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Problem Formulation Process (1)

• Step 1: Project/Problem Statement

– Is the project goal clear?

– descriptive statement for the project/ problem 

– overall objectives of the project and the requirements to be met 

• Step 2: Data and Information Collection

– Is all the information available to solve the problem?

– Performance requirements, resource limits, cost of raw materials 

– Identification of analysis procedures and tools

– project statement is vague, and assumptions about modeling of 

the problem need to be made in order to formulate and solve it 
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Problem Formulation Process (2)

• Step 3: Identification/Definition of Design Variables

– What are these variables? How do I identify them?

– identify a set of variables that describe the system, called the 

design variables 

– should be independent of each other, minimum number

– As many independent parameters as possible should be 

designated as design variables at the problem formulation phase

• Step 4: Optimization Criterion

– How do I know that my design is the best?

– must be a scalar function whose numerical value can be obtained 

once a design is specified (function of the design variable vector )

– maximized or minimized depending on problem requirements 

– criterion that is to be minimized is usually called a cost function in 

engineering literature 
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Problem Formulation Process (3)

• Step 5: Formulation of Constraints

– What restrictions do I have on my design?

– All restrictions placed on the design

– identify all constraints and develop expressions for them

– must be designed and fabricated with the given resources and 

must meet performance requirements 
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Problem Formulation Steps

• Identification of design variables

– Parameters chosen to describe the design

– Independent of each other, minimum number

• Identification of an objective (cost) functions

– Criterion to compare various designs

– As a function of the design variables

– Single/Multi-objective

• Identification of all design constraints

– All restrictions placed on a design

– Feasible/Infeasible

– Explicit/Implicit, Linear/Nonlinear, Equality/Inequality
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Design of a Cantilever Beam (1)

• Step 1: Problem Statement
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Design of a Cantilever Beam (2)

• Step 2: Data and Information Collection
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Design of a Cantilever Beam (3)

• Step 3: Definition of Design Variables

– w = outside width (depth) of the section, mm 

– t = wall thickness, mm 

• Step 4: Optimization Criterion

– Design a minimum-mass cantilever beam

– cross-sectional area of the beam: 

• Step 5: Formulation of Constraints

– Bending stress constraint

– Shear stress constraint

– Deflection constraint

– Width-thickness restriction

– Dimension restrictions
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Design of a Can (1)

• Step 1: Problem Statement

– Design a can to hold at least 400ml of liquid

– Production in billions → Minimize the manufacturing cost

– Cost directly related to the surface area of the sheet metal

– Minimize the sheet metal required to fabricate the can

– Diameter of the can should be no more than 8 cm. Also, it 

should not be less than 3.5 cm. 

– Height of the can should be no more than 18 cm and no less 

than 8 cm.

• Step 2: Data and Information Collection
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Design of a Can (2)

• Step 3: Design variables

– Diameter of the can (cm) / Height of the can (cm) 

• Step 4: Cost function

– Total surface area of the sheet metal

• Step 5: Constraints

– Volume:

– Size of the can: side/technological/sizing constraints, simple 

bounds, upper and lower limits
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Insulated Spherical Tank Design (1)

• Step 1: Problem Statement

– Choose insulation thickness to minimize the life-cycle cooling cost 

for a spherical tank

– Cooling cost: installing and running the refrigeration equipment + 

installing the insulation

– 10-yr life, 10% annual interest rate, no salvage value, tank radius: r

• Step 2: Data and Information Collection

– Capacity of the refrigeration equipment (annual heat gain)

( )( )( )

(m)  thicknessinsulation :

m/W)(K nessunit thickper y resistivit  thermal:

(K) res temperatuexternal and internal ebetween th difference average :

 tankspherical  theof area surface :4

hr  W
24365

1

2

1

t

c

T

rA

tc

AT
G





=




=





Vehicle Design Optimization Ch. 2-11

Insulated Spherical Tank Design (2)

• Step 3: Design variable

– Insulation thickness: t (m)

• Step 4: Cost function

– Insulation, refrigeration equipment, operations for 10 yrs

• c2: insulation cost per cubic meter ($/m3)

• c3: cost of the refrigeration equipment per Wh of capacity ($/Wh)

• c4: annual cost of running the refrigeration equipment per Wh ($/Wh)

• Step 5: Constraints

min00 tttt →→
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Saw Mill Operation (1)

• Step 1: Problem Statement

– Each forest can yield up to 200 logs/day

– Cost to transport the logs is estimated at 15 cents/km/log

– At least 300 logs are needed each day

– Minimize the cost of transportation of logs each day

• Step 2: Data and Information Collection

Distance (km) Capacity

/dayMill Forest 1 Forest 2

A 24.0 20.5 240 logs

B 17.2 18.0 300 logs

Mill A Mill B

Forest 1 Forest 2

x1 x2x3 x4
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Saw Mill Operation (2)

• Step 3: Design variables : x1, x2, x3, x4

• Step 4: Cost function

– Cost of transportation of logs each day

• Step 5: Constraints

– Mill capacities :

– Yield of forests :

Linear Programming problem

→Integer Programming problem
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Two-Bar Structure (1)

• Step 1: Problem Statement

– Design a two-bar bracket to support a force W without failure

– Cost directly related to the size of the two bars

– To minimize the total mass of the bracket while satisfying 

performance, fabrication, and space limitations
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Two-Bar Structure (2)

• Step 3: Design variables (hollow circular tubes)

– x1: height of the truss, x2: span of the truss

– x3, x4: outer/inner diameters of member 1

– x5, x6: outer/inner diameters of member 2

• Step 4: Cost function

– Minimize the mass:

• Step 5: Constraints 

– stress in each member  material allowable stress

– Side constraints
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Design of a Cabinet

• Determine the number of components to be bolted and 

riveted to minimize the cost

– Each cabinet requires 8*C1, 5* C2, 15* C3 components

– Assembly of C1 needs either 5 bolts or 5 rivets; C2 6 bolts or 6 

rivets ; C3 3 bolts or 3 rivets

– A total of 100 cabinets must be assembly daily

– Bolting and riveting capacities per day are 6000 and 8000, 

respectively

Cost ($) C1 C2 C3

bolt 0.7 1.0 0.6

rivet 0.6 0.8 1.0

cabinet

8*C1 5* C2 15* C3

5 6 3
bolts

rivets
bolts

rivets

bolts

rivets
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Formulation 1 (component level)

• Design variables (for 100 cabinets)

– x1/ x3/ x5 =  number of C1/ C2/ C3 to be bolted

– x2/ x4/ x6 =  number of C1/ C2/ C3 to be riveted

• Cost function

• Constraints 
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Formulation 2 (bolt/rivet level)

• Design variables

– x1/ x2/ x3 =  total number of bolts required for all C1/ C2/ C3

– x4/ x5/ x6 =  total number of rivets required for all C1/ C2/ C3

• Cost function

• Constraints 
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Formulation 3 (Formulation 1)

• Design variables (for one cabinet)

– x1/ x3/ x5 =  number of C1/ C3/ C5 to be bolted on one cabinet

– x2/ x4/ x6 =  number of C2/ C4/ C6 to be riveted on one cabinet

• Cost function

• Constraints 
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Minimum Weight Tubular Column Design

• Step 1: Problem Statement

– Straight columns: structural elements (street light pole, traffic 

light post, water tower support)

– Design a minimum mass tubular column of length l

supporting a load P w/o buckling or overstressing

• Step 2: Data and Information Collection

– Buckling load
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Buckling of an Euler Column
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Formulation 1

• Step 3: Design variables

– R (mean radius of column) / t (wall thickness)

• Step 4: Cost function

• Step 5: Constraints 
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Formulation 2

• Step 3: Design variables

– Ro (outer radius of column) / Ri (inner radius of column)

• Step 4: Cost function

• Step 5: Constraints 
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Design of Coil Spring

• Step 1: Problem Statement

– To design a minimum mass spring to carry a given axial load 

without material failure and while satisfying two performance 

requirement: the spring must deflect by at least  (in), and 

the frequency of surge waves must not be less than w0 (Hz)
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Step 2: Data and Information Collection (1)

– Deflection along the axis of the spring: d (in)

– Mean coil diameter: D (in)

– Wire diameter: d (in)

– Number of active coils: N

– Gravitational constant: g = 386 (in/s2 )

– Frequency of surge waves: w (Hz)
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Step 2: Data and Information Collection (2)

• Material property

– Weight density: g = 0.285 (lb/in3 )

– Shear modulus: G = 1.15E7 (lb/in2 )

– Mass density:  = 7.38342E-4 (lb-s2/in4)

– Allowable shear stress: a = 80000 (lb/in2)

• Other data

– Number of inactive coils: Q = 2

– Applied load: P = 10 (lbs)

– Minimum spring deflection:  = 0.5 (in)

– Lower limit on surge wave frequency: w0 = 100 (Hz)

– Limit on outer diameter of the coil: D0 = 1.5 (in)
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Design equations for the spring (1)

• Load-deflection

• Shear stress
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Design equations for the spring (2)

• Frequency of surge waves
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Problem Formulation

• Step 3: Identification of design variables

– Wire diameter: d

– Mean coil diameter: D

– Number of active coils: N

• Step 4: Identification of an objective function

– Mass

• Step 5: Identification of constraints

– Deflection: d  

– Shear stress:   a

– Frequency of surge waves: w  w0

– Diameter: D + d  D0

– Side constraints: dmin  d  dmax, Dmin  D  Dmax, Nmin  N  Nmax
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Mathematical Formulation
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Symmetric Three-Bar Truss (1)

• Step 1: Problem Statement

– Design for minimum volume to support a force P

– Consideration of member crushing, member buckling, failure 

by excessive deflection of node 4, failure by resonance

• Step 2: Data and Information Collection

– Equilibrium equations → displacements → forces carried by 

the members of the truss → stress
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Symmetric Three-Bar Truss (2)

• Step 3: Design variables

– A1: cross-sectional area of material for members 1 and 3 

– A2: cross-sectional area of material for members 2 

• Step 4: Cost function

– Material volume:

• Step 5: Constraints
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Standard Design Optimization Model
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Observations (1) 

• Functions must depend on design variables.

• Number of independent equality constraints: p  n
– p > n : overdetermined system of equations

• redundant equality constraints

• Inconsistent formulation

– p = n : no optimization is necessary

• Inequality constraints written as “0”
– No restriction on the number of inequality constraints

• Scaling effect
– optimum design does not change. optimum cost function 

value, however, changes.

• cost function by a positive constant

• Inequality constraints by a positive constant

• equality constraints by any constants
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Observations (2)

• Maximization problem treatment

• “ type” constraints

• Discrete and Integer design variables

– Approach 1

• Solve the problem assuming continuous DVs

• Assign nearest discrete/integer values

• Check feasibility  numerous combinations

– Approach 2 (adaptive numerical optimization)

• Obtain optimum solution with continuous DVs

• Assign only DVs close to their discrete/integer values

• Optimize the problem until all DVs have proper values
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Observations (3)

• Feasible set: collection of all feasible designs

• Inequality constraint: 
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