
Chapter 6
Deep Learning for Regression
and Classification

Abstract Deep learning (DL) is a subclass of machine learning methods that works
in conjunction with large datasets along with many neuron layers (artificial neural
networks (ANN)) (Schmidhuber, Neural Networks, 61, 85–117, 2015). An ANN is a
computer system inspired by the biological neural networks in the human brain
(Chen et al., Sensors, 19, 2047, 2019). The term “deep” refers to the use of multiple
layers of neurons (three or more) in the ANN. Deep learning models can automat-
ically generate features from data, and they can be designed for many structures. In
this chapter, two standard structures called feed forward neural network (FFNN) and
convolutional neural network (CNN) will be introduced and demonstrative examples
will be presented. An application of CNN is also given. The CNN is used to read raw
chest X-ray images of patent and automatically classify diseases, such as pneumonia
or COVID-19. In addition, a musical instrument sound converter for changing piano
musical notes to guitar musical notes will be developed using mechanistic data
science. This example will demonstrate the advantage of the mechanistic data
science approach compared to the standard neural networks. That is, a smaller
number of training data is required to achieve a good performance.

Keywords Artificial neural networks · Feed forward neural network ·
Convolutional neural network · Kernel · Convolution · Padding · Stride · Pooling ·
Instrumental music conversion · COVID-19

6.1 Introduction

Learning is a process for acquiring knowledge and skills, so they are readily
available for understanding and solving future problems and opportunities
[3]. Deep learning leverages artificial neural networks to automatically find patterns
in data, with the objective of predicting some target output or response. Deep

Supplementary Information: The online version of this chapter (https://doi.org/10.1007/978-3-
030-87832-0_6) contains supplementary material, which is available to authorized users.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
W. K. Liu et al., Mechanistic Data Science for STEM Education and Applications,
https://doi.org/10.1007/978-3-030-87832-0_6

171

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-87832-0_6&domain=pdf
https://doi.org/10.1007/978-3-030-87832-0_6#DOI
https://doi.org/10.1007/978-3-030-87832-0_6#DOI
https://doi.org/10.1007/978-3-030-87832-0_6#DOI

learning methods are heavily based on statistics and mathematical optimization.
They can be supervised or unsupervised (or semi-supervised that is beyond the scope
of this book). Unsupervised learning looks for previously undetected patterns in a
data set with no pre-existing labels and minimal human supervision. It studies how
systems can infer a function to describe a hidden structure from unlabeled data. In
contrast, supervised learning maps an input to an output based on representative
input-output pairs. It infers a function from labeled training data consisting of a set of
training examples. Supervised machine learning algorithms can apply what has been
learned in the past to new data using labeled examples to predict future events.
Supervised learning plays an important role in estimating the relationships between
independent variables (i.e., inputs) and dependent variables (i.e., outputs). A com-
parison of supervised and unsupervised learning is shown in Table 6.1.

Supervised learning attempts to learn the relationship between output variable
(s) and input variable(s). If the outputs are continuous, supervised learning becomes
a regression problem. An example of a regression problem is predicting the price of
a diamond based on its properties such as carat, cut, color, and clarity (i.e., the 4Cs)
as shown in Fig. 6.1. Supervised learning attempts to solve the problem of learning
input-output mappings from empirical data or the training set. For example, a dataset
D of n datapoints: D ¼ {(xi, yi)| i¼ 1, 2, . . ., n}, where x is the input vector (e.g., the
4Cs in the previous example) and y is the output (e.g., the price of a diamond).

If the outputs are discrete (e.g., yes or no) instead of continuous, supervised
learning turns into a classification problem. One example (Fig. 6.2) is recognizing if
a patient has been infected with coronavirus 2019 (COVID-19) based on their chest
X-ray images. COVID-19 spread rapidly around the world and became a pandemic
since it first appeared in December 2019, which caused a disastrous impact on public
health, daily lives, and global economy. It is very important to accurately detect the
positive cases at early stage to treat patients and prevent the further spread of the
pandemic. Chest X-ray imaging has critical roles in early diagnosis and treatment
of COVID-19. Automated toolkits for COVID-19 diagnosis based on radiology

Table 6.1 A comparison of supervised and unsupervised learning, in terms of methods, data, goal,
and uses

Supervised learning Unsupervised learning

Methods Linear regression, nonlinear regression, etc. K-means clustering, Principal com-
ponent analysis (PCA), etc.

Data Input and output variables will be given Only input data will be given, and
the data are not labelled

Goal To determine the relationship between inputs
and outputs so that we can predict the output
when a new dataset is given

To capture the hidden patterns or
underlying structure in the given
input data

Uses Regression, classification, etc. Clustering, dimension reduction,
etc.

172 6 Deep Learning for Regression and Classification

https://en.wikipedia.org/wiki/Training_set

imaging techniques such as X-ray imaging can overcome the issue of a lack of
physician in remote villages and other underdeveloped regions. Application of
artificial intelligence (AI) techniques, such as deep learning, coupled with radiolog-
ical X-ray imaging, can be very helpful for the accurate and automatic detection of
this disease. The classification can be binary (COVID-19 vs. Normal) and multi-
class (COVID-19 vs. Normal vs. Pneumonia).

Fig. 6.1 Regression example: predicting the price of a diamond based on its properties such as
carat, cut, color, and clarity (i.e., 4Cs)

Fig. 6.2 Classification example: detect COVID-19 based on chest X-ray images [4]

6.1 Introduction 173

6.1.1 Artificial Neural Networks

Artificial neural networks (often called neural networks) learn (or are trained) by a
set of data, which contain known inputs and outputs. The training of a neural
network from a given dataset is usually conducted by determining the difference
between the output of the neural networks (often a prediction) and a target output
(an error). The neural network then updates its parameters (such as weights and
biases) according to a learning rule based on this error value. Successive adjustments
will cause the neural network to produce output which is increasingly similar to the
target output. After a sufficient number of these adjustments, the training can be
terminated based on certain criteria. Such neural networks “learn” to perform tasks
by considering data without being programmed with task-specific rules. For exam-
ple, in the previous COVID-19 image recognition, neural networks might learn to
identify X-ray images that indicate COVID-19 by analyzing many images (i.e., data
points) that have been manually labeled as “COVID-19” or “Normal”. Neural
networks do this without any prior knowledge of the pathology known by a doctor.

6.1.2 A Brief History of Deep Learning and Neural Networks

In 1976, Alexey Ivakhnenko and Lapa [5] published the first feedforward multilayer
neural networks for supervised learning. The term “Deep Learning” was first
introduced by Rina Dechter in 1986 [6]. As a milestone, Yann LeCun et al. [7]
applied the standard backpropagation algorithm to a deep convolutional neural
network (CNN) for recognizing handwritten ZIP codes on mail in 1989. In 1995,
Brendan Frey and co-developer Peter Dayan and Geoffrey Hinton demonstrated that
it was feasible to train a network containing six fully-connected hidden layers with
several hundred neurons using a wake-sleep algorithm [8]. In 1997, a recurrent
neural network (RNN) was published by Hochreiter and Schmidhuber and called
long short-term memory (LSTM) [9], which avoided the longstanding vanishing
gradient problem in deep learning.

In the early 2000s, the deep learning began to significantly impact industry.
Industrial applications of deep learning to large-scale speech recognition started
around 2010. Advances in computational hardware have driven more interest in deep
learning. In 2009, Andrew Ng demonstrated that graphics processing units (GPUs)
could accelerate the learning process of deep learning by more than 100 times [10].

In 2019, Yoshua Bengio, Geoffrey Hinton, and Yann LeCun was named as
recipients of the 2018 Association for Computing Machinery (ACM) Turing
Award (the “Nobel Prize of Computing”) for conceptual and engineering break-
throughs that have made deep neural networks a critical component of computing,
and the story is continuing. . .

174 6 Deep Learning for Regression and Classification

6.2 Feed Forward Neural Network (FFNN)

6.2.1 A First Look at FFNN

Neural networks are based on simple building block called artificial neurons (or just
neurons). A neuron (Fig. 6.3) is a computational node that takes an input value, x,
adjusts that value according to a specific weight w, bias b, and activation function
A ∙ð Þ, to produce a new output value y ¼ A wxþ bð Þ.Weights are values which need
to be multiplied with each input value, essentially reflecting the importance of an
input. Biases are constant values that are added to the product of inputs and weight,
usually utilized to offset the result.

Activation functions A ∙ð Þ engage the neurons based on the provided input. This
can typically include a nonlinear mapping of input and helps to increase the degree
of freedom of ANN. Some examples of commonly used activation functions can be
seen in Fig. 6.4, of which, the ReLu is the most popular due to its simplicity.

The ReLU activation function has some limitations. For example, the Dying
ReLU problem [11] includes some ReLU functions that essentially “die” for all
inputs and remain inactive no matter what input is supplied. This can be corrected by
using Leaky ReLU or Parametric ReLU. For these ReLU functions, the slope to left
of x ¼ 0 is changed, causing a leak and extending the range of ReLU (see Fig. 6.5).

Fig. 6.3 Schematic of an
artificial neuron and its
functionality

Fig. 6.4 Commonly used
activation functions

6.2 Feed Forward Neural Network (FFNN) 175

A standard procedure for training a neural network (NN) is shown in Fig. 6.6. The
goal of a neural network is to match a target value y� given an input value of x for the
network. The input and output can be either scalar or vector. Once the network
structure is determined (based on prior information or just trial and error), the
weights and biases of the neural network are trained/updated to make sure the
predicted output, y, is close to the target value, y�. If they are close enough, the
weights and biases are reported as converged values. The closeness is quantified by a
loss function, e.g., (y � y�)2. If the loss function is larger than a predetermined error
limit, a learning algorithm, called back propagation, adjusts the weights and biases of
the neural network to reduce the loss function. The back propagation algorithm is
modified from the gradient decent method described in Chap. 3. Once the neural
network is trained, additional new datapoints should be used to test the network, as
described in Chap. 2.

A neural network can include hidden neurons or hidden layers of neurons. Each
layer of neurons between the input and output neurons is called hidden. Figure 6.7
shows an example of a network structure including one hidden neuron. The output of

Fig. 6.5 Leaky ReLU and Parametric ReLU activation functions

Fig. 6.6 A flowchart for training a neural network (NN)

176 6 Deep Learning for Regression and Classification

the network can be computed as follows: (1) the first weight w1 is multiplied by the
input value x and the first bias b1 is added, which is then inserted into the activation
function A ∙ð Þ and the output of the hidden neuron is determined as A wx1 þ b1ð Þ;
(2) the output of the hidden neuron is treated as the input of the next neuron, i.e.,
output neuron in this case. Repeating the same operation mentioned above, the
output of this network can be determined as A w2A w1xþ b1ð Þ þ b2ð Þ:

Assume the goal of a network is to fit one datapoint, such as (x� ¼ 0.1, y� ¼ 20),
by adjusting the unknown parameters. A good fit means if the input value x ¼ 0.1,
the output of this network is y ¼ 20. The detailed training process will be illustrated
step by step. For simplifying the problem, the biases are assumed to be zero, and a
linear activation function is used. That means the output of a neuron is equal to the
product of weight and input. The two unknown parameters in this case are w1 and w2.
To train the parameters based on the datapoint, a back propagation algorithm is
described below:

Step (1): initialize the weights by arbitrary values. For example,

w1 ¼ 10 ð6:1Þ
w2 ¼ 2 ð6:2Þ

Step (2): compute NN output and error:

y ¼ w2w1x ¼ 10 � 5 � 0:1 ¼ 5 ð6:3Þ
y� � y ¼ 20� 5 ¼ 15 ð6:4Þ

Step (3): compute increments of weights based on the gradient decent
(GD) explained in Chap. 3 (a learning rate of α ¼ 0.25 is used in this case):

Δw1 ¼ �α
∂L
∂w1

¼ α y� � yð Þw2x ¼ 0:25 � 15 � 5 � 0:1 ¼ 1:875 ð6:5Þ

Δw2 ¼ �α
∂L
∂w2

¼ α y� � yð Þw1x ¼ 0:25 � 15 � 10 � 0:1 ¼ 3:75 ð6:6Þ

Step (4): update the weights:

w1 ¼ w1 þ Δw1 ¼ 10þ 1:875 ¼ 11:875 ð6:7Þ
w2 ¼ w2 þ Δw2 ¼ 5þ 3:75 ¼ 8:75 ð6:8Þ

Fig. 6.7 A network
structure including only one
hidden neuron

6.2 Feed Forward Neural Network (FFNN) 177

Through step (2)–(4), the two weights of the NN have been updated based on the
gradient decent of the error between NN output and target value. The step (2)–(4) can
be repeated until the weights are unchanged, or the error is smaller than a criterion.
Table 6.2 presents the computed weights w1 and w2, NN output y, and error y� � y at
each iteration. As seen in Table 6.2, after five iterations the NN output reaches
19.996, which is very close to the target of 20. The result can be more accurate if
more iterations are used.

Additional hidden layers can be added between the input and output neurons. For
example, consider a network structure with two hidden layers, each layer with only
one hidden neuron, as shown in Fig. 6.8. Now there are three unknown parameters,
and the NN output can be computed based on the same rule (if the assumptions still
hold): y ¼ w3w2w1x. The same back propagation procedure can be used to train the
unknown weights.

In addition, each hidden layer can have more than one neuron. For example, a NN
structure with one hidden layer but two hidden neurons are shown in Fig. 6.9. In
general, the input to the output neuron is equal to the sum of the two hidden neurons.
Based on the operation rule, the output of this NN structure is:

y ¼ A w3A w1xþ b1ð Þ þ w4A w2xþ b2ð Þ þ b3½ � ð6:9Þ

Using the same assumptions that the biases are zero and activation functions are
linear, the output can be rewritten as

Table 6.2 Results of
weights, NN output and error
at each iteration

i 1 2 3 4 5

w1 10 11.88 13.98 15.07 15.24

w2 5 8.75 11.60 12.92 13.12

y 5 10.39 16.22 19.48 20.00

y� � y 15 9.61 3.78 0.52 0.00

Fig. 6.8 A network
structure including two
hidden neurons

Fig. 6.9 A network
structure including one
hidden layer but two hidden
neurons

178 6 Deep Learning for Regression and Classification

y ¼ w1w3xþ w2w4x ð6:10Þ

To fit the same datapoint (x� ¼ 0.1, y� ¼ 20) by adjusting the four unknown
weights, the back propagation can be used again:

Step (1): initialize the weights by arbitrary values:

w1 ¼ 10 ð6:11Þ

w2 ¼ 10 ð6:12Þ

w3 ¼ 5 ð6:13Þ

w4 ¼ 5 ð6:14Þ

Step (2): compute NN output and error. It is noted that the formula of the NN output
depends on the NN structure that is different from the previous example.

y ¼ w1w3xþ w2w4x ¼ 5þ 5 ¼ 10 ð6:15Þ

y� � y ¼ 20� 10 ¼ 10 ð6:16Þ

Step (3): compute increments of weights based on the gradient decent (GD) (α is the
learning rate that is 0.25 in this case):

Δw1 ¼ �α
∂L
∂w1

¼ α y� � yð Þw3x ¼ 0:25 � 10 � 5 � 0:1 ¼ 1:25 ð6:17Þ

Δw2 ¼ �α
∂L
∂w2

¼ α y� � yð Þw4x ¼ 0:25 � 10 � 5 � 0:1 ¼ 1:25 ð6:18Þ

Δw3 ¼ �α
∂L
∂w3

¼ α y� � yð Þw1x ¼ 0:25 � 10 � 10 � 0:1 ¼ 2:5 ð6:19Þ

Δw4 ¼ �α
∂L
∂w4

¼ α y� � yð Þw2x ¼ 0:25 � 10 � 10 � 0:1 ¼ 2:5 ð6:20Þ

6.2 Feed Forward Neural Network (FFNN) 179

Step (4): update the weights:

w1 ¼ w1 þ Δw1 ¼ 10þ 1:25 ¼ 11:25 ð6:21Þ

w2 ¼ w2 þ Δw2 ¼ 10þ 1:25 ¼ 11:25 ð6:22Þ

w3 ¼ w3 þ Δw3 ¼ 5þ 2:5 ¼ 7:5 ð6:23Þ

w4 ¼ w4 þ Δw4 ¼ 5þ 2:5 ¼ 7:5 ð6:24Þ

Repeat Step (2)–(4) until the weights are unchanged or the error is less than a
criterion.

Table 6.3 presents the computed weights, NN output, and error at each iteration.
As seen in the Table, this NN structure needs only four iterations (instead of five
used in the previous example) to achieve a good approximation. In practice, adding
more neurons or layers increases the complexity of functions that the NN can
represent, but also increases the computational cost and the risk of overfitting
[12]. Thus, choosing appropriate NN structure for given problem is still a challeng-
ing task.

It is interesting to note that the input and output can be generalized to vectors so
the NN can handle multiple inputs and outputs. To demonstrate this, a datapoint

including a 2D vector as input and a 2D vector as output x� ¼ 1

2

� �
, y� ¼ 10

20

� �� �
will be used to train the NN with the same structure as the previous example. The

same procedure can be followed but the weights of the NN are 2D vectors in
the case:

Step (1): initialize the weights by arbitrary vectors:

w1 ¼
1

1

" #
ð6:25Þ

Table 6.3 Results of
weights, NN output and error
at each iteration

i 1 2 3 4

w1 10 11.25 11.84 11.87

w2 10 11.25 11.84 11.87

w3 5 7.5 8.38 8.428

w4 5 7.5 8.38 8.428

y 10 16.88 19.83 20.009

y� � y 10 3.13 0.17 �0.009

180 6 Deep Learning for Regression and Classification

w2 ¼
1

0

" #
ð6:26Þ

w3 ¼
0

1

" #
ð6:27Þ

w4 ¼
2

2

" #
ð6:28Þ

Step (2): compute NN output and error:

y ¼ w3 wT
1 x

�� �þ w4 wT
2 x

�� � ¼ 0

1

" #
� 3þ

2

2

" #
� 1 ¼

2

5

" #
ð6:29Þ

y� 2 y ¼
10

20

" #
�

2

5

" #
¼

8

15

" #
ð6:30Þ

Step (3): compute increments of weights based on the gradient decent (GD), and α is
the learning rate that is 0.01 in this case. The learning rate can be predetermined
by trial and error. It is noted that a too small learning rate causes a large number of
iterative steps required but a too large learning rate leads to an oscillated learning
process that cannot converge.

Δw1 ¼ �α
∂L
∂w1

¼ α y� 2 yð ÞwT
3 x

� ¼ 0:01 �
8

15

" #
� 2 ¼

0:16

0:3

" #
ð6:31Þ

Δw2 ¼ �α
∂L
∂w2

¼ α y� 2 yð ÞwT
4 x

� ¼ 0:01 �
8

15

" #
� 6 ¼

0:48

0:9

" #
ð6:32Þ

Δw3 ¼ �α
∂L
∂w3

¼ α y� 2 yð ÞwT
1 x

� ¼ 0:01 �
8

15

" #
� 3 ¼

0:24

0:45

" #
ð6:33Þ

6.2 Feed Forward Neural Network (FFNN) 181

Δw4 ¼ �α
∂L
∂w4

¼ α y� 2 yð ÞwT
2 x

� ¼ 0:01 �
8

15

" #
� 1 ¼

0:08

0:15

" #
ð6:34Þ

Step (4): update the weights:

w1 =w1 þ Δw1 ¼
1

1

" #
þ

0:16

0:3

" #
¼

1:16

1:3

" #
ð6:35Þ

w2 =w2 þ Δw2 ¼
1

0

" #
þ

0:48

0:9

" #
¼

1:48

0:9

" #
ð6:36Þ

w3 =w3 þ Δw3 ¼
0

1

" #
þ

0:24

0:45

" #
¼

0:24

1:45

" #
ð6:37Þ

w4 =w4 þ Δw4 ¼
2

2

" #
þ

0:08

0:15

" #
¼

2:08

2:15

" #
ð6:38Þ

Repeat Step (2)–(4) until the weights are unchanged or the error is less than a
criterion. The loss function L ¼ 1

2 y� � yð Þ2 is also computed for this case. The loss
function is half of the squared distance of the error y� � y. The convergence is
reached if the loss function is less than a specific criterion (0.0001 in this case).
Table 6.4 presents the computed weights, NN output, and loss at each iteration.

Table 6.4 Results of
weights, NN output
and loss at each iteration

i 1 3 5 15

w1 1

1

� �
1:23

1:54

� �
1:16

1:63

� �
1:1

1:66

� �
w2 1

0

� �
1:62

1:38

� �
1:49

1:56

� �
1:388

1:608

� �
w3 0

1

� �
0:33

1:73

� �
0:24

1:84

� �
0:178

1:875

� �
w4 2

2

� �
2:15

2:40

� �
2:07

2:51

� �
2:002

2:542

� �
y 2

5

� �
10:84

17:95

� �
10:61

19:70

� �
10:003

19:998

� �
L 144.5 2.46 0.23 6.5e�6

182 6 Deep Learning for Regression and Classification

Typically, the vector data is more difficult to fit as compared with scale data. In this
case fifteen iterations are required to reach a convergence.

The neural network can also handle a larger database including many data points.
In the next section, the NN will be used to predict a diamond price. A python code
will be introduced to implement the network.

6.2.2 General Notations for FFNN [Advanced Topic]

In the previous section, a few simple neural networks were trained by updating their
weights and biases using the gradient descent algorithm (often called
backpropagation algorithm in machine learning terminology). In this section, a
general matrix-based form is explained to compute the output from a neural network
with multiple layers and neurons.

To introduce the notation in an unambiguous way, Fig. 6.10 shows a three layers
FFNN, and the notations which refer to weights, biases, and activation (i.e., output)
in the network are also marked in the figure. The notations use wl

j,k to denote the
weight for the connection from the kth neuron in the (l� 1)th layer to the jth neuron in
the lth layer. For example, Fig. 6.10 shows a weight w3

2,4 on a connection from the
fourth neuron in the second layer to the second neuron in the third layer of the
network. This notation appears cumbersome at first, but it will be explained below to
demonstrate that this notation is easy and natural.

The similar notation can be used for the network’s biases and activations, i.e., blj
denotes the bias of the jth neuron in the lth layer, and alj denotes the activation
(or output) of the jth neuron in the lth layer.

Based on these notations, the activation alj of the jth neuron in the lth layer is
related to the activations in the (l � 1)th layer by the equation

Fig. 6.10 Notations for a
multilayer neural network.
The blue circles indicate
neurons in the hidden layer

6.2 Feed Forward Neural Network (FFNN) 183

alj =A
X
k

wl
j,ka

l�1
k þ blj

 !
ð6:39Þ

where the sum is over all neurons k in the (l � 1)th layer. To use a matrix form to
represent this expression, a weight matrix Wl can be defined for each layer, l. The
entry in the jth row and kth column of the weight matrix Wl is just wl

j,k. Similarly, a
bias vector bl is defined, and the component of the bias vector are just the blj . An
activation vector al can be also defined, and the component are the activations alj .
With these matrix-formed notations the above equation can be rewritten in a compact
vectorized form

al ¼ A Wlal�1 þ bl
� � ð6:40Þ

Thus, in terms of mapping the data between input x and output y over M layers,
the following recursive equation is derived

y ¼ AM WM , . . . ,A3 W3A2 W2A1 W1xþ b1
� �þ b2

� �þ b3
� �

. . .
� � ð6:41Þ

where AM is the activation function for theMth layer. Based on this general form, the
neural networks specifically optimize weightsWland biases bl in a NN withM layers
over a loss function as

argmin L W1,W2, . . .WM , b1, b2, . . . , bM
� �

ð6:42Þ

where the L is the loss function, and for example, it can be the standard root-mean
square error between NN outputs and target values

argmin
Wl , bl

Xn
k¼1

yk � y�k
� �2 ð6:43Þ

where yk is the NN output for the kth datapoint (in total n datapoints), and y�k is the
target value (ground truth) for the kth datapoint. The yk can be substituted by the
matrix-formed NN output

argmin
Wl , bl

Xn
k¼1

AM WM, . . . ,A3 W3A2 W2A1 W1xk þ b1
� �þ b2

� �þ b3
� �

. . .
� �� y�k

� �2
ð6:44Þ

To solve this optimization problem using gradient decent or back propagation, a
lot of standard programming libraries such as Python [13], PyTorch [14], and
MATLAB [15] can be used. An example will be introduced in the next section.

184 6 Deep Learning for Regression and Classification

6.2.3 Apply FFNN to Diamond Price Regression

In Chap. 1, the feature-based diamond pricing problem was briefly introduced. The
universal method for assessing diamond quality, regardless of location in the world,
relies on the 4Cs (color, clarity, cut, carat weight), whose features and scales can be
seen in Fig. 6.11. The goal of this example is to predict the price of a new diamond
based on its 4Cs and other features. To achieve that goal, a feed forward neural
network (FNN) will be trained based on a large database including a lot of diamonds
and their information.

The data for this application was found on Kaggle, which is the world’s largest
data science community with powerful tools and resources to help users achieve
their data science goals. The diamond dataset contains the price and features of
nearly 54,000 diamonds and a portion can be seen in Fig. 6.12. The ten features and
their ranges can also be seen below in Fig. 6.13.

Fig. 6.11 The 4Cs (Color, Clarity, Cut, and Carat weight) of diamond quality (https://4cs.gia.edu/
en-us/)

Fig. 6.12 Open-source diamond dataset from Kaggle (https://www.kaggle.com/)

6.2 Feed Forward Neural Network (FFNN) 185

https://4cs.gia.edu/en-us/
https://4cs.gia.edu/en-us/
https://www.kaggle.com/

To use this data effectively, it is important to understand how this raw data can be
built into a useful model and understand machine learning datasets as well.

Given a dataset with input XN
i and corresponding output label yNj , where i

indicates the input feature index, j indicates the output feature index, and
N indicates the number of data points. The goal of the machine learning is to form
a certain function with multiple parameters so that it can capture the relationship
between input features and corresponding output values.

For the diamond dataset, i ¼ 1. . .9, representing the number of independent
variables, including carat, color, cut, and carat. Similarly, j ¼ 1, representing the
number of dependent variables: price. The dataset contains 53,940 diamonds, so
N ¼ 53,940. Machine learning aims to find the functional form yNj ¼ f XN

i

� �
, where

f XN
i

� �
correctly maps input XN

i to output yNj . The dataset is divided into training
(70%), validation (15%), and testing (15%) sets to find the functional relationship
and confirm it is the best possible fit. This process has been explained in Chap. 2.

First, inputs and outputs from the training set are fit to mapping function f XN
i

� �
,

developing a FFNN model. The validation set tests the model after each training
step. This process is iterative, meaning that the function is updated after each
validation test to reduce error between the predicted and actual outputs. When
error is minimal, the final functional form is established, and the training accuracy
meets the required threshold, the function’s performance is evaluated with the testing
set. In this example, properties of diamonds with known prices are used as test model
inputs. Predicted and actual prices are compared to determine model accuracy.

For this problem, there are nine different input features in XN
i (carat, cut, color,

etc.) for each of the N ¼ 53,940 diamonds. Price is the only output feature, yNj . The
neural network attempts to build a relationship between the input features and the
output feature. The overall neural network architecture can be seen in Fig. 6.14. Two
hidden layers are used, with each layer including twelve hidden neurons. This NN
structure is complex enough to capture the relationship between diamond features
and its price.

The loss function used in the neural network for training is a mean squared error
(MSE):

Fig. 6.13 Diamond dataset features explained

186 6 Deep Learning for Regression and Classification

L ¼ 1
N

XN
i¼1

y� � yð Þ2 ð6:45Þ

An Adam optimizer [16] is used to implement back propagation algorithm.
A Python code with annotations to implement this example is shown below:

Python code for diamond price classification:

import necessary python library
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import RMSprop
from keras.wrappers.scikti_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model.selection import KFold

data preparation and scaling
X_df = df.drop([“price”],axis=1)
y_df = df.price
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
scaler.fit(X_df)
print(X_df.shape)
display(X_df.head())
X_df = scaler.transform(X_df)
from sklearn.model_selection import train_test_split

(continued)

Fig. 6.14 Neural network architecture used in the diamond example

6.2 Feed Forward Neural Network (FFNN) 187

X_train, X_test, y_train, y_test = train_test_split(X_df,
y_df, random_state=2, test_size=0.3)

define a neural network
Def Net():

model=Sequential()
model.add(Dense(input_dim=9,activation=”relu”,units=18))
model.add(Dense(kernel_initializer=”normal”,
activation=”relu”, units=12))
model.add(Dense(kernel_initializer=”normal”, units=1))
model.comile(loss=”mean_squared_error”, optimizer=”adam”)
return model

train the network and predict
estimator = KerasRegressor(build_fn=Net, epochs=10,
batch_size=5)
estimator.fit(X_train, y_train)
y_pred = estimator.predict(X_test)
print(“Mean absolute error: {:.2f}”.format(mean_absolute_error(

y_test, y_pred)))

The price of the diamonds as predicted by the neural network is graphed along
with the actual price of the diamonds to evaluate the accuracy of the neural network.
This graph can be seen in Fig. 6.15. This model has a coefficient of determination of
R2¼ 0.93, which shows a high level of accuracy in predicting the price of diamonds.
This correlation, known as the “goodness of fit,” is represented as a value between
0.0 and 1.0. A value of 1.0 indicates a perfect fit and might be thus a good model for
future forecasts, while a value of 0.0 would indicate a poor fit.

Once the NN model is trained, it can be used to predict the price of a diamond if
its features are known. For example, Fig. 6.16 shows four diamonds. Their features
such as 4Cs are known but the prices are unknown. The trained NN model can

Fig. 6.15 Actual vs.
predicted Price of diamonds
based on a neural network

188 6 Deep Learning for Regression and Classification

predict their prices by inputting their features, which would be very helpful for
evaluation the value of a diamond for a diamond vender or a person who want to buy
a diamond.

6.3 Convolutional Neural Network (CNN)

6.3.1 A First Look at CNN

This section will explain how the computers recognize images using convolutional
neural network (CNN). To demonstrate the basic idea of the CNN, imagine a world
with only one person, and that person has one computer. The computer has a screen
of resolution two-by-two pixels and it has a keyboard with two only keys. Only two
keys are needed because this simple world has an alphabet with only two letters: a
backward slash and a forward slash as shown in Fig. 6.17.

In this simple world, writing is very simple, and the alphabet song is also very
simple—it goes like “backward slash and forward slash”. What happens when the
keyboard is used in this world? As shown in Fig. 6.18, if the computer key on the

Fig. 6.16 Predictions of the prices for four diamonds

Fig. 6.17 A simple world
including one person, one
computer with two-by-two
pixels resolution, and a two
letters alphabet

6.3 Convolutional Neural Network (CNN) 189

right (i.e., the backward slash) is pressed, there is a backward slash with the two-by-
two pixels shown in the screen. If the computer key on the left (i.e., the forward
slash) is pressed, there is a forward slash with the two-by-two pixels shown in the
screen.

It is possible to add some sophistication in this world by creating an image
recognition software. As shown in Fig. 6.19, if an image of a backward slash is
fed into the computer, the computer should “say” that is a backward slash. If an
image of a forward slash is fed into the computer, the computer should “say” that is a
forward slash.

Computers do not really see things the way human see them. The computers treat
pixels as numbers. Assume the orange pixel is 1 and the grey pixel is�1. Figure 6.20
shows what the computer sees the backward slash and forward slash. The computer
reads data as a single line (i.e., flatted form) from left to right and bottom to top.
Thus, the computer reads a backward slash as 1, �1, �1, 1, and a forward slash as
�1, 1, 1, �1 in this simple setting.

To differentiate these two things on the computer, some mathematical operations
have to be conducted. Ideally, a certain positive value would be ouput for one and a
certain negative value would be output for the other one. What operations could
be used? The simplest operation that can be tried for these numbers is just adding
them. If 1, �1, �1, and 1 are added together for the backward slash, a zero (i.e.,
1� 1� 1 + 1¼ 0) is obtained. If�1, 1, 1, and�1 are added for the forward slash, a

Fig. 6.18 Showing
backward slash (left) and
forward slash (right) on the
computer screens when the
keyboards are pressed

Fig. 6.19 A image recognition software that can distinguish backward slash and forward slash
based on the given image

190 6 Deep Learning for Regression and Classification

zero (�1 + 1 + 1 � 1 ¼ 0) is obtained again. Thus, the addition operation does not
distinguish the two characters. Similarly, a multiplication operation does not effec-
tively distinguish the characters. A mathematical operation that effectively separate
these two strings of numbers is to add the first last numbers together and to subtract
the sum of the two middle numbers. This operation can be defined to add the first
number, subtract the second number, subtract the third number and add the fourth
number of a string. For the backward slash string, this yields 1 + 1 + 1 + 1 ¼ 4. For
the forward slash, it yields �1 � 1 � 1 � 1 ¼ �4. This operation, which can
distinguish the two characters, is actually a convolution operation, and its mathe-
matical definition will be given in next section. An character recognition classifier
has now been constructed in this simple world.

To make it more general, a two-by-two matrix called a kernel, or a filter, is
defined as shown in Fig. 6.21. Using this kernel, the operation mentioned above can
be re-described. Four symbols f1, f2, f3, f4 can be used to represent the kernel, which

Fig. 6.20 Showing how a backward slash and a forward slash store in the computer

Fig. 6.21 An example showing how tell two images apart using convolution operation

6.3 Convolutional Neural Network (CNN) 191

is actually how this matrix is stored in the computer. They can be defined as f1 ¼ 1,
f2¼ � 1, f3¼ � 1, f4¼ 1. Four different symbols g1, g2, g3, g4 are used to represent
the image. The values of them are already known for a backward slash or forward
slash. The operation found above is simply f1� g1 + f2� g2 + f3� g3 + f4� g4. If the
result is positive, then the character is a backward slash. If the result is negative, the
character is a forward slash.

The obvious question is how does the computer know the right values in the
kernel? Actually, that is the core objective of a CNN. Humans can differentiate using
the “eyeball filter”. In contrast, a computer can compute very quickly, so one
possibility is for a computer to check all the possibilities. There are four entities in
the kernel and each entity has two choices: positive or negative. In total, there are
sixteen possible kernels (24 ¼ 16). For this method, the computer will try all the
possibilities, will find that most of them work poorly, but that two of them work well
(Fig. 6.22), and one of the good kernels is selected.

These 16 choices are not excessive for a world with only two letters. However,
even with only two images for a computer classifier, and a computer screen with
two-by-two pixels, 16 possibilities must be checked. Modern images contain many
more pixels and colors to be separated apart, which results in a nearly impossibly
large number of possibilities. Moreover, instead of just binary inputs, decimal values
such as 0.5, 1.2, or 0.8, and any other values, can be used. So now there are almost
infinite possibilities and the computer cannot check all of them.

This necessitates a smarter way to find good kernels (filters). The idea of gradient
descent introduced in the previous section can be applied to CNN. Consider four
random numbers (Fig. 6.23) for a filter to test performance of a classifier. The filter
can be updated based on the computed error level until the error level is sufficiently
small. To achieve this, the filter values are changed slightly, and a direction with
reduced error can be identified. The direction is computed using an error function
(or loss function). The derivatives of this error function are computed to find the
gradient, or slope in any direction. The gradient can be used to find the direction of
maximum and minimum error increase. This procedure can be repeated the error is
minimized, resulting in a good classification filter.

Fig. 6.22 Sixteen possible kernels to be tested

192 6 Deep Learning for Regression and Classification

6.3.2 Building Blocks in CNN

Before the concept of convolution neural network was proposed in the 1990’s for
solving image classification problem, people used other machining learning
methods, such as logistic regression and support vector machine, to classify images.
Those algorithms considered pixel values as features, e.g., a 36 � 36 image
contained 36� 36¼ 1296 features, while a lot of spatial interactions between pixels
were lost. Although it is possible to handpick features out of the image similar to
what a convolution automatically does, it is very time-consuming, and the quality of
those extracted features highly depends on the knowledge and experience of the
domain experts. CNN uses information from adjacent pixels to down-sample the
image into features by convolution and pooling and then use prediction layers (e.g., a
FFNN) to predict the target values. A typical CNN structure consists of the building
blocks of input, convolution, padding, stride, pooling, FFNN, and output (see
Fig. 6.24). The mathematical symbols in the figure will be defined and explained
in the next section.

The CNN starts from an input layer such as a signals (1D) or an image (2D). In
Fig. 6.24, the input data is assumed to be one-dimensional, i.e., 1D signal or flattened
image. The padded input can be obtained by adding zeros around the margin of the
signal or image. Multiple convolution operations will be done using several moving
kernels to extract features from the padded input. The dimensions of the convolved
features can be reduced using pooling layers. Those reduced features then are used as
input for a FFNN to calculate the output of the CNN. Table 6.5 shows a list of terms
included in the CNN structure. Some descriptions are also provided. More detailed
definitions and examples will be given in the following.

Fig. 6.23 Schematic of using gradient descent to update filter in CNN

6.3 Convolutional Neural Network (CNN) 193

6.3.2.1 Convolution

Multiple convolution filters or kernels that operate over the signal or the image can
be used in CNN to extract different features. The concept of convolution in machine
learning stems from mathematics. Consider two univariate continuous functions: an
original function, or signal, f(t), and a kernel (filter) function, ϕ(t). The definition of
the convolution is given as the integral of the product of the two functions after one is
reversed and shifted:

Table 6.5 Terminology used in CNN and their descriptions and objectives

Terminologies Descriptions

Convolution A mathematical operation that does the integral of the product of functions
(signals), with one of the signals slides. It can extract features from the input
signals

Kernel (filter) A function used to extract important features

Padding A technique to simply add zeros around the margin of the signal or image to
increase its dimension. Padding allows to emphasize the border values and in
order lose less information

Stride The steps of sliding the kernel during convolution. The kernel move by
different stride values is designed to extract different kinds of features. The
amount of stride chosen affects the size of the feature extracted

Pooling An operation that takes maximum or average of the region from the input
overlapped by a sliding kernel. The pooling layer helps reduce the spatial size
of the convolved features by providing an abstracted representation of them

Fully connected
layers

A FFNN in which layer nodes are connected to every node in the next layer.
The fully connected layers help learn non-linear combinations of the features
outputted by the convolutional layers

Fig. 6.24 An illustrative structure of CNN including several building blocks and concepts

194 6 Deep Learning for Regression and Classification

f � ϕð Þ tð Þ ¼
Z 1

�1
f t � ξð Þϕ ξð Þdξ ð6:46Þ

where the � represents the convolution operation between the two functions, and ξ is
the index sliding through the filter function. The integration interval of the convo-
lution in mathematics is from negative infinity to positive infinity. It is typical to use
multiple kernels (ϕ1(ξ),ϕ2(ξ), . . .,ϕk(ξ)) for conducting k different convolution
operations in CNN. Since the signal or data in data science is finite, the definition
of the convolution can be modified by limiting the integration interval from �l to l

f � ϕð Þ tð Þ ¼
Z l

�l
f t � ξð Þϕ ξð Þdξ ð6:47Þ

where l is a real number. Since the data is stored in the computers in a discrete form,
the above convolution defined for continuous functions can be modified to be a
discrete convolution

f � ϕð Þ tð Þ ¼
XN

ξ¼�N
f t � ξð Þϕ ξð ÞΔξ ð6:48Þ

where N is an integer. If the Δξ is assumed to be 1, the discrete convolution can be
written as

f � ϕð Þ tð Þ ¼
XN

ξ¼�N
f t � ξð Þϕ ξð Þ ð6:49Þ

This is the definition used in data science where f(t) is a signal or a flattened
image, and ϕ(ξ) is a filter or kernel used to extract features from the original signal or
image (in the previous example, a filter is used to classify an image is a backward
slash or a forward slash).

An example is given to demonstrate how to compute a discrete convolution.
Given a discrete function f(t) including 12 elements f(0), f(1), . . ., f(11) and a filter
ϕ(ξ) including three elements ϕ(�1), ϕ(0), and ϕ(1) as shown in Fig. 6.25. The
convolution is an element wise multiplication between the function f(t) values and
the filter ϕ(ξ) values, and then sum them up. Based on the definition, the first value of
the convolution (f � ϕ)(1) can be computed as

f � ϕð Þ 1ð Þ ¼ f 2ð Þϕ �1ð Þ þ f 1ð Þϕ 0ð Þ þ f 0ð Þϕ 1ð Þ
¼ 2� 6þ 7� 3þ 9� 1 ¼ 12þ 21þ 9 ¼ 42

ð6:50Þ

This formula is consistent with what is used in the previous backward and
forward slashes example. The one dimensional case is analyzed here since the
two-dimensional images are flattened into one-dimensional data and stored in the
computers. Filter continues from left to right on the signal and produce the second
value of the convolution as shown below (see Fig. 6.25: step 2)

6.3 Convolutional Neural Network (CNN) 195

f � ϕð Þ 2ð Þ ¼ f 3ð Þϕ �1ð Þ þ f 2ð Þϕ 0ð Þ þ f 1ð Þϕ 1ð Þ
¼ 4� 6þ 2� 3þ 7� 1 ¼ 24þ 6þ 7 ¼ 37

ð6:51Þ

The filter can be continually moved to the next position (next pixel) so all the
values of the convolution (f � ϕ)(1), (f � ϕ)(2), . . .(f � ϕ)(10) can be calculated.

6.3.2.2 Stride

In the above example, the filter is sliding by one position (1 pixel). This is called
stride. In practice the filter can be moved by different stride values to produce the
different size of convolution, and to extract different kinds of features. Figure 6.26
shows an example using a stride value of 3. The calculation of the first step is the
same as the that in the previous example, so the first value of the convolution is still
42. However, for the subsequent steps the filter is moved by three pixels at a time.
For example, the second value of the convolution can be computed as

Fig. 6.25 A convolution operation example (the first two steps are shown)

196 6 Deep Learning for Regression and Classification

f � ϕð Þ 2ð Þ ¼ f 5ð Þϕ �1ð Þ þ f 4ð Þϕ 0ð Þ þ f 3ð Þϕ 1ð Þ
¼ 7� 6þ 8� 3þ 4� 1 ¼ 42þ 24þ 4 ¼ 70

ð6:52Þ

The rest of the values of the convolution can be computed based on the same
procedure. As shown in Fig. 6.26, the size of the convolution (f � ϕ)(t) is affected by
the amount of the stride. There are only four elements in the convolution if a stride
value of 3 is used because some values in the original signal are skipped when the
stride value is greater than 1. An equation to calculate the size of convolution for a
particular filter size and stride is as follows

Convolution size ¼ Signal size� Filter sizeð Þ=Strideþ 1 ð6:53Þ

This equation can be verified by putting the values for the above examples. For
the example with stride 3, Convolution size ¼ 12�3

3 þ 1 ¼ 4. For the example with
stride 1 shown previously, Convolution size ¼ 12�3

1 þ 1 ¼ 10. This equation works
for both the cases.

Fig. 6.26 A convolution operation with a stride value of three (the first two steps are shown)

6.3 Convolutional Neural Network (CNN) 197

6.3.2.3 Padding

From the previous examples, the convolution changes the size (or dimension) of the
original signal or image. Is it possible to keep the convolution the same size as the
input signal or image? Indeed, this can be achieved by padding the input. Padding is
a technique to simply add zeros around the margin of the signal or image to increase
the dimensions of the images before and after the convolution operation. Padding
emphasizes the border pixels to reduce information loss. Figure 6.27 is an example
with a 12-dimensional input f(t). It can be padded to a 14-dimensional input f 0(t) by
adding two zeros at each ends of the input. Adding these two extra dimensions
results in a 12-dimensional output (f 0 � ϕ)(t) after convolution operation, which is
the same as the input signal f(t). The equation to calculate the dimension after
convolution for a particular filter size, stride, and padding is as follows

Convolution size ¼ Signal sizeþ 2Padding size� Filter sizeð Þ=Strideþ 1

ð6:54Þ

For an image with three channels, i.e., red, green, and blue (RGB), the same
operations are performed on all the three channels. In this book, only a single
channel is considered. More details of the image channels can be found in the
reference [17]. A CNN learns those filter values through back propagation to extract
different features of the image based on training data. A CNN typically has more
than one filter at each convolution layer. Those extracted features by convolution are
further used to perform different tasks like classification, regression.

Fig. 6.27 A convolution operation with padding

198 6 Deep Learning for Regression and Classification

6.3.2.4 Pooling

Pooling layers in CNN help reduce the spatial size of the convolved features and also
reduce overfitting by providing low-dimensional representations. There are two
types of pooling that are widely used: max pooling and average pooling. It is similar
to the convolution layer, but the pooling layer takes the maximum or average of the
region from the input overlapped by the kernel (or filter). Figure 6.28 is an example
showing a max pooling layer and an average pooling layer with a kernel having size
of 2 and stride of 2. The max pooling operation takes the maximum of every two
pixels while the average pooling operation computes the average of every two
pixels. Max pooling helps reduce noise by ignoring noisy small values in the input
data and hence is typically better than average pooling.

6.3.2.5 Fully Connected Networks

After the convolution and pooling layers, fully connected networks, like FFNN, are
typically used with activation functions to learn complicated functional mappings
between convolved features and outputs. Some activation functions have been
previously introduced in the FFNN section. In the fully connected layers, neurons
in a hidden layer are connected to every node in the adjacent layers. A dropout layer
is normally used between two consecutive fully connective layers to reduce
overfitting [18]. At the last layer the output size is decided based on the tasks. For
example, one output value was sufficient for the backward and forward slashes
example.

Fig. 6.28 An example showing max and average pooling layers

6.3 Convolutional Neural Network (CNN) 199

6.3.3 General Notations for CNN [Advanced Topic]

A CNN model consists of four basic unit operations: (1) padding, (2) convolution,
(3) pooling, and (4) a feed forward neural network (FFNN). A one-dimensional
CNN model is shown in Fig. 6.29. It begins with the input of a series of N values f1,
f2, . . ., fN. The CNN consists of several loops of padding, convolution, and pooling.
As shown in Fig. 6.29, for each loop iteration η, a padding procedure adds zeros
around boundaries to ensure that the post-convolution dimension is the same as the
input dimension.

After padding, kernel functions will be used to approximate the discrete convo-
lution operator ef κ,ηx given by

f κ,ηx ¼
XLconv�1ð Þ=2

ξ¼� Lconv�1ð Þ=2
ϕκ,η
ξ f padded,ηxþξ þ bκ,η ð6:55Þ

where f padded,ηxþξ is the padded input, x is the counting index for location within the
signal, ξ is the counting index for a location within the kernel, ϕκ,η

ξ is the κth kernel
function, and bκ, η is the bias for ηth convolution process (η ¼ 1, 2, . . ., Nconv). The
total number of iterations is Nconv. The size of the kernel function is Lconv. A pooling
layer is used after convolution to reduce the dimensions of data and extract features
from the convolved data. A one-dimensional max pooling layer is formulated by

Fig. 6.29 Illustration of one-dimensional CNN with the following setup: padding, convolution,
pooling, and a FFNN for regression analysis. The first three steps may be repeated [20]

200 6 Deep Learning for Regression and Classification

bf P,κ,ηα ¼ MAX ef κ,ηξ , ξ 2 α� 1ð ÞLpooling þ 1, αLpooling
� 	
 �

ð6:56Þ

where bf P,κ,ηα is the output value after the max pooling, ef κ,ηξ is the value before the max
pooling, α is the counting index for location within output after pooling
(α ¼ 1, 2, ::,Nη

pooling), N
η
pooling is the size of the output after pooling for a loop

iteration η, MAX is the function which returns the largest value in a given list of
arguments, and Lpooling is the length of the pooling window. Padding, convolution,
and pooling are repeated Nconv times to extract important patterns and features. The
output of the pooling layers is transferred to a fully connected FFNN which is
illustrate in the Sect. 6.2.2.

The output of the CNN is represented by the vector ε. The CNN training process
can be written as an optimization problem, which finds the filter values in the
convolution layers and weights and biases in the FFNN by minimizing the loss
function (e.g., the mean square error (MSE)) representing the distance between
training data ε� and CNN output ε

min loss function : MSE ¼ 1
N

XN
i¼1

εi þ ε�i
� �2 ð6:57Þ

where N is the number of data points in the training set, εi is the CNN output of the
ith data point, and ε�i is the labeled output of the ith data point. Since εi is a function
of the filter values in the convolution layers and weights and biases in the FFNN,
those parameters in CNN can be iteratively updated by minimizing loss function
based on the back-propagation algorithm.

6.3.4 COVID-19 Detection from X-Ray Images of Patients
[Advanced Topic]

In this section a CNN model for automatically detect COVID-19 by classifying raw
chest x-ray images is presented. Coronavirus 2019 (COVID-19) first appeared in
December 2019 and caused a worldwide pandemic. Part of the effects of the virus is
that infect lungs and airways and cause inflammation. As the inflammation pro-
gresses, a dry or barking cough would results, followed by tightness in the chest and
deep pain when breathing. X-rays of the chests of COVID-19 patients show a
progression that differs from healthy patients or patients with pneumonia.

The CNN model is developed to provide COVID-19 diagnosis for multi-class
classification, i.e., COVID-19 vs. Pneumonia vs. No-Findings. The X-ray images of
a COVID-19 patient’s chest reveal several important features, which are critical for
diagnosing inflammation caused by COVID-19. For example, Fig. 6.30 shows chest
X-ray images taken at days 1, 4, 5 and 7 for a 50-year-old COVID-19 patient. At day
1, the lungs are clear and there are no significant findings. At days 4 and 5, ill-defined

6.3 Convolutional Neural Network (CNN) 201

alveolar consolidations can be observed on the X-ray images. At day 7, the radio-
logical condition has worsened, with typical findings of Acute Respiratory Distress
Syndrome (ARDS [20]). Machine learning-based automatic diagnosis of COVID-19
based on chest X-ray images provide an end-to-end architecture that can automat-
ically extract important features (such as alveolar consolidations) from images to
assist clinicians in making accurate diagnoses (Fig. 6.31).

The X-ray images obtained from two sources were used for the diagnosis of
COVID-19. The first COVID-19 X-ray image database was generated and collected
by Cohen JP [22]. Another chest X-ray image database was provided by Wang et al.
[23]. These two X-ray databases are combined for a total of 125 X-ray images of
COVID-19 patients (43 female, 82 male, average age of approximately 55 years),
500 X-ray images pneumonia patients, and 500 X-ray images of patients with
no-findings. The grey scale X-ray images are obtained from institute’s PACS system
[24]. Each pixel in the images has an intensity ranging from 0 to 255. Nine-hundred
X-ray images are used for training and 225 images for validation (including
28 COVID-19 cases, 88 pneumonia cases, and 109 no-finding cases). The five-
fold cross-validation is used to evaluate the model performance (see Chap. 2 for
more details of cross-validation).

A typical CNN structure has many convolution layers that can extract features
and produce feature maps from the input with the applied filters, subsequent pooling
layers to reduce the size of the feature maps, and fully connected layers (i.e., a
FFNN). The trainable internal parameters in CNN are adjusted to accomplish a
classification or regression task. The developed CNN structure described in this
section is inspired by the Darknet-19 model [25], which is a well-tested classifier for

Fig. 6.30 Chest X-ray images of a 50-year-old COVID-19 patient over a week [22]

202 6 Deep Learning for Regression and Classification

many real-time object detection systems. Leaky rectified linear unit (leaky ReLU) is
used as an activation function in the CNN.

The CNN structure consists of 17 convolutional layers and 5 max pooling layers.
These layers are typical CNN layers with different filter numbers, sizes, and stride
values. A schematic presentation for the first convolution layer and max pooling
layer is given in Fig. 6.31. After padding operation introduced in the Sect. 6.3.1, the
input image with 256 � 256 resolution increase its size to 257 � 257. Eight 3 � 3
filters with stride 1 are then used to produce eight 256 � 256 feature maps. This
method allows different features from the input image to be extracted. The values in
the filters will be obtained during the data training process. To reduce the size of the
feature maps, eight 2� 2 max pooling operators with stride 2 are used so that the size
of feature maps can be reduced to 128 � 128. To present the whole structure of the
CNN in a compact manner, a simplified presentation of the first convolution and max
pooling layer is also shown in Fig. 6.31.

Figure 6.32 shows the CNN structure with 17 convolutional layers and 5 max
pooling layers. Each convolution block layer has one convolutional layer followed
by LeakyReLU activation functions (see Sect. 6.2.1). ReLU activation function has
zero value in the negative part of their derivatives, but LeakyReLU has a small value
that can overcome the dying neuron problem [26]. The CNN model performs the
COVID-19 detection task to determine the labels of the input chest X-ray images.
COVID-19 is represented by a vector 1 0 0½ �T , pneumonia is represented by a

Fig. 6.31 A schematic presentation of the first convolution layer and max pooling layer

6.3 Convolutional Neural Network (CNN) 203

vector 0 1 0½ �T , a normal (i.e., No-Findings) represented by 0 0 1½ �T .
Finally, the layer details and layer parameters of the model are given in the Python
code included with the book. The developed deep learning model consists of
1,164,434 parameters. The Adam optimizer [27] is used for updating the weights
and loss functions with a selected learning rate of 3 � 10�3 (Supplementary
Data 6.1).

The multi-class classification performance of the CNN model can be evaluated
using the error matrix shown in Fig. 6.33. The error matrix allows visualization of
the general performance of the CNN model. A total of 225 images in the test set are
used to evaluate the performance of the model. The classification accuracy for the
COVID-19 category is 24/28 ¼ 85.7%, the accuracy for the No-finding category is
102/109 ¼ 94.6%, and the accuracy for the Pneumonia category is 75/88 ¼ 85.2%.
The CNN model achieved an average classification accuracy of 88.5% for these
categories.

During the COVID-19 pandemic, X-ray imaging is a very important assisted tool
to the diagnostic tests for the early diagnosis. Deep learning models such as the one
introduced in this section provide high accuracy rate in diagnosis and thus are
particularly useful in identifying early stages of COVID-19 patients. The deep
learning model can potentially be used in healthcare centers for an early diagnosis

Fig. 6.32 The architecture of the CNN model

204 6 Deep Learning for Regression and Classification

or a second “opinion”. However, in this case of CNN, more than one million
parameters are involved. A large number of training datapoints are required to
train those parameters. In the next section, a mechanistic data science approach
will be introduced. It significantly reduces the model parameters by using mecha-
nistic knowledge, which can achieve a good model performance using a small
number of datapoints.

6.4 Musical Instrument Sound Conversion Using
Mechanistic Data Science

6.4.1 Problem Statement and Solutions

A machine learning model that can change any piano sound/music to a guitar sound/
music will be used to demonstrate mechanistic data science. Pianos and guitars can
perform the same music, but a piano and a guitar have quite different instrumental
structures and sounds. The challenge is to use mechanistic data science to convert
piano sounds to guitar sounds. The first step in the process is to change a single piano
note to the same note that sounds like a guitar (Fig. 6.34).

The input consists of eight pairs of notes (notes A4, A5, B5, C5, C6, D5, E5, G5)
performed by a piano and by a guitar. For this example, signals from an open-source
database [30] are used for the training dataset. Figure 6.35 shows the time-amplitude
signal (sound signal) for the A4 note for piano and guitar. The two signals look
different, but they have the same fundamental frequency (same pitch). A Fourier
analysis can be conducted to obtain the fundamental frequency and harmonics of the
sound (see Chap. 4). It should be noted that the dimension of each curve is very high
since the sampling rate was 44,100 Hz.

Fig. 6.33 The error matrix
results of the multi-class
classification COVID-
19 task

6.4 Musical Instrument Sound Conversion Using Mechanistic Data Science 205

Given the training data paired sounds from the piano and the guitar, two strategies
can be used to train a machine learning model: (1) a pure CNN analysis and (2) a
mechanistic data science analysis (see Fig. 6.36). The first strategy uses the deep
CNN architecture introduced in the previous section. For this strategy, piano sounds
are used as input and guitar sounds are used as output. Both are high-dimensional
time-amplitude curves. Convolution layers and pooling layers can be used repeat-
edly to extract features from the piano sound signals and a low-dimensional repre-
sentation (deep features shown in Fig. 6.36) of the original sound curve can be
obtained after the CNN. These deep features then are mapped to another set of deep
features, which can be converted to guitar sounds using another CNN structure for
feature reconstruction. This flexible deep learning structure can be applied to many
regression and classification applications with various data structures. However, a
drawback of this strategy is the high number of trainable parameters involved in the
CNN and FFNN structures. Both filter values and hyperparameters (weights and
biases) need to be determined by the training dataset. The number of
hyperparameters in a CNN can be thousands, millions, or even larger, depending
on the size of the network. For some applications where the amount of data is small
or the quality of data is low, the performance of the CNN is limited. To overcome

Fig. 6.34 A schematic of changing a piano sound to a guitar sound suing machine learning. Two
images in the figure come from the Internet [29, 30]

Fig. 6.35 A pair of A4 time-amplitude curves for piano and guitar. Audios are available in the
E-book (Supplementary Audio 6.1)

206 6 Deep Learning for Regression and Classification

this drawback of the standard CNN, another strategy called mechanistic data science
is proposed (Fig. 6.36). Instead of extracting deep features by CNN, mechanistic
data science extracts mechanistic features based on the underlying scientific princi-
ples. In this specific problem, a low-dimensional set of mechanistic features can be
extracted from each piano signal and guitar signal. Each signal can be simplified to a
set of sine functions, where the mechanistic features are the frequencies, damping
coefficients, amplitudes, and phase angles (see Chap. 4 for more details). The
damping coefficients describe a decreasing of the amplitude of the sound wave
due to frictional drag or other resistive forces. These mechanistic features can be
obtained by Short Time Fourier Transform (STFT) and a regression to fit a mech-
anistic model, such as a spring-mass-damper model introduced in Chap. 4. In this
way, a high-dimensional sound curve can be represented by a set of mechanistic
features with a physical meaning. The hyperparameters involved in the model can be
significantly decreased from thousands to dozens in this manner, which reduces the
amount of training data required. The computer codes for conducting CNN and
MDS are included in the E-book (Supplementary Data 6.2).

Figure 6.37 shows the values of the CNN and the MDS loss functions at each
iteration step of training. The goal of the training is to minimize the loss function,
and the MDS (right in Fig. 6.37) provides a better solution than the CNN (left in
Fig. 6.37). The loss function of the CNN is volatile and does not converged to zero.
The high number of parameters in the CNN and the amount of training data available
in this case is insufficient to enable the CNN to find appropriate values of all the
parameters. Training a CNN model requires the number of data points to be larger
than the dimension of input signal or image. In this case, the dimension of input is a
million, so a million training data points are needed to successfully train the CNN
model. As the results show, the eight training data are not enough. In contrast, the

Fig. 6.36 A schematic of two solutions for changing a piano sound to a guitar sound: pure CNN
approach and mechanistic data science

6.4 Musical Instrument Sound Conversion Using Mechanistic Data Science 207

loss function of the MDS converges to zero if sufficient iterations steps are used.
MDS reduces the number of parameters significantly using mechanistic features,
which provides an efficient manner to solve this kind of problem with a relatively
small amount of data.

6.4.2 Mechanistic Data Science Model for Changing
Instrumental Music [Advanced Topic]

A mechanistic data science model is presented which converts music from one
instrumental sound to another. In particular, a piano sound will be converted to a
guitar sound.

The training data for the analysis consisted of eight pairs of piano and guitar
sound files, with signal durations ranging from 1.5 to 3.0 s. The notes used are A4,
A5, B5, C5, C6, D5, E5, and G5. A representative pair of the time-amplitude curves
is shown in Fig. 6.35. The sampling rate used is 44.1 kHz. Recorded duration for the
piano sounds is 2.8 s and for the guitar sounds is 1.6 s. Thus, the dimension of a
piano sound is 120,000 (44.1 kHz � 2.8 s), and the dimension of the guitar sound is
72,000 (44.1 kHz � 1.6 s). The high dimension of the input signal necessitates a
mechanistic feature extraction to efficiently perform the analysis.

Mechanistic feature were extracted from the signals to enhance the mapping from
the piano to the guitar. Short Time Fourier Transform (STFT) is used to reveal the
frequency, amplitude, damping and phase angle, as shown in Chap. 4 (see Fig. 6.38).

A mechanistic model of the system is introduced in the form of a spring-mass-
damper system. The STFT and a least-squares optimization are performed to deter-
mine the parameters for the mechanistic model, as shown in Chap. 4. The coeffi-
cients of the reduced order model for the A4 piano and guitar signals are shown in
Tables 6.6 and 6.7, respectively. Data for the other piano and guitar sounds are
included in the E-book (Supplementary Data 6.2).

Fig. 6.37 Values of CNN loss function (left) and MDS loss function (right) at each iteration step
during the training

208 6 Deep Learning for Regression and Classification

Fig. 6.38 An A4 piano sound signal and its STFT result (2D and 3D)

Table 6.6 Optimal coefficients to represent the authentic A4 piano sound

Type Frequency (Hz) Initial amplitudes Damping coefficients Phase angle (rad)

Fundamental 4.410E+02 1.034E-01 3.309E+00 6.954E-01

Harmonics 8.820E+02 1.119E-02 1.844E+00 7.202E-01

1.323E+03 6.285E-03 5.052E+00 3.469E-01

1.764E+03 7.715E-04 2.484E+00 5.170E-01

2.205E+03 1.455E-03 8.602E+00 5.567E-01

2.646E+03 5.130E-04 1.198E+01 1.565E-01

3.087E+03 1.899E-04 8.108E+00 5.621E-01

3.528E+03 3.891E-05 3.282E+00 6.948E-01

Table 6.7 Optimal coefficients to represent the authentic A4 guitar sound

Type Frequency (Hz) Initial amplitudes Damping coefficients Phase angle (rad)

Fundamental 4.400E+02 1.649E-02 1.287E+00 9.798E-01

Harmonics 8.800E+02 8.022E-03 1.865E+00 2.848E-01

1.320E+03 2.551E-03 2.176E+00 5.950E-01

1.760E+03 5.454E-03 1.100E+00 9.622E-01

2.200E+03 5.523E-03 3.346E+00 1.858E-01

2.640E+03 6.742E-03 2.504E+00 1.930E-01

3.080E+03 7.643E-04 1.666E+00 3.416E-01

3.520E+03 9.748E-04 2.609E+00 9.329E-01

6.4 Musical Instrument Sound Conversion Using Mechanistic Data Science 209

Deep learning for regression is performed using the reduced mechanistic features
as input and output. A fully-connected FFNN is used to map the relationships
between piano and guitar sounds. Figure 6.39 shows the FFNN structure with the
reduced order mechanistic model. Three hidden layers with 100 neurons are used for
this FFNN. The tanh function is used as the activation function. Standard mean
squared error (MSE) is used as the loss function. The mathematical description of the
optimization process of the FFNN training can be found in Sect. 6.2.2. The code for
implement MDS and FFNN is attached to the E-book. Note that the generation of the
guitar sound from the piano sound is possible with a significantly smaller dimension
(i.e., 4(sets) � 8 (features) ¼ 32) and only 8 data points are sufficient to train the
MDS model (Supplementary Data 6.2).

Figure 6.40 shows the result of reconstructing an A4 guitar note from an input
piano key. Audios in the figure are available in the E-book. In this figure, the
mechanistic features (i.e., frequencies, amplitudes, damping coefficients, and phase
angles) obtained from ground truth piano sound, ground truth guitar sound, and
MDS generated guitar sound are compared. As shown in the Fig. 6.40, the features
of ground truth guitar sound (marked in orange) and MDS generated guitar sound
(marked in blue) are very similar, and they are different from the features of ground
truth piano sound (marked in green).

Figure 6.41 shows the time-amplitude curves (i.e., sound waves) reconstructing
an A4 guitar note from an input piano key. Figure 6.41b, d present the magnification
plots of the sound waves ranging from 0 to 0.01 s. The MDS generated guitar sound
wave is similar to the authentic one (i.e., ground truth), which is quite different from
the input piano sound wave as shown in Fig. 6.41e, f. The enveloped shapes of the
sound waves are controlled by the damping coefficients. The detailed wave shapes
are affected by the frequencies and their amplitudes. Figure 6.41 demonstrates that
the MDS generated guitar sound captures the key features compared to the authentic
guitar sound.

Fig. 6.39 FFNN structure with reduced mechanistic features

210 6 Deep Learning for Regression and Classification

6.5 Conclusion

Two major variants of Deep learning neural networks (i.e., FFNN and CNN) are
presented in this Chapter and their ability is demonstrated through examples. The
neural networks can be combined with mechanistic data science to simplify and
enable solutions with relatively small amount of data. A musical sound conversion

Fig. 6.40 Results of reconstructing a single guitar key A4 from a piano key as input. Audios are
available in the E-book (Supplementary Audio 6.2)

6.5 Conclusion 211

from piano to guitar demonstrated this capability. Four sets of mechanistic features
replaced the CNN, and these features are used as the input layer to the FFNN for the
training of the neural network. Incorporating mechanistic knowledge to perform
dimension reduction opens a new avenue to other scientific methods. Researchers
have demonstrated new approaches to solve the partial differential equation by
application dimension reduction using mechanistic deep learning [31]. This allows
the solution of scientific problems with limited data and limited understanding of the
relevant physics. This is highly advantageous for predicting biomechanical process
such as progression of scoliosis [32] and optimizing additive manufacturing pro-
cesses by discovering dimensionless parameters [33].

Fig. 6.41 Time-amplitude curves (sound waves) of reconstructing a single guitar key A4 from a
piano key as input. (a) MDS generated guitar sound. (b) Magnification plot of MDS generated
guitar sound ranging from 0 to 0.01 s, to highlight the detailed wave shape. (c) Authentic guitar
sound. (d) Magnification plot of Authentic guitar sound ranging from 0 to 0.01 s, to highlight the
detailed wave shape. (e) Authentic piano sound. (f) Magnification plot of Authentic piano sound
ranging from 0 to 0.01 s, to highlight the detailed wave shape

212 6 Deep Learning for Regression and Classification

References

1. Schmidhuber J (2015) Deep Learning in neural networks: an overview. Neural Netw 61:85–117
2. Chen Y-Y, Lin Y-H, Kung C-C, Chung M-H, Yen I-H (2019) Design and implementation of

cloud analytics-assisted smart power meters considering advanced artificial intelligence as edge
analytics in demand-side management for smart homes. Sensors 19(9):2047

3. Smith JK, Brown PC, Roediger III HL, McDaniel MA (2014) Make it stick. The science of
successful learning (2015):346–346

4. Cohen JP (2020) COVID-19 image data collection. https://github.com/ieee8023/COVID-
chestxray-dataset

5. Ivakhnenko AG, Lapa VG (1967) Cybernetics and forecasting techniques. American Elsevier,
New York

6. Dechter R (1986) Learning while searching in constraint-satisfaction problems. University of
California, Computer Science Department, Cognitive Systems Laboratory, Los Angeles

7. LeCun et al (1989) Backpropagation applied to handwritten zip code recognition. Neural
Comput 1:541–551

8. Hinton GE, Dayan P, Frey BJ, Neal R (1995) The wake-sleep algorithm for unsupervised neural
networks. Science 268(5214):1158–1161

9. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
10. Nvidia CEO bets big on deep learning and VR. Venture Beat, 5 April 2016
11. Maas AL, Hannun AY, Ng AY (2013) Rectifier nonlinearities improve neural network acoustic

models. Proc icml 30(1)
12. https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-

algorithms/
13. https://scikit-learn.org/stable/modules/neural_networks_supervised.html
14. https://pytorch.org/
15. https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
16. https://arxiv.org/abs/1412.6980
17. https://machinelearningmastery.com/introduction-to-1x1-convolutions-to-reduce-the-complex

ity-of-convolutional-neural-networks/
18. https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
19. Li H, Kafka OL, Gao J, Yu C, Nie Y, Zhang L et al (2019) Clustering discretization methods for

generation of material performance databases in machine learning and design optimization.
Comput Mech 64(2):281–305

20. https://www.mayoclinic.org/diseases-conditions/ards/symptoms-causes/syc-20355576
21. https://radiopaedia.org/cases/COVID-19-pneumonia-evolution-over-a-week-1?lang¼us
22. Cohen JP (2020) COVID-19 image data collection. https://github.com/ieee8023/COVID-

chestxray-dataset
23. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, R.M. (2017) Summers Chest x-ray8: hospital-scale

chest x-ray database and benchmarks on weakly-supervised classification and localization of
common thorax diseases. In: Proceedings of the IEEE conference on computer vision and
pattern recognition, pp 2097–2106

24. Choplin R (1992) Picture archiving and communication systems: an overview. Radiographics
12:127–129

25. Redmon J, Farhadi A (2017) YOLO9000: better, faster, stronger. In: Proceedings of the IEEE
conference on computer vision and pattern recognition

26. https://medium.com/@shubham.deshmukh705/dying-relu-problem-879cec7a687f
27. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980
28. https://www.brothers-brick.com/2020/07/23/lego-ideas-21323-grand-piano-makes-music-

starting-aug-1st-news/
29. https://www.dawsons.co.uk/blog/a-guide-to-the-different-types-of-guitar

References 213

https://github.com/ieee8023/COVID-chestxray-dataset
https://github.com/ieee8023/COVID-chestxray-dataset
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://scikit-learn.org/stable/modules/neural_networks_supervised.html
https://pytorch.org/
https://www.mathworks.com/help/deeplearning/ref/trainnetwork.html
https://arxiv.org/abs/1412.6980
https://machinelearningmastery.com/introduction-to-1x1-convolutions-to-reduce-the-complexity-of-convolutional-neural-networks/
https://machinelearningmastery.com/introduction-to-1x1-convolutions-to-reduce-the-complexity-of-convolutional-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://www.mayoclinic.org/diseases-conditions/ards/symptoms-causes/syc-20355576
https://radiopaedia.org/cases/COVID-19-pneumonia-evolution-over-a-week-1?lang=us
https://radiopaedia.org/cases/COVID-19-pneumonia-evolution-over-a-week-1?lang=us
https://github.com/ieee8023/COVID-chestxray-dataset
https://github.com/ieee8023/COVID-chestxray-dataset
https://medium.com/@shubham.deshmukh705/dying-relu-problem-879cec7a687f
https://www.brothers-brick.com/2020/07/23/lego-ideas-21323-grand-piano-makes-music-starting-aug-1st-news/
https://www.brothers-brick.com/2020/07/23/lego-ideas-21323-grand-piano-makes-music-starting-aug-1st-news/
https://www.dawsons.co.uk/blog/a-guide-to-the-different-types-of-guitar

30. https://www.apronus.com/
31. Zhang L, Cheng L, Li H, Gao J, Yu C, Domel R, Yang Y, Tang S, Liu WK (2021) Hierarchical

deep-learning neural networks: finite elements and beyond. Comput Mech 67:207–230
32. Tajdari M, Pawar A, Li H, Tajdari F, Maqsood A, Cleary E, Saha S, Zhang YJ, Sarwark JF, Liu

WK (2021) Image-based modelling for adolescent idiopathic scoliosis: mechanistic machine
learning analysis and prediction. Comput Methods Appl Mech 374:113590

33. Saha S, Gan Z, Cheng L, Gao J, Kafka OL, Xie X, Li H, Tajdari M, Kim HA, Liu WK
(2021) Hierarchical Deep Learning Neural Network (HiDeNN): an artificial intelligence
(AI) framework for computational science and engineering. Comput Methods Appl Mech
373, p 113452

214 6 Deep Learning for Regression and Classification

https://www.apronus.com/

	Preface
	Acknowledgments
	Contents
	Chapter 1: Introduction to Mechanistic Data Science
	1.1 A Brief History of Science: From Reason to Empiricism to Mechanistic Principles and Data Science
	1.2 Galileo´s Study of Falling Objects
	1.3 Newton´s Laws of Motion
	1.4 Science, Technology, Engineering and Mathematics (STEM)
	1.5 Data Science Revolution
	1.6 Data Science for Fatigue Fracture Analysis
	1.7 Data Science for Materials Design: ``What´s in the Cake Mix´´
	1.8 From Everyday Applications to Materials Design
	1.8.1 Example: Tire Tread Material Design Using the MDS Framework
	1.8.2 Gold and Gold Alloys for Wedding Cakes and Wedding Rings

	1.9 Twenty-First Century Data Science
	1.9.1 AlphaGo
	1.9.2 3D Printing: From Gold Jewelry to Customized Implants

	1.10 Outline of Mechanistic Data Science Methodology
	1.11 Examples Describing the Three Types of MDS Problems
	1.11.1 Determining Price of a Diamond Based on Features (Pure Data Science: Type 1)
	1.11.2 Sports Analytics
	1.11.2.1 Example: ``Moneyball´´: Data Science for Optimizing a Baseball Team Roster

	1.11.3 Predicting Patient-Specific Scoliosis Curvature (Mixed Data Science and Surrogate: Type 2)
	1.11.4 Identifying Important Dimensions and Damping in a Mass-Spring System (Type 3 Problem)

	References

	Chapter 2: Multimodal Data Generation and Collection
	2.1 Data as the Central Piece for Science
	2.2 Data Formats and Sources
	2.3 Data Science Datasets
	2.4 Example: Diamond Data for Feature-Based Pricing
	2.5 Example: Data Collection from Indentation Testing
	2.6 Summary of Multimodal Data Generation and Collection
	References

	Chapter 3: Optimization and Regression
	3.1 Least Squares Optimization
	3.1.1 Optimization
	3.1.2 Linear Regression
	3.1.3 Method of Least Squares Optimization for Linear Regression
	3.1.4 Coefficient of Determination (r2) to Describe Goodness of Fit
	3.1.5 Multidimensional Derivatives: Computing Gradients to Find Slope or Rate of Change
	3.1.6 Gradient Descent (Advanced Topic: Necessary for Data Science)
	3.1.7 Example: ``Moneyball´´: Data Science for Optimizing a Baseball Team Roster
	3.1.7.1 Moneyball Regression Analysis Steps
	Step 1: Multimodal Data Generation and Collection
	Step 2: Feature Engineering
	Step 3: Dimension Reduction
	Step 4: Reduced Order Modeling
	Step 5: Regression and Classification
	Module 6: System and Design

	3.1.8 Example: Indentation for Material Hardness and Strength
	3.1.9 Example: Vickers Hardness for Metallic Glasses and Ceramics

	3.2 Nonlinear Regression
	3.2.1 Piecewise Linear Regression
	3.2.2 Moving Average
	3.2.3 Moving Least Squares (MLS) Regression
	3.2.4 Example: Bacteria Growth

	3.3 Regularization and Cross-Validation (Advanced Topic)
	3.3.1 Review of the Lp-Norm
	3.3.2 L1-Norm Regularized Regression
	3.3.3 L2-Norm Regularized Regression
	3.3.4 K-Fold Cross-Validation

	3.4 Equations for Moving Least Squares (MLS) Approximation (Advanced Topic)
	References

	Chapter 4: Extraction of Mechanistic Features
	4.1 Introduction
	4.2 What Is a ``Feature´´
	4.3 Normalization of Feature Data
	4.3.1 Example: Home Buying

	4.4 Feature Engineering
	4.4.1 Example: Determining a New Store Location Using Coordinate Transformation Techniques

	4.5 Projection of Images (3D to 2D) and Image Processing
	4.6 Review of 3D Vector Geometry
	4.7 Problem Definition and Solution
	4.8 Equation of Line in 3D and the Least Square Method
	4.8.1 Numerical Example

	4.9 Applications: Medical Imaging
	4.9.1 X-ray (Radiography)
	4.9.2 Computed Tomography (CT)
	4.9.3 Magnetic Resonance Imaging (MRI)
	4.9.4 Image Segmentation

	4.10 Extracting Geometry Features Using 2D X-ray Images
	4.10.1 Coordinate Systems
	4.10.2 Input Data
	4.10.3 Vertebra Regions [Advanced Topic]
	4.10.4 Calculating the Angle Between Two Vectors
	4.10.5 Feature Definitions: Global Angles

	4.11 Signals and Signal Processing Using Fourier Transform and Short Term Fourier Transforms
	4.12 Fourier Transform (FT)
	4.12.1 Example: Analysis of Separate and Combined Signals
	4.12.2 Example: Analysis of Sound Waves from a Piano

	4.13 Short Time Fourier Transform (STFT)
	References

	Chapter 5: Knowledge-Driven Dimension Reduction and Reduced Order Surrogate Models
	5.1 Introduction
	5.2 Dimension Reduction by Clustering
	5.2.1 Clustering in Real Life: Jogging
	5.2.2 Clustering for Diamond Price: From Jenks Natural Breaks to K-Means Clustering
	5.2.3 K-Means Clustering for High-Dimensional Data
	5.2.3.1 Example: Clustering of Diamonds Based on Multiple Features

	5.2.4 Determining the Number of Clusters
	5.2.5 Limitations of K-Means Clustering
	5.2.6 Self-Organizing Map (SOM) [Advanced Topic]
	5.2.6.1 An Engineering Example: Data-Driven Design for Additive Manufacturing Using SOM

	5.3 Reduced Order Surrogate Models
	5.3.1 A First Look at Principal Component Analysis (PCA)
	5.3.2 Understanding PCA by Singular Value Decomposition (SVD) [Advanced Topic]
	5.3.2.1 Recall Matrix Multiplication
	5.3.2.2 Singular Value Decomposition
	5.3.2.3 Matrix Order Reduction by SVD Truncation
	5.3.2.4 Example: Spring-Mass Harmonic Oscillator

	5.3.3 Further Understanding of Principal Component Analysis [Advanced Topic]
	5.3.3.1 Variance and Covariance
	5.3.3.2 Identifying Intrinsic Dimension of Spring-Mass System Using PCA/SVD

	5.3.4 Proper Generalized Decomposition (PGD) [Advanced Topic]
	5.3.4.1 From SVD to PGD
	5.3.4.2 A Matrix Decomposition Example Using Incremental PGD
	5.3.4.3 A PGD Example Using Modal Superposition
	5.3.4.4 PGD for High-Dimensional Tensor Decomposition

	5.4 Eigenvalues and Eigenvectors [Advanced Topic]
	5.5 Mathematical Relation Between SVD and PCA [Advanced Topic]
	References

	Chapter 6: Deep Learning for Regression and Classification
	6.1 Introduction
	6.1.1 Artificial Neural Networks
	6.1.2 A Brief History of Deep Learning and Neural Networks

	6.2 Feed Forward Neural Network (FFNN)
	6.2.1 A First Look at FFNN
	6.2.2 General Notations for FFNN [Advanced Topic]
	6.2.3 Apply FFNN to Diamond Price Regression

	6.3 Convolutional Neural Network (CNN)
	6.3.1 A First Look at CNN
	6.3.2 Building Blocks in CNN
	6.3.2.1 Convolution
	6.3.2.2 Stride
	6.3.2.3 Padding
	6.3.2.4 Pooling
	6.3.2.5 Fully Connected Networks

	6.3.3 General Notations for CNN [Advanced Topic]
	6.3.4 COVID-19 Detection from X-Ray Images of Patients [Advanced Topic]

	6.4 Musical Instrument Sound Conversion Using Mechanistic Data Science
	6.4.1 Problem Statement and Solutions
	6.4.2 Mechanistic Data Science Model for Changing Instrumental Music [Advanced Topic]

	6.5 Conclusion
	References

	Chapter 7: System and Design
	7.1 Introduction
	7.2 Piano to Guitar Musical Note Conversion (Type 3 General)
	7.2.1 Mechanistic Data Science with a Spring Mass Damper System
	7.2.2 Principal Component Analysis for Musical Note Conversion (Type 1 Advanced)
	7.2.3 Data Preprocessing (Normalization and Scaling)
	7.2.4 Compute the Eigenvalues and Eigenvectors for the Covariance Matrix of Bp and Bg
	7.2.5 Build a Reduced-Order Model
	7.2.6 Inverse Transform Magnitudes for all PCs to a Sound
	7.2.7 Cumulative Energy for Each PC
	7.2.8 Python Code for Step 1 and Step 2
	7.2.9 Training a Fully-Connected FFNN
	7.2.10 Code Explanation for Step 3
	7.2.11 Generate a Single Guitar
	7.2.12 Python Code for Step 4
	7.2.13 Generate a Melody
	7.2.14 Code Explanation for Step 5
	7.2.15 Application for Forensic Engineering

	7.3 Feature-Based Diamond Pricing (Type 1 General)
	7.4 Additive Manufacturing (Type 1 Advanced)
	7.5 Spine Growth Prediction (Type 2 Advanced)
	7.6 Design of Polymer Matrix Composite Materials (Type 3 Advanced)
	7.7 Indentation Analysis for Materials Property Prediction (Type 2 Advanced)
	7.8 Early Warning of Rainfall Induced Landslides (Type 3 Advanced)
	7.9 Potential Projects Using MDS
	7.9.1 Next Generation Tire Materials Design
	7.9.2 Antimicrobial Surface Design
	7.9.3 Fault Detection Using Wavelet-CNN

	References

	Index

