
#### **Textbook**



# Introduction to Optimum Design 4th Edition

☆☆☆☆ Write a review

Authors: Jasbir Singh Arora

Hardcover ISBN: 9780128008065

eBook ISBN: 9780128009185

View on ScienceDirect ≥



.Imprint: Academic Press

Published Date: 28th April 2016

Page Count: 968

https://www.elsevier.com/books/introduction-to-optimum-design/arora/978-0-12-800806-5 https://www.sciencedirect.com/book/9780128008065/introduction-to-optimum-design#book-info

#### Table of Contents (1)

| Part I. The Basic Concepts |                                                        |      |    |    |
|----------------------------|--------------------------------------------------------|------|----|----|
| Ch                         | Title                                                  | U/G1 | G1 | G2 |
| 1                          | Introduction to Design Optimization                    | 0    | 0  |    |
| 2                          | Optimum Design Problem Formulation                     | 0    | 0  |    |
| 3                          | Graphical Optimization and Basic Concepts              | 0    | 0  |    |
| 4                          | Optimum Design Concepts: Optimality Conditions         | 0    | 0  |    |
| 5                          | More on Optimum Design Concepts: Optimality Conditions |      | 0  |    |

U/G1: Undergraduate/First-Year Graduate Level Course

G1: First Graduate Level Course

G2 Second Graduate Level Course

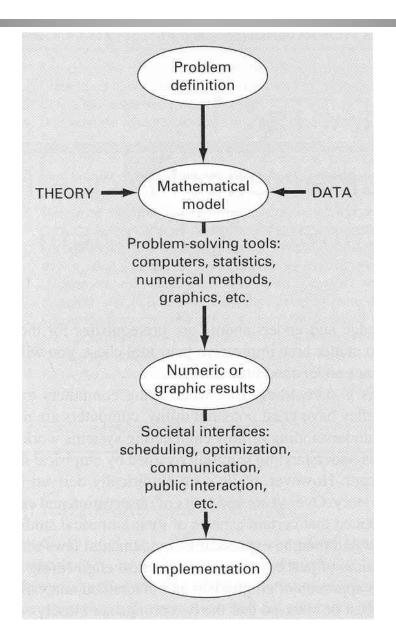
# Table of Contents (2)

| Part II. Numerical Methods for Continuous Variable Optimization |                                                            |      |    |    |
|-----------------------------------------------------------------|------------------------------------------------------------|------|----|----|
| Ch                                                              | Title                                                      | U/G1 | G1 | G2 |
| 6                                                               | Optimum Design with Excel Solver                           | 0    |    | 0  |
| 7                                                               | Optimum Design with MATLAB                                 | 0    |    | 0  |
| 8                                                               | Linear Programming Methods for Optimum Design              | 0    | 0  | 0  |
| 9                                                               | More on Linear Programming Methods for Optimum Design      |      | 0  | 0  |
| 10                                                              | Numerical Methods for Unconstrained Optimum Design         | 0    | 0  | 0  |
| 11                                                              | More on Numerical Methods for Unconstrained Optimum Design |      | 0  | 0  |
| 12                                                              | Numerical Methods for Constrained Optimum Design           | 0    | 0  | 0  |
| 13                                                              | More on Numerical Methods for Constrained Optimum Design   |      | 0  | 0  |
| 14                                                              | Practical Applications of Optimization                     |      |    | 0  |

# Table of Contents (3)

| Part III. Advanced and Modern Topics on Optimum Design |                                                       |      |    |    |
|--------------------------------------------------------|-------------------------------------------------------|------|----|----|
| Ch                                                     | Title                                                 | U/G1 | G1 | G2 |
| 15                                                     | Discrete Variable Optimum Design Concepts and Methods |      |    | 0  |
| 16                                                     | Global Optimization Concepts and Methods              |      |    | 0  |
| 17                                                     | Nature-Inspired Search Methods                        |      |    | 0  |
| 18                                                     | Multi-Objective Optimum Design Concepts and Methods   |      |    | 0  |
| 19                                                     | Additional Topics on Optimum Design                   |      |    | 0  |

#### Introduction


#### Engineer

- Design devices and products that perform tasks in an efficient fashion
- Constrained by the limitations of the physical world and must keep costs down
- Confronting optimization problems that balance performance and limitations

#### Mechanical Design

- Selection of materials and geometry
- which satisfies specified and implied functional requirements
- while remaining within the confines of inherently unavoidable limitations

#### **Engineering Problem-Solving Process**



#### Three Phases of Engineering Problem Solving

Computer era Precomputer era **FORMULATION FORMULATION** In-depth exposition Fundamental of relationship of laws explained problem to fundamental briefly laws SOLUTION SOLUTION Flaborate and often Easy-to-use complicated method to computer make problem tractable method INTERPRETATION INTERPRETATION Ease of calculation In-depth analysis allows holistic thoughts limited by timeand intuition to develop; consuming solution system sensitivity and behavior

Ch. 1-7

can be studied

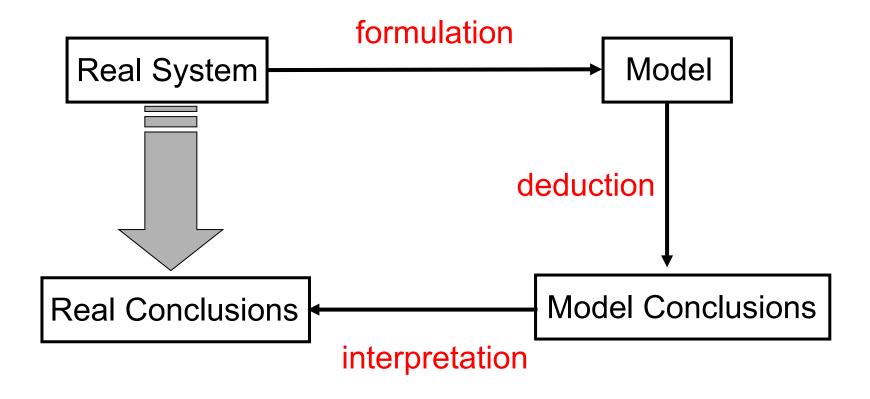
## **Engineering Model (1)**

#### Model

- Abstract description of the real world giving an approximate representation of more complex functions of physical systems
- Increase our understanding of how a system works
- Physical: scale model, prototype
- Symbolic: drawings, verbalization, logic, mathematics

#### Mathematical model

- A model that represents a system by mathematical expressions of relevant natural laws, experience, and geometry
- May contain many alternative designs, so criteria must be introduced in the model
- Best, or optimum, design can be identified with the aid of mathematical methods


# Engineering Model (2)

- Real-life engineering design problem
  - very unstructured
- Most difficult and challenging part
- Depends on experience as well as skill
- Thorough understanding of the first principles and fundamentals of engineering
- Describes the physical behavior of the system mathematical model

# Engineering Model (3)

- Elements of models
  - Variables / Parameters / Constants / Mathematical relations
- Hierarchical levels
  - Every system is analyzed at a particular level of complexity
  - System → Subsystems → Components
  - "cut across" the links with environment, input/output characterization: free-body diagram, control volume

# Modeling Process (1)



#### Modeling Process (2)

#### Formulation

- Often considered to be an art
- What aspects of the real system should be included, which can be ignored?
- What assumptions can and should be made?

#### Deduction

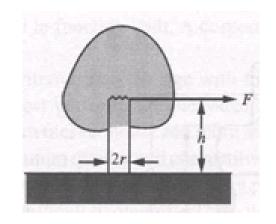
- Involves techniques that depend on the nature of the model
- May involve solving equations, running a computer program, expressing a sequence of logical statements – whatever it takes to solve the problem of interest relative to the model
- It should not be subject to differences of opinion, provided that the assumptions are clearly stated and identified

#### Interpretation

- Again involves a large amount of human judgment
- The model conclusions must be translated to the real world conclusions, in full cognizance of possible discrepancies between the model and its real world

Ch. 1-12

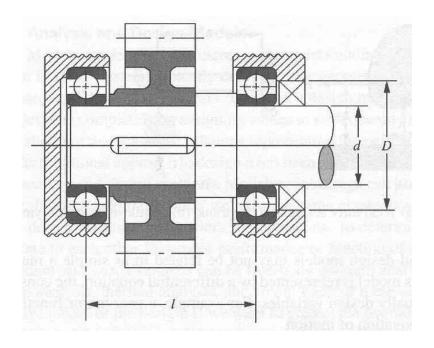
#### Analysis vs. Design


- Engineering analysis
  - To determine the behavior of an existing system
  - Sizes and configurations are given
- Engineering design
  - To calculate sizes and shapes of various parts to meet performance requirements
- estimate a design and analyze it to see if it performs according to the specifications

### **Analysis and Design Model**

- Analysis model
  - Based on the principles of engineering science
    - Maximum wind force the tree can withstand before it breaks (F) if we take the tree as given ( $\sigma_{max}$ , h, r: parameters)
- Design model
  - Constructed from the analysis models for specific prediction tasks
    - Protect the tree from high winds by appropriately trimming the foliage to decrease F and h (variables)

Trunk of a tree subject to a wind force *F* at a height *h* 


$$\sigma = \frac{My}{I} \xrightarrow{I = \frac{\pi r^4}{4}} \sigma_{\text{max}} = \frac{4Fh}{\pi r^3}$$



#### Example: Shaft Design

Influence of a given viewpoint on the design model

|                  | d        | 1         | materials |
|------------------|----------|-----------|-----------|
| Shaft designer   | variable | parameter | parameter |
| Housing designer | variable | variable  | parameter |
| Project manager  | variable | variable  | variable  |



#### **Decision Making**

- Criterion: evaluating alternatives and choosing the "best" one
  - Not unique, influenced by many factors
    - Design application, timing, point of view, judgment of the designer
  - May change with time
    - Automobile design: maximum power and comfort → fuel economy
- Decision-making (Optimization) model
  - A design model that includes an evaluation criterion (objective)
- Shaft design example

| Criterion                        |                                     |
|----------------------------------|-------------------------------------|
| Weight                           |                                     |
| Rigidity                         | Best meshing of the attached gear   |
| Material and manufacturing costs | Shop manager, ease of manufacturing |
| Cost                             | Project or plant manager            |

#### **Design Optimization**

- Goal of engineering
  - To improve the design so as to achieve the best way of satisfying the original need within the available means
- Elements in the design process
  - Recognition of need / act of creation / selection of alternatives
- Design optimization: selection of the "best" alternative
  - How do we describe different designs ? (design model)
  - What is our criterion for "best" design ? (objective)
  - What are the "available means"? (set of requirements)

#### Optimum Design

#### Undesirable effects

- Stress, deflection, vibration, space occupancy, weight, cost
- Dependent of the application (degree of significance)
- Tolerable limit

#### Desirable effects

 Power transmission/ energy absorption/ momentary overload/ speed capacity, usable length of life, factor of safety

#### Optimum design

- Best possible one from the standpoint of the most significant effect
- Minimize/Maximize the most significant undesirable/desirable effect

#### **Problem Formulation Steps**

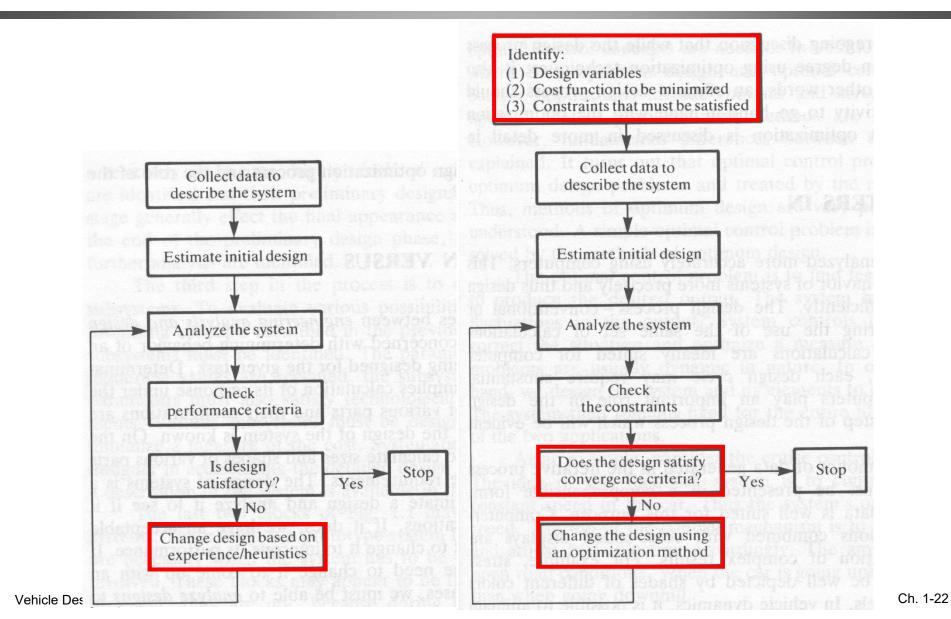
- Identification of design variables
  - Parameter chosen to describe the design
  - Independent of each other, minimum number
- Identification of an objective (cost) functions
  - Criterion to compare various designs
  - as a function of the design variables
  - Single/Multi-objective
- Identification of all design constraints
  - All restrictions placed on a design
  - Explicit/Implicit, Linear/Nonlinear, Equality/Inequality

Feasible/Infeasible

# 10 Bar Truss Design

| 해석 (Analysis)                                                                                       | 설계 (Design)                                                                                                                     |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|
| p                                                                                                   | ?<br>• p                                                                                                                        |  |
| $\delta = ?$ $\sigma = ?$                                                                           | $\delta \leq \delta_{allow}$ $\sigma \leq \sigma_{allow}$                                                                       |  |
| <ul> <li>to obtain the response of a given system</li> <li># of unknown = # of equations</li> </ul> | <ul> <li>to determine specifications of the system satisfying requirements</li> <li># of unknown &gt; # of equations</li> </ul> |  |

#### Conventional vs. Optimum (1)


#### Conventional design

- Depends on designer's intuition, experience, and skill
- Merits in making conceptual changes/additional specs
- Difficulties in detailed design (complex constraints)
- Less formal, no objective function/trend information

#### Optimum design

- Identify explicitly a set of design variables, cost function to be minimized, and constraint functions
- More organized using trend information

# Conventional vs. Optimum (2)



# Conventional vs. Optimum (3)

| Conventional Design                                       | Optimum Design                                            |  |
|-----------------------------------------------------------|-----------------------------------------------------------|--|
| p                                                         | 중량최소화<br>p                                                |  |
| $\delta \leq \delta_{allow}$ $\sigma \leq \sigma_{allow}$ | $\delta \leq \delta_{allow}$ $\sigma \leq \sigma_{allow}$ |  |

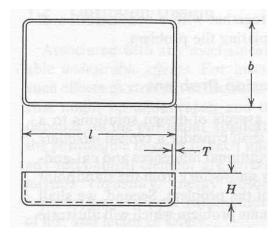
# Optimization Problems in Engineering (1)

- Design aircraft for minimum weight and maximum strength
- Optimal trajectories of space vehicles
- Design civil engineering structures for minimum cost
- Design water-resource projects like dams to mitigate flood damage while yielding maximum hydropower
- Predict structural behavior by minimizing potential energy
- Material-cutting strategy for minimum cost
- Design pump and heat transfer equipment for maximum efficiency
- Maximize power output of electrical networks and machinery while minimizing heat generation
- Shortest route of salesperson visiting various cities during one sales trip
- Optimal planning and scheduling

# Optimization Problems in Engineering (2)

- Statistical analysis and models with minimum error
- Optimal pipeline networks
- Inventory control
- Maintenance planning to minimize cost
- Minimize waiting and idling times
- Design waste treatment systems to meet water-quality standards at least cost

# Plastic Tray Design (1)


#### Basic design problem

 Design a plastic tray capable of holding a specified volume of liquid, V, such that the liquid has a specified depth H, and the wall thickness of the tray is to be a specified thickness, T. The tray is to be manufactured in large quantities.

#### Adequate design solution

- Geometry
  - Intuition: rectangular?

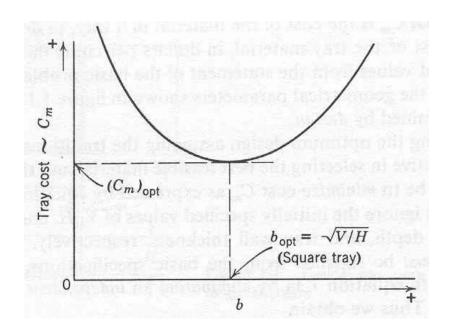
- Infinite number of possible solutions
- Material: experience?
  - Possible manufacturing techniques: vacuum forming
  - Possible chemical reactions w/ liquid: acrylic thermoplastic sheet



## Plastic Tray Design (2)

#### Optimum design solution

- "manufactured in large quantities": cost (most significant undesirable effect)
- Primary design equation:  $C = \underbrace{C_o}_{\text{overhead}} + \underbrace{C_t}_{\text{tooling}} + \underbrace{C_l}_{\text{material}} + \underbrace{C_m}_{\text{overhead}}$ 
  - Reasonable geometrical shapes / Feasible plastic materials
- Objective: minimize cost C<sub>m</sub>
  - selecting the best feasible material and the best values for b and l

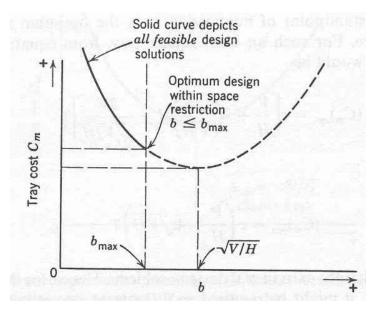

c: unit volume cost of the tray material

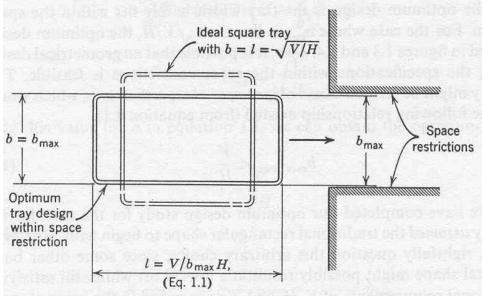
- Optimum feasible material
  - c: polystyrene

|             | \$/in <sup>3</sup> | \$/m <sup>3</sup> |
|-------------|--------------------|-------------------|
| Acrylic     | 0.030              | 1831              |
| Polystyrene | 0.012              | 732               |

# Plastic Tray Design (3)

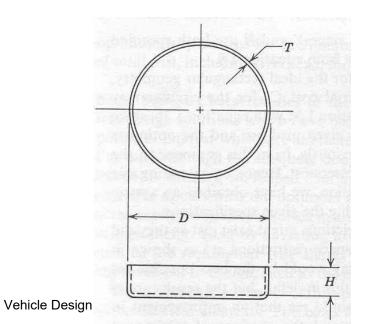
Optimum geometry for the rectangular tray

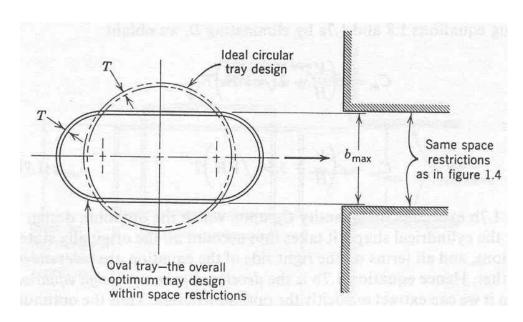




# Plastic Tray Design (4)

• Space restrictions:  $b \le b_{\text{max}}$ ,  $l \le l_{\text{max}}$ 

 $\begin{cases} b_{\max} \geq \sqrt{V/H} & \text{and } l_{\max} \geq \sqrt{V/H} : \text{ideal square tray is still the optimum design} \\ b_{\max} < \sqrt{V/H} & \text{or } l_{\max} < \sqrt{V/H} : \text{the tray which barely fits within the space restriction} \end{cases}$ 


incompatible specifications:  $b_{\text{max}}l_{\text{max}} < \frac{V}{H}$ 






## Plastic Tray Design (5)

- Other basic geometrical shape?
  - Circle: lowest  $C_{\rm m}$  from the calculus of variations



