Optimum Design: Numerical Solution Process

* Introduction to numerical search methods

* Optimum design: aspects of problem formulation
* Numerical solution process for optimum design

« EXCEL: Solver

« MATLAB: Optimization Toolbox

« Mathematica: Optimization Toolbox

Vehicle Design Optimization Ch. 6+7-1

Numerical Search Methods (1)

« Graphical method

— Two-variable problems only

« Approach to solve optimality conditions

— Difficult to use when the number of variables and/or the
number of constraints is greater than three

— Leads to a set of nonlinear equations that needs to be
solved using a numerical method anyway
 Numerical methods

— Can handle many variables and constraints, as well as
directly search for optimum points

— Start with an initial design estimate
— Search the feasible set for optimum designs

— Derivative-Based Methods / Direct Search Methods /
Derivative-Free Methods / Nature-Inspired Search Methods

Vehicle Design Optimization Ch. 6+7-2

Numerical Search Methods (2)

* Derivative-Based Methods: gradient-based search methods
(Ch.10~13)
— All functions: continuous and at least twice continuously differentiable
— Accurate first-order derivatives of all the functions are available
— Design variables: assumed to be continuous within their allowable range

— Extensively developed since the 1950s, and many good ones are
available to solve smooth nonlinear optimization problems

— Always converge to a local minimum point only, global solutions?

-

X(k+1)

x“ +Aax™); £=0,1,2,...
x7 starting design point

where 1 (k) _ (k two separate subproblems o7 >0: Step S12€
A" =a, d >

N

k /7

d"® . search direction

X =x W iAWk =0,1,2,.. i =10

u !

Vehicle Design Optimization Ch. 6+7-3

Numerical Search Methods (3)

* Direct Search Methods (Ch.11.9)

— Do not calculate/use/approximate derivatives of the problem functions

— Functions are assumed to be continuous and differentiable; however,
their derivatives are either unavailable or not trustworthy

— Only functions’ values are calculated and used in the search process
— Hooke—Jeeves and Nelder—Mead in 1960s and 1970s

— Simplicity and ease of use

e Derivative-Free Methods
— Do not require explicit calculation of analytical derivatives of the functions

— Approximation of derivatives is used to construct a local model: finite
difference approach

— Response surface methods that generate approximation for complex
optimization functions

Vehicle Design Optimization Ch. 6+7-4

Numerical Search Methods (4)

* Nature-Inspired Search Methods

Use only the values of the problem functions
Classified as direct search methods

Use statistical concepts and random numbers to advance the
search toward a solution point

« Simulated annealing (Ch.15.5)

« Genetic algorithms (Ch.17.1)

Quite general: solve all kinds of optimization problems

Quite time-consuming: require a large number of function
evaluations to reach an acceptable solution

Do not have a good stopping criterion (no optimality
conditions)

Vehicle Design Optimization Ch. 6+7-5

Selection of a Method

» Are the design variables continuous (can have any value
In their range), discrete (must be selected from a
specified list) or integer?

« Are the problem functions continuous and differentiable?

« Are derivatives of all the problem functions available
(can be calculated efficiently)?

Vehicle Design Optimization Ch. 6+7-6

General Guidelines

« Formulation of a design task as an optimization problem

Define a realistic model for the engineering system
Use designer’s engineering knowledge, intuition, and experience

« (Generate a mathematical optimization model

In an initial formulation of the problem, all of the possible
parameters should be viewed as potential design variables

The existence of an optimum solution to a design optimization
model depends on its formulation

The problem of optimizing more than one objective functions
simultaneously (multi-objective problems) can be transformed
into the standard problem

In general, it is desirable to normalize all of the constraints with
respect to their limit values

Vehicle Design Optimization Ch. 6+7-7

Scaling of Constraints

* |In numerical calculations, it is impossible to require
— An equality constraint to be precisely equal to zero
— An active inequality constraint to be precisely equal to zero
h(x)=0— ‘h(x)‘ <eg

g(x)SO—)‘g(x)‘ <g

¢ . feasibility tolerance
« Different constraints can involve different orders of
magnitude > constraint normalization

O'SO'a—)glza—aaSO—>g1=£—1£0—>gl:R—1SO

a

5S5a—)gz=5—5aSO—>g2=5£—1£0—>g2=R—1£0

« Some constraints that Cannota be normalized: 0 < x

Vehicle Design Optimization Ch. 6+7-8

Constraint Normalization

1 1 [+ 1 1
h(xl,x2)=x12+5x2—1820 h(xl,x2)=§x12+£x2—1:0
h(4.0,4.2)|=[+0.1| > £(0.01) t — <[k (4.0,4.2)| =|+0.0056] < £(0.01)
7 (-4.5,-4.8)|=[-0.15)> £(0.01)| ||n(~4.5,-4.8)|=|-0.0083| < £(0.01)
oh oh 1
b] =
X, x1_>6xl 8()

1v1ae x x
gogoafj >g():60‘;2‘_‘);‘30

g(xl,xz) =500x, —30,000x, <0 — <
_ 1
\g(xl,xz):@xl -x,<0

2(80,1)=10,000 > £(0.01) 2(80,1)=0.33> £(0.01)
2(60,0.995) =150 > £(0.01)| ~ | 2(60,0.995)=0.005 < £(0.01)

Vehicle Design Optimization Ch. 6+7-9

Scaling of Design Variables

(2) a<x<beor <<l 2 <<
b b b
_ash 2w
(Basxshe2 9 < X by 20 2
y=l a+b a+b a+b a+b a+b
2 2 2
x5 ~0(10°) > L=y,
_ X
x, ~0(107) 102_5 =y,

of of ox
oy Ox Oy

Vehicle Design Optimization Ch. 6+7-10

lterative Process for Development of
Problem Formulation

« Many practical applications are complex requiring
repeated updating of the initial formulation of the
problem

— Some of the practical constraints may have been missed
— Limits for some of the constraints may not be realistic
— There may be conflicting constraints in the formulation

— Constraint limits may be too severe such that there is no
feasible solution for the problem

Vehicle Design Optimization Ch. 6+7-11

Numerical Solution Process

* Optimization algorithm for smooth problems

— Calculation of cost and constraint functions and their
gradients at the current point

— Definition of a subproblem
» Determine the search direction
» Step size determination in the search direction

— Update the current design point

« (General purpose software: integration of
— Problem functions
— Gradient evaluation software
— Optimization software

Vehicle Design Optimization Ch. 6+7-12

A Feasible Point Cannot Be Obtained

— Check the formulation to ensure that the constraints are
formulated properly and that there are no inconsistencies in them

— Scale the constraints if they have different orders of magnitude

— Check the feasibility of individual constraints or a subset of
constraints while ignoring the remaining ones

— Ensure that the formulation and data are properly transferred to
the optimization software

— Constraint limits may be too severe
— Check the constraint feasibility tolerance

— Check derivation and implementation of the gradients of the
constraint functions

— Increase precision of all calculations, if possible

Vehicle Design Optimization Ch. 6+7-13

Algorithm Does Not Converge (1)

— Check the formulation to ensure that the constraints and the
cost function are formulated properly

— Ensure that all of the functions are continuous and
differentiable for a smooth optimization algorithm

— Scale the constraints and the cost function if they have
different orders of magnitude

— Check implementation of the cost function and the constraint
functions evaluations

— Check the derivation and implementation of the gradients of all
of the functions, If the gradients are evaluated using finite
differences, then their accuracy needs to be verified

— Examine the final point reported by the program

— If an overflow of calculations is reported, the problem may be
unbounded

Vehicle Design Optimization Ch. 6+7-14

Algorithm Does Not Converge (2)

— Try different starting points
— Ignore some of the constraints and solve the resulting problem

— Use a smaller limit on the number of iterations and restart the
algorithm with the final point of the previous run of the program
as the starting point

— If two design variables are of differing orders of magnitude,
scale them so that the scaled variables have the same order of
magnitude

— Ensure that the optimization algorithm has been proven to
converge to a local minimum point starting from any initial
point

— Increase the precision of the calculations, if possible

Vehicle Design Optimization Ch. 6+7-15

EXCEL Solver(sli%t7|)

* Introduction

* Roots of a nonlinear equation

* Roots of a set of nonlinear equation

* Unconstrained optimization problems
* Linear programming problems

* Nonlinear programming
— Optimum design of spring
— Optimum design of plate girders

Vehicle Design Optimization Ch. 6+7-16

Example 4.22

* Numerical solution for the first-order necessary
conditions

f(x) =%x2 +cosx—>f'(x)=§x—sinx= 0

x" =0, £(0)=1
x flx)
sx =1.496, f(1.496) =0.821 s
\ 7=
* . _ |
\X B 1496’ f(1496) 0821 \\ 67 Local minima: B and C
\ 5 Local maximum: A
4
3_ II.-'
1
B A C .
S 452 | 72 3 4 8
-2

Vehicle Design Optimization Ch. 6+7-17

Example 4.31

« Solution of the KKT necessary conditions

Minimize f(x)=x’+x,’ —3xx,
X

subjectto g =x"+x,"-6<0

L=x+x,-3xx, +u(x12 +x,° —6+S2)

(0L
a—=2x1 —3x, +2ux, =0
Oox,
L
a—=2x2 —3x, +2ux, =0
Oox,
L
8_:x12 +x,°—6+s5>=0
ou
a—L=2uS=O; u=>0
[Os

(%

%

=X, =X,

*

Vehicle Design- 06t|m|zat|8n

X, =x2*=0, u =0,5=6, =0
=3, u' =12, s=0,f=-
= 3, u' =12, s=0,f=-

Ch. 6+7-18

EXCEL vs. MATLAB

Vehicle Design Optimization

A
1 solution of KKT conditions
2 warlables
3 x1
4 o
3 u
3] 5
7 eguations
8 2%l-3%2+ 2%kl
8 3]+ 2F2+ 2Ryt
10 x1A2+x2 M 2-0+52
11 u*s
12 gn2
13 |u

Lo TR w T e R o R o (N

1732051
1.732051
0.5

0

-2.5E-07
248E-08
-1.2E-07
a0

0

0.5

Function F=kktsystem(x)
F=[2*x({1)-3*x(2)+2*x(3)*x(1);
2ER(2)-3*%x(1)+2*x(3)*x(2);
x(1)r2+x(2)"2-6+x(4)"2;
x(3)*x(4)];

x0=[1;1;1;11;
options=optimset('Display’., 'iter’)
x=fsolve(@kktsystem,x0,options)

Ch. 6+7-19

Unconstrained Optimization Problem

Min f(x,y,z) = x> +2y° +22° +2xy+2yz

X,z
A B C D E

1 | Unconstrained Optimization Problem
5
3 Variables Vahie
4 x|2
5 y 4
6 z 10
7
8 Objective function
9 |=x*x+2*y*y+2*z*z |=2*x*y+2*y*z|:BQ+C9
i(l) Solver Parameters ‘ X |
12
13 | Set Objective: D9 R
14 B . B
15 To: 7) Max) Min @) value Of: 0
:3 1 By Changing Variable Cells:

B$4:$B36 3]
18 | $BS4:$BS .3
19) Subject to the Constraints:

[
o
>

Add
21
23
25
27
28 | i Load/Save
29 [] Make Unconstrained Variables Non-Negative
30 ;
31 | Select a Solving Method: GRG Nonlinear E| Options
2 Solving Method
33 | Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
34 engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
35 | non-smooth.

Vehicle Design Optimization Ch. 6+7-20

L
(=)

A \ B C D E F G H
: : — 1 |Li i bl
Maximize z =x, +4x Jcar programming prob et
X 1 2 3 |Problem is to maximize x1+4x2
4 [subject to x1+2x2<=5
1 5 2x1+x2=4
subject to x, +2x, <5 X
1 2 6 x1-x2>=]
2 4 7 x1, x2>=0
xl + x2 - 9 |Problem set up for Solver
10 |Vanables x1 x2 Sum of LHS RHS Limit
X, — X 2 1 11 [Variable value 0 0
1~ M2 o . pommmmmmeee \
12 |Objective function: max 1 4 0
> 13 |Constraint 1 1 2 0 g
x19x2 - O 14 |Constraint 2 2 1 0 4
15 |Constraint 3 1 -1 0 1
16 Solver Parameters u
17}
18 i
19 Set Objective: $Es17|
20
21 To: @ Max ©) min ©) value Of: 0
22
;; By Changing Variable Cells:
) C11:3D$11
25 Subject to the Constraints:
26 SES13 <= SF$13 A add
27 SES14 = $FS14
] | I i
29
30
31
32 Reset All
33 _
3
35 [#] Make Unconstrained Variables Non-Negative
36 Select a Solving Method: Simpl E i
37 = 9 : implex LP Options
38 Solving Method
39 Select the GRG Nonlinear engine for Solver Problems that are smooth nonlinear. Select the LP Simplex
40 engine for linear Solver Problems, and select the Evolutionary engine for Solver problems that are
a1 non-smooth.

Vehicle Design Optimization

Linear Programming Problem

Ch. 6+7-21

Answer and

Sensitivity Report

A B | C D E F G
1 Microsoft Excel 15.0 Answer Report
2 Worksheet: [Figure 6.8(LP)-2015.xIsx]Figure 6.8 Al B c D E F G H
3 |Report Created: 7/11/2015 2:51:41 PM 1 Jﬁcrosoft Excel 15.0 Sensitivity Report
4 Result: Solver found a solution. All Constraints and optimality conditions are satisfied. — .)
5 |Selver Engine 2 'Worksheet: [Figure 6.8(LP)-2015.xlsx]Figure 6.8
6 Bnsing: Sl TP 3 |Report Created: 7/11/2015 2:51:41 PM
2 p
7 Solution Time: 0 Seconds. 4
8 Iterations: 2 Subproblems: 0 5
9 |Solver Options 6 |Variable Cells
10 | Max Time 100 sec, Iterations 100, Precision 0.000001 i Final Reduced Objective Allowable Allowable
11 Solve Without Integer Constraints, Assume NonNegative 8 Cell Name Value Cost Coefficient Increase Decrease
12 9 C11 Variable value x1 1.666666667 0 1 7 1E+30
13| l | 10| DS11 Variable value x2 0.666666667 0 4 1E+30 3.5
14 Objective Cell (Max) 11
15 Cell Name Original Value Final Value 12 |Constraints
16 | ES12 Objective function: max Sum of LHS 0 4.333333333 13 Final Shadow Constraint Allowable Allowable
a7 14 Cell Name Value Price R.H. Side Increase Decrease
1k p 15 $ES13 Constraint 1 Sum of LHS 3 0 5 1E+30 2
19 |Variable Cells -
20 Cell T Original Value _Final Value re— 16 SES14 Constrafnt 2 Sum of LHS 4 1.666666667 4 2 2
21 C11 Variable value x1 0 1666666667 Contin 17 $ES15 Constraint 3 Sum of LHS 1 -2.333333333 1 1 2
22 D11 Variable value x2 0 0.666666667 Contin
23
24
25 |Constraints
26 Cell Name Cell Value Formula Status Slack
27 | SES13 Constraint 1 Sum of LHS 3 E13<=8F$13 Not Binding 2
28 | ES14 Constraint 2 Sum of LHS 4 $E§14=§F$14 Binding 0
29 | ES15 Constraint 3 Sum of LHS 1 SE$15>=8F$15 Binding 0
Ch. 6+7-22

Vehicle Design Optimization

Optimum Design with MATLAB

 Introduction to Optimization Toolbox
* Unconstrained optimum design problem
« Constrained optimum design problem

* Optimum design examples

— Location of maximum shear stress for two spherical bodies
in contact

— Column design for minimum mass
— Flywheel design for minimum mass

Vehicle Design Optimization Ch. 6+7-23

Optimization Toolbox Functions

Problem type Formulation MATLAB function
One-variable minimization in fixed interval Find X € [x; Xy] to minimize f(x) fminbnd
Unconstrained minimization fminunc

Constrained minimization: Minimize a
function subject to linear inequalities and
equalities, nonlinear inequalities and
equalities, and bounds on the variables

Linear programming: minimize a linear function
subject to linear inequalities and equalities
Quadratic programming: Minimize a

quadratic function subject to linear
inequalities and equalities

Find x to minimize f(x)

Find x to minimize f(x) subject to
Ax<b, Nx=e
gi(x)<0,i=1tom
h=0,j=1top

Xip SX S Xy

Find x to minimize f(x)=c"x subject

to Ax<b, Nx=e

1
Find x to minimize f(x)=c¢"x +—x"Hx
subjectto Ax<b, Nx=e

fminsearch

fmincon

linprog

quadprog

Vehicle Design Optimization

Ch. 6+7-24

Syntax

[x,FunValue,ExitFlag, Output]l=~fminX('0ObjFun',...,options)

Argument Description

X The solution vector or matrix found by the optimization function. If ExitFlag >0 then xis a
solution, otherwise x is the latest value from the optimization routine.

FunValue Value of the objective function, ObjFun, at the solution x.

ExitFlag The exit condition for the optimization function. If ExitF1ag is positive then the optimization
routine converged to a solution x. If ExitF1ag is zero then the maximum number of function
evaluations was reached. If Ex1tF1ag is negative then the optimization routine did not con-
verge to a solution.

Output The Output structure contains several pieces of information about the optimization process. It
provides the number of function evaluations (Output.iterations), the name of the algorithm
used to solve the problem (Output.algorithm), and Lagrange multipliers for constraints, etc.

Vehicle Design Optimization Ch. 6+7-25

Unconstrained Optimization: Single-Variable

Min f(x)=2—4x+ex, -10<x <10

% All comments start with % % File name: ObjFunction7_1.m

% File name: Example7_1.m % Example 7.1 Single variable unconstrained minimization
% Problem: minimize f(x) =2 — 4x + exp(x) function f = ObjFunction7_1(x)
clear all f =2 - 4*x + exp(x);

% Set lower and upper bound for the design variable
Lb = -10; Ub = 10;

% Invoke single variable unconstrained optimizer fminbnd;
% The argument ObjFunction?_1 refers to the m-file that

% contains expression for the objective function

[x,FunVal,ExitFlag,Qutput] = fminbnd('ObjFunction7_1',Lb,Ub)

x= 1.3863, FunVal = 0.4548, ExitFlag= 1 > 0 (ie, minimum was found),
output = (iterations: 14, funcCount: 14, algorithm: golden section search, parabolic interpolation).

Vehicle Design Optimization Ch. 6+7-26

Unconstrained Optimization: Multivariable

Min £(x)=100(x, =) +(1-x)", x* =(~1.2,1.0) > x =(1.0,1.0), £ (x") =0
[x,FunValue,ExitFlag, Output]=Ffminsearch('ObjFur’ ,x0, options)

[x,FunValue, ExitFlag, OQutput]=Ffminunc ('0bjFur ,x0, options)

0bjFun = the name of the m-file that returns the function value and its gradient if programmed

x0 = the starting values of the design variables
options = a data structure of parameters that can be used to invoke various conditions for the

optimization process

fminsearch uses the Simplex search method of Nelder-Mead, which does not require numerical
or analytical gradients of the objective function (see Subsection 11.9.3 for details of this algorithm).
Thus it is a nongradient-based method (direct search method) that can be used for problems where the

cost function is not differentiable.

Since fminunc does require the gradient value, with the option LargeScale set to off, it uses the
BFGS quasi-Newton method (refer to chapter: More on Numerical Methods for Unconstrained Op-
timum Design for details) with a mixed quadratic and cubic line search procedure. The DFP formula
(refer to chapter: More on Numerical Methods for Unconstrained Optimum Design, for details),

Vehicle Design Optimization Ch. 6+7-27

% File name: Example7_2 % File name: ObjAndGrad7_2.m

% Rosenbruck valley function with analytical gradient of % Rosenbrock valley function
% the objective function function [f, df] = ObjAndGrad7_2(x)
clear all % Re-name design variable x

x0 =[-1.2 1.0]": Setstarting values x1 = x(1): x2 = x(2): %

% Invoke unconstrained optimization routines % Evaluate objective function
o

% 1. Nelder-Mead simplex method, fminsearch
)) .)) . f = 100*%(x2 - x1*2)"2 + (1 - x1)"2Z;
% Set options: medium scale problem, maximum number of function evaluations
) e . . . % Evaluate gradient of the objective function
% Note that “..." indicates that the text is continued on the next line

df(1)

-400*(x2-x1"2)*x1 - 2*(1-x1):
200*(x2-x1"2);

options = optimset('LargeScale", 'off', 'MaxFunEvals', 300);
[x1, FunValuel, ExitFlagl, Outputl] =

fminsearch ('ObjAndGrad7_2', x0, options)

% 2. BFGS method, fminunc, dafault option
% Set options: medium scale problem, maximum number of function evaluations,
% gradient of objective function
options = optimset('LargeScale', 'off', 'MaxFunEvals', 300,..
"Graddbj', 'on');
[x2, FunValue2, ExitFlag2, OutputZ2] = ..
fminunc ('0ObjAndGrad/_2', x0, options)
% 3. DFP method, fminunc, HessUpdate = dfp
% Set options: medium scale optimization, maximum number of function evaluation,
% gradient of objective function, DFP method
options = optimset('LargeScale’, 'off', "MaxFunEvals', 300, ..
"GradObj', 'on', 'HessUpdate', 'dfp');
[x3, FunValue3, ExitFlag3, Output3] = ..
fminunc ('ObjAndGrad/_2', x0, options) Ch. 6+7-28

Constrained Optimization

Minimize f(x)=(x,—10) +(x, —20)’
subject to g, (x)=100—(x, —5) +(x, —5) <0

2, (x)=-82.81—(x, —6) +(x,~5) <0
13<x, <100, 0<x, <100

- X =(14.095,0.84296), f (x") = —6961.8

J

Active constraints:5, 6 [ie, g(1) and g(2)]

x = (14.095,0.843), FunVal = —6.9618e + 003, ExitFlag = 1> 0 (ie, minimum was found)

output = (iterations: 6, funcCount: 13, stepsize: 1, algorithm: medium scale: SQP, quasi-Newton,
line-search).

Vehicle Design Optimization Ch. 6+7-29

S % File name: Example7_3

% Constrained minimization with gradient expressions available
% Calls ObjAndGrad?7_3 and ConstAndGrad7_3
clear all

% Set options; medium scale, maximum number of function evaluation,
%o gradient of objective function, gradient of constraints, tolerances

% Note that three periods “..." indicate continuation on next line

options = optimset ('lLargeScale', 'off', 'GradObj', 'on',...

"GradConstr', ‘on', ‘TolCon', le-8, 'TolX', le-8);
% Set bounds for variables

Lb = [13; 0]:; Ub = [100; 1007];
% Set initial design

x0 = [20.1; 5.84];

% Invoke fmincon; four [] indicate no linear constraints in the problem

[x,FunVal, ExitFlag, Output] = ..
fmincon('0ObjAndGrad7_3',x0,C J,[J.[1.[L 1.Lb, ..
Ub, 'ConstAndGrad/_3',options)

Vehicle Design Optimization Ch. 6+7-30

% File name: ObjAndGrad?7_3.m

function [f, gf]

= 0bjAndGrad7_3(x)

% File name: ConstAndGrad? 3.m

function [a, h, ag, gh] = ConstAndGrad/_3(x)

% f returns value of objective function; gf returns objective fun(% g returns inequality constraints; h returns equality constraints

% Re-name design variables x

X1 = x(1); x2 = x(2);

% Ewvaluate objective function

f=(x1-10)"3 + (x2-20)"3;

% Compute gradient of objective function

if nargout > 1
gf(l,1)
gf(2,1)

end

Vehicle Design Optimization

3*(x1-10)~2;
3*(x2-20)72;

% gg returns gradients of inequalities; each column contains a gradient
% gh returns gradients of equalities; each column contains a gradient
% Re-name design variables

x1 = x(1); x2 = x(2);
% Inequality constraints

gil)
g(2)

100-(x1-5)"2-(x2-5)"2
-82.81+ (x1-6)"2 + (x2-5)"2;

% Equality constraints (none)
h=1>011;
% Gradients of constraints

if nargout » 2

gg(l,1) = -2*(x1-5);

gg(2,1) = -2*(x2-5);

gg(l,2) = 2*(x1-6);

gg{z 2) = 2*(x2-5);
= [1:

end

Ch. 6+7-31

	슬라이드 1: Optimum Design: Numerical Solution Process
	슬라이드 2: Numerical Search Methods (1)
	슬라이드 3: Numerical Search Methods (2)
	슬라이드 4: Numerical Search Methods (3)
	슬라이드 5: Numerical Search Methods (4)
	슬라이드 6: Selection of a Method
	슬라이드 7: General Guidelines
	슬라이드 8: Scaling of Constraints
	슬라이드 9: Constraint Normalization
	슬라이드 10: Scaling of Design Variables
	슬라이드 11: Iterative Process for Development of Problem Formulation
	슬라이드 12: Numerical Solution Process
	슬라이드 13: A Feasible Point Cannot Be Obtained
	슬라이드 14: Algorithm Does Not Converge (1)
	슬라이드 15: Algorithm Does Not Converge (2)
	슬라이드 16: EXCEL Solver(해찾기)
	슬라이드 17: Example 4.22
	슬라이드 18: Example 4.31
	슬라이드 19: EXCEL vs. MATLAB
	슬라이드 20: Unconstrained Optimization Problem
	슬라이드 21: Linear Programming Problem
	슬라이드 22: Answer and Sensitivity Report
	슬라이드 23: Optimum Design with MATLAB
	슬라이드 24: Optimization Toolbox Functions
	슬라이드 25: Syntax
	슬라이드 26: Unconstrained Optimization: Single-Variable
	슬라이드 27: Unconstrained Optimization: Multivariable
	슬라이드 28
	슬라이드 29: Constrained Optimization
	슬라이드 30
	슬라이드 31
	슬라이드 32
	슬라이드 33: Why Numerical Method ?
	슬라이드 34: Advantages of Numerical Optimization
	슬라이드 35: Limitations of Numerical Optimization
	슬라이드 36: Physical Problem
	슬라이드 37: Optimization Process
	슬라이드 38: Nonlinear Optimization
	슬라이드 39: Basic Steps in Nonlinear Optimization
	슬라이드 40: Nonlinear Optimization Process
	슬라이드 41: General Algorithm
	슬라이드 42: Multidimensional Unconstrained Optimization

