Profit Maximization Problem (1)

Step 1: Project/problem description. A company manufactures two machines, A and B. Using
available resources, either 28 A or 14 B can be manufactured daily. The sales department
can sell up to 14 A machines or 24 B machines. The shipping facility can handle no more
than 16 machines per day. The company makes a profit of $400 on each A machine and
$600 on each B machine. How many A and B machines should the company manufacture
every day to maximize its profit?

Step 2: Data and information collection. Data and information are defined in the project
statement. No additional information is needed.

Step 3: Definition of design variables. The following two design variables are identified in
the problem statement:

x; = number of A machines manufactured each day
x, = number of B machines manufactured each day

Step 4: Optimization criterion. The objective is to maximize daily profit, which can be
expressed in terms of design variables using the data given in step 1 as

P = 400x, +600x;, $ (a)
Step 5: Formulation of constraints. Design constraints are placed on manufacturing capacity,

on sales personnel, and on the shipping and handling facility. The constraint on the

shipping and handling facility is quite straightforward:
x; +x; <16 (shipping and handling constraint) (b)
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Profit Maximization Problem (2)

Constraints on manufacturing and sales facilities are a bit tricky because they are either
“this” or “that” type of requirements. First, consider the manufacturing limitation. It is
assumed that if the company is manufacturing x; A machines per day, then the remaining
resources and equipment can be proportionately used to manufacture x, B machines, and vice
versa. Therefore, noting that x;/28 is the fraction of resources used to produce A and x,/14 is
the fraction used to produce B, the constraint is expressed as

Xy X . :
— + — < 1 (manufacturing constraint) (c)

28 14

Similarly, the constraint on sales department resources is given as

% + % < 1 (limitation on sale department) (d)

Finally, the design variables must be nonnegative as

x1, x, 20 (e)
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Graphical Solutions (1)

Profit Maximization Problem

Maximize f =400x, +600x,

X15X2

subject to
(x, +x, <16 (shipping and handling)

R I IS (manufacturing)
< 28 14
Xﬁ .X2 .. .
—+—=<1 (limitations on sales dept.)
14 24
| X,%, 20

x, =# of A machines manufactured each day

x, =# of B machines manufactured each day
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Graphical Solutions (2)
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Minimum Weight Tubular Column Design

Minimize / =2plzRt = (2.4608x10° ) Rt
¢
subject to

P P 10x10°
o=—= <o,—>g =
A 2Rt 27 Rt

n°El _7’ER’t

—248x10° <0

IP< — g, =10x10° -

7 (207><109)R3t

47? 47? 4(5)2
g, =—-R<0

g,=-t<0

R,tZO—){

P =10MN

E =207GPa

p =7833kg/m’
[=5.0m

o, =248MPa

0.20

0.175

<0

0

Direction of decrease
for the cost function

Optimum solution curve A-B

Feasible region

f=1579 kg

93=0N

0.015 0.03 0.045 0.06 0.075 0.09

t(m)

* cost function contours run parallel to the stress constraint g1
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Beam Design Problem (1)

Step 1: Project/problem description. A beam of rectangular cross-section is subjected to

%1 bending moment M (N-m) and a maximum shear force V (N). The bending stress

in the beam is calculated as o= 6M/bd" (Pa), and average shear stress is calculated as
7=3V /2bd (Pa), where b is the width and d is the depth of the beam. The allowable
stresses in bending and shear are 10 and 2 MPa, respectively. It is also desirable that the
depth of the beam does not exceed twice its width and that the cross-sectional area of
the beam is minimized. In this section, we formulate and solve the problem using the
graphical method.

Step 2: Data and information collection. Let bending moment M = 40 kIN-m and the shear
force V =150 kN. All other data and necessary equations are given in the project
statement. We shall formulate the problem using a consistent set of units, N and mm.
Step 3: Definition of design variables. The two design variables are

d = depth of beam, mm
b = width of beam, mm
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Beam Design Problem (2)

b M
A d>
\Y

Ming%lize f=bd

subject to
(oM
o= W < (Ga )bending
3V
T=—X<I7T
9 2bd ( a)shear
d <2b
b,d >0
M =40kN -m
V =150kN

(O-a )bending = IOMPCI
(Ta )shear = 2MPa
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Beam Design Problem (3)

« Cantilever beam loaded with force F=2400 N.
Minimize weight such that stresses do not exceed
yield. Further the height h should not be larger than

twice the width b.

* Objective
— Weight:

* Design variables
— Width:
— Height:

Min m(b,

* Design constraints:
o(b,h) <o, with o

Optimization Technigues

7(b,h) <1
h<2*b

h)

max’

with =

max

max

=60 MPa

=160 MPa

F

7

Ch. 3-8



Graphical Solution
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Multiple Solutions

Minimize f(x)=—-x, —0.5x,
subject to

(2x,+3x, <12

2x,+x, <8

—-x, <0

-x,<0

\
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Unbounded Solutions

Maximize f(x)=x, —2x,
subject to

(2x,—x,>0

§—2x,4+3x, <6
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Infeasible Problem

 Too many constraints

Minimize f(x)= x, +2x,
subject to

3x,+2x, <6

2x,+3x, 212

x <5

X, <5

| X, %, 20

N
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