Trans Neural Netw 13(6):1331–1341
19. Goodfellow, Bengio, Courville (2016) The back-propagation algorithm (Rumelhart et al.,

1986a). p. 200
20. Gan Z, Li H, Wolff SJ, Bennett JL, Hyatt G, Wagner GJ, Cao J, Liu WK (2019) Data-driven

microstructure and microhardness design in additive manufacturing using a self-organizing
map. Engineering 5(4):730–735

21. Wolff SJ, Gan Z, Lin S, Bennett JL, Yan W, Hyatt G, Ehmann KF, Wagner GJ, Liu WK, Cao J
(2019) Experimentally validated predictions of thermal history and microhardness in laser-
deposited Inconel 718 on carbon steel. Addit Manuf 27:540–551

22. Vesanto J, Himberg J, Alhoniemi E, Parhankangas J (2000) SOM toolbox for Matlab 5 57:2.
Technical report

23. Mukherjee T, Zuback JS, De A, DebRoy T (2016) Printability of alloys for additive manufactur-
ing. Sci Rep 6(1):1–8

24. https://www.api5lx.com/api5lx-grades/
25. https://en.wikipedia.org/wiki/Coefficient_of_determination
26. https://physlets.org/tracker/
27. https://physlets.org/tracker/
28. Modesto D, Zlotnik S, Huerta A (2015) Proper generalized decomposition for parameterized

Helmholtz problems in heterogeneous and unbounded domains: application to harbor agitation.
Comput Methods Appl Mech Eng 295:127–149

29. Bro R (1997) PARAFAC. Tutorial and applications. Chem Intell Lab Syst 38(2):149–171
30. https://yelu-git.github.io/hopgd/
31. Hawkins T (1975) Cauchy and the spectral theory of matrices. Hist Math 2:1–29

170 5 Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models

https://en.wikipedia.org/wiki/Singular_value_decomposition#History
https://medium.com/analytics-vidhya/jenks-natural-breaks-best-range-finder-algorithm-8d1907192051
https://medium.com/analytics-vidhya/jenks-natural-breaks-best-range-finder-algorithm-8d1907192051
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://www.api5lx.com/api5lx-grades/
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://physlets.org/tracker/
https://physlets.org/tracker/
https://yelu-git.github.io/hopgd/

	Preface
	Acknowledgments
	Contents
	Chapter 1: Introduction to Mechanistic Data Science
	1.1 A Brief History of Science: From Reason to Empiricism to Mechanistic Principles and Data Science
	1.2 Galileo´s Study of Falling Objects
	1.3 Newton´s Laws of Motion
	1.4 Science, Technology, Engineering and Mathematics (STEM)
	1.5 Data Science Revolution
	1.6 Data Science for Fatigue Fracture Analysis
	1.7 Data Science for Materials Design: ``What´s in the Cake Mix´´
	1.8 From Everyday Applications to Materials Design
	1.8.1 Example: Tire Tread Material Design Using the MDS Framework
	1.8.2 Gold and Gold Alloys for Wedding Cakes and Wedding Rings

	1.9 Twenty-First Century Data Science
	1.9.1 AlphaGo
	1.9.2 3D Printing: From Gold Jewelry to Customized Implants

	1.10 Outline of Mechanistic Data Science Methodology
	1.11 Examples Describing the Three Types of MDS Problems
	1.11.1 Determining Price of a Diamond Based on Features (Pure Data Science: Type 1)
	1.11.2 Sports Analytics
	1.11.2.1 Example: ``Moneyball´´: Data Science for Optimizing a Baseball Team Roster

	1.11.3 Predicting Patient-Specific Scoliosis Curvature (Mixed Data Science and Surrogate: Type 2)
	1.11.4 Identifying Important Dimensions and Damping in a Mass-Spring System (Type 3 Problem)

	References

	Chapter 2: Multimodal Data Generation and Collection
	2.1 Data as the Central Piece for Science
	2.2 Data Formats and Sources
	2.3 Data Science Datasets
	2.4 Example: Diamond Data for Feature-Based Pricing
	2.5 Example: Data Collection from Indentation Testing
	2.6 Summary of Multimodal Data Generation and Collection
	References

	Chapter 3: Optimization and Regression
	3.1 Least Squares Optimization
	3.1.1 Optimization
	3.1.2 Linear Regression
	3.1.3 Method of Least Squares Optimization for Linear Regression
	3.1.4 Coefficient of Determination (r2) to Describe Goodness of Fit
	3.1.5 Multidimensional Derivatives: Computing Gradients to Find Slope or Rate of Change
	3.1.6 Gradient Descent (Advanced Topic: Necessary for Data Science)
	3.1.7 Example: ``Moneyball´´: Data Science for Optimizing a Baseball Team Roster
	3.1.7.1 Moneyball Regression Analysis Steps
	Step 1: Multimodal Data Generation and Collection
	Step 2: Feature Engineering
	Step 3: Dimension Reduction
	Step 4: Reduced Order Modeling
	Step 5: Regression and Classification
	Module 6: System and Design

	3.1.8 Example: Indentation for Material Hardness and Strength
	3.1.9 Example: Vickers Hardness for Metallic Glasses and Ceramics

	3.2 Nonlinear Regression
	3.2.1 Piecewise Linear Regression
	3.2.2 Moving Average
	3.2.3 Moving Least Squares (MLS) Regression
	3.2.4 Example: Bacteria Growth

	3.3 Regularization and Cross-Validation (Advanced Topic)
	3.3.1 Review of the Lp-Norm
	3.3.2 L1-Norm Regularized Regression
	3.3.3 L2-Norm Regularized Regression
	3.3.4 K-Fold Cross-Validation

	3.4 Equations for Moving Least Squares (MLS) Approximation (Advanced Topic)
	References

	Chapter 4: Extraction of Mechanistic Features
	4.1 Introduction
	4.2 What Is a ``Feature´´
	4.3 Normalization of Feature Data
	4.3.1 Example: Home Buying

	4.4 Feature Engineering
	4.4.1 Example: Determining a New Store Location Using Coordinate Transformation Techniques

	4.5 Projection of Images (3D to 2D) and Image Processing
	4.6 Review of 3D Vector Geometry
	4.7 Problem Definition and Solution
	4.8 Equation of Line in 3D and the Least Square Method
	4.8.1 Numerical Example

	4.9 Applications: Medical Imaging
	4.9.1 X-ray (Radiography)
	4.9.2 Computed Tomography (CT)
	4.9.3 Magnetic Resonance Imaging (MRI)
	4.9.4 Image Segmentation

	4.10 Extracting Geometry Features Using 2D X-ray Images
	4.10.1 Coordinate Systems
	4.10.2 Input Data
	4.10.3 Vertebra Regions [Advanced Topic]
	4.10.4 Calculating the Angle Between Two Vectors
	4.10.5 Feature Definitions: Global Angles

	4.11 Signals and Signal Processing Using Fourier Transform and Short Term Fourier Transforms
	4.12 Fourier Transform (FT)
	4.12.1 Example: Analysis of Separate and Combined Signals
	4.12.2 Example: Analysis of Sound Waves from a Piano

	4.13 Short Time Fourier Transform (STFT)
	References

	Chapter 5: Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models
	5.1 Introduction
	5.2 Dimension Reduction by Clustering
	5.2.1 Clustering in Real Life: Jogging
	5.2.2 Clustering for Diamond Price: From Jenks Natural Breaks to K-Means Clustering
	5.2.3 K-Means Clustering for High-Dimensional Data
	5.2.3.1 Example: Clustering of Diamonds Based on Multiple Features

	5.2.4 Determining the Number of Clusters
	5.2.5 Limitations of K-Means Clustering
	5.2.6 Self-Organizing Map (SOM) [Advanced Topic]
	5.2.6.1 An Engineering Example: Data-Driven Design for Additive Manufacturing Using SOM

	5.3 Reduced Order Surrogate Models
	5.3.1 A First Look at Principal Component Analysis (PCA)
	5.3.2 Understanding PCA by Singular Value Decomposition (SVD) [Advanced Topic]
	5.3.2.1 Recall Matrix Multiplication
	5.3.2.2 Singular Value Decomposition
	5.3.2.3 Matrix Order Reduction by SVD Truncation
	5.3.2.4 Example: Spring-Mass Harmonic Oscillator

	5.3.3 Further Understanding of Principal Component Analysis [Advanced Topic]
	5.3.3.1 Variance and Covariance
	5.3.3.2 Identifying Intrinsic Dimension of Spring-Mass System Using PCA/SVD

	5.3.4 Proper Generalized Decomposition (PGD) [Advanced Topic]
	5.3.4.1 From SVD to PGD
	5.3.4.2 A Matrix Decomposition Example Using Incremental PGD
	5.3.4.3 A PGD Example Using Modal Superposition
	5.3.4.4 PGD for High-Dimensional Tensor Decomposition

	5.4 Eigenvalues and Eigenvectors [Advanced Topic]
	5.5 Mathematical Relation Between SVD and PCA [Advanced Topic]
	References

	Chapter 6: Deep Learning for Regression and Classification
	6.1 Introduction
	6.1.1 Artificial Neural Networks
	6.1.2 A Brief History of Deep Learning and Neural Networks

	6.2 Feed Forward Neural Network (FFNN)
	6.2.1 A First Look at FFNN
	6.2.2 General Notations for FFNN [Advanced Topic]
	6.2.3 Apply FFNN to Diamond Price Regression

	6.3 Convolutional Neural Network (CNN)
	6.3.1 A First Look at CNN
	6.3.2 Building Blocks in CNN
	6.3.2.1 Convolution
	6.3.2.2 Stride
	6.3.2.3 Padding
	6.3.2.4 Pooling
	6.3.2.5 Fully Connected Networks

	6.3.3 General Notations for CNN [Advanced Topic]
	6.3.4 COVID-19 Detection from X-Ray Images of Patients [Advanced Topic]

	6.4 Musical Instrument Sound Conversion Using Mechanistic Data Science
	6.4.1 Problem Statement and Solutions
	6.4.2 Mechanistic Data Science Model for Changing Instrumental Music [Advanced Topic]

	6.5 Conclusion
	References

	Chapter 7: System and Design
	7.1 Introduction
	7.2 Piano to Guitar Musical Note Conversion (Type 3 General)
	7.2.1 Mechanistic Data Science with a Spring Mass Damper System
	7.2.2 Principal Component Analysis for Musical Note Conversion (Type 1 Advanced)
	7.2.3 Data Preprocessing (Normalization and Scaling)
	7.2.4 Compute the Eigenvalues and Eigenvectors for the Covariance Matrix of Bp and Bg
	7.2.5 Build a Reduced-Order Model
	7.2.6 Inverse Transform Magnitudes for all PCs to a Sound
	7.2.7 Cumulative Energy for Each PC
	7.2.8 Python Code for Step 1 and Step 2
	7.2.9 Training a Fully-Connected FFNN
	7.2.10 Code Explanation for Step 3
	7.2.11 Generate a Single Guitar
	7.2.12 Python Code for Step 4
	7.2.13 Generate a Melody
	7.2.14 Code Explanation for Step 5
	7.2.15 Application for Forensic Engineering

	7.3 Feature-Based Diamond Pricing (Type 1 General)
	7.4 Additive Manufacturing (Type 1 Advanced)
	7.5 Spine Growth Prediction (Type 2 Advanced)
	7.6 Design of Polymer Matrix Composite Materials (Type 3 Advanced)
	7.7 Indentation Analysis for Materials Property Prediction (Type 2 Advanced)
	7.8 Early Warning of Rainfall Induced Landslides (Type 3 Advanced)
	7.9 Potential Projects Using MDS
	7.9.1 Next Generation Tire Materials Design
	7.9.2 Antimicrobial Surface Design
	7.9.3 Fault Detection Using Wavelet-CNN

	References

	Index

