Why Numerical Method ?

- Analytical method \rightarrow Numerical method
- # of design variables and constraints can be large.
 - Necessary conditions \rightarrow a large number of equations
 - Functions for the design problem (cost and constraint) can be highly nonlinear.
- Cost and/or constraint functions can be implicit in terms of design variables.
- Search for the general purpose code through the internet to minimize developing your own code
 - Appendix B, https://neos-guide.org/

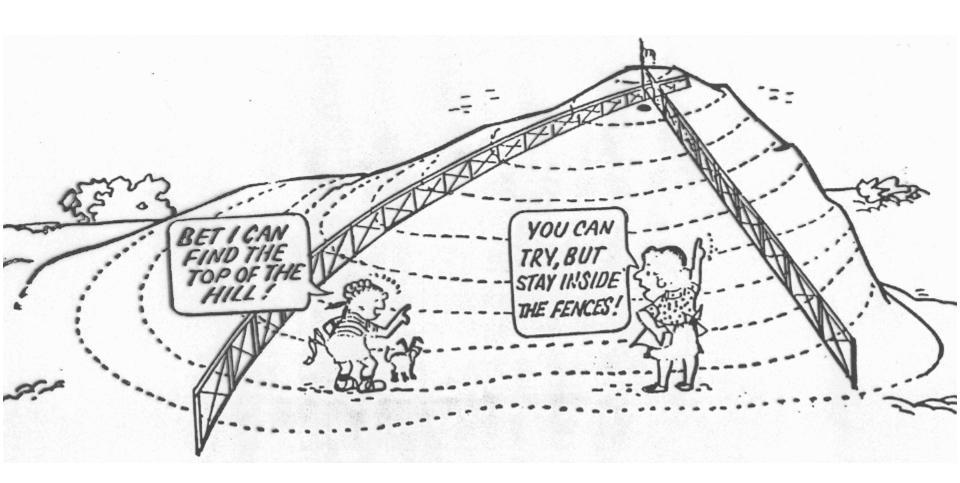
Advantages of Numerical Optimization

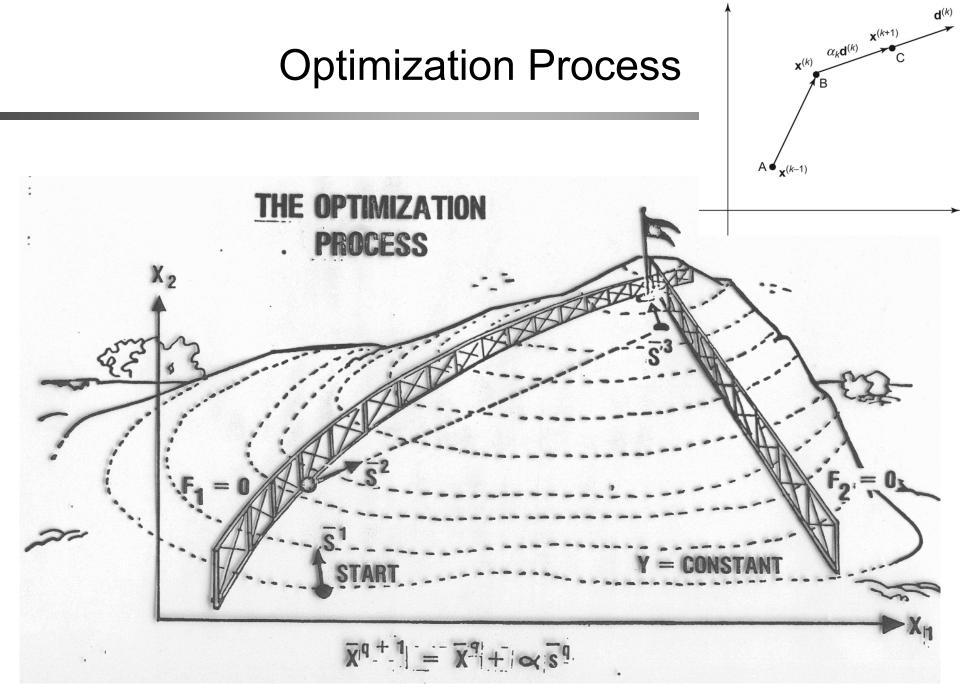
- Reduce the design time
 - When the same computer program can be applied to many design projects
- Provide a systematized logical design procedure
- Deal with a wide variety of design variables and constraints
- Yield some design improvement
- Not biased by intuition or experience in engineering
- Require a minimal amount of human-machine interaction

Limitations of Numerical Optimization

- Increased computational time as the number of design variables increases (ill-conditioned?)
- No stored experience or intuition
- Misleading results if the analysis program is not theoretically precise
- Difficulty in dealing with discontinuous functions and highly nonlinear problems
- Seldom be guaranteed that the optimization algorithm will obtain the global optimum design
- Significant reprogramming of analysis routines for adaptation to an optimization code

Physical Problem





Linear Programming (LP) Problem

- Constrained optimization
- "Liner": the objective and the constraints
- "Programming": scheduling or setting an agenda
- Minimization of a function with equality constraints and nonnegativity of design variables

Minimize
$$f = \sum_{i=1}^{n} c_i x_i$$

subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$; $i = 1, ..., m$
 $x_j \ge 0$; $j = 1, ..., n$
 $(b_i \ge 0 : \text{resource limits}, c_i \text{ and } a_{ij} : \text{known constants})$

Standard LP Definition

- Linear constraints
 - Inequality: nonnegative slack variable $s_i (s_i \ge 0)$
 - Why not s_i^2 ? (nonlinear)
 - Treatment of " \leq type" / " \geq type" constraints

$$\begin{cases} 2x_1 - x_2 \le 4 \to 2x_1 - x_2 + s_1 = 4 \quad (s_1 \ge 0) \\ -x_1 + 2x_2 \ge 2 \to -x_1 + 2x_2 - s_1 = 2 \quad (s_1 \ge 0) \end{cases}$$

- Unrestricted variables in sign
 - All design variables to be nonnegative

$$x_{j} = x_{j}^{+} - x_{j}^{-} = \begin{cases} \text{nonnegative} : x_{j}^{+} \ge x_{j}^{-} \\ \text{nonpositive} : x_{j}^{+} \le x_{j}^{-} \end{cases}$$
$$x_{j}^{+} \ge 0 \text{ and } x_{j}^{-} \ge 0$$

Basic Concepts

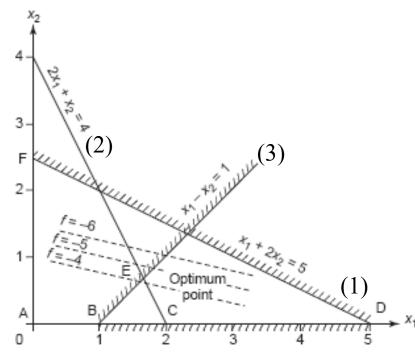
- LP problem is convex. If an optimum solution exists, it is global.
 - Feasible region (constraint set) is convex
 - Cost function is linear, so it is convex
- Solution always lies on the boundary of the feasible region if it exists.

- For an unconstrained optimum, contradiction: $\frac{\partial f}{\partial x_i} = 0 \rightarrow c_i = 0$

- Optimum solution must satisfy equality constraints \rightarrow more than one solution (*m* < *n*)
 - Infinite solutions \rightarrow feasible solution that minimizes the cost function

Example 8.19 ← 8.13

$$\begin{array}{ll} \mbox{Maximize} & z = x_1 + 4x_2 \\ \mbox{subject to} & (1) x_1 + 2x_2 \leq 5 \\ & (2) 2x_1 + x_2 = 4 \\ & (3) x_1 - x_2 \geq 1 \\ & x_1, x_2 \geq 0 \end{array} \end{array} \rightarrow \begin{cases} \mbox{Minimize} & f = -x_1 - 4x_2 \\ \mbox{subject to} & x_1 + 2x_2 + x_3 & = 5 \\ & 2x_1 + x_2 & + x_5 & = 4 \\ & x_1 - x_2 & -x_4 & + x_6 = 1 \\ & x_i \geq 0; & i = 1, \dots, 6 \end{cases}$$

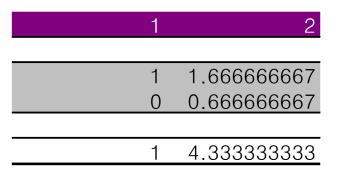


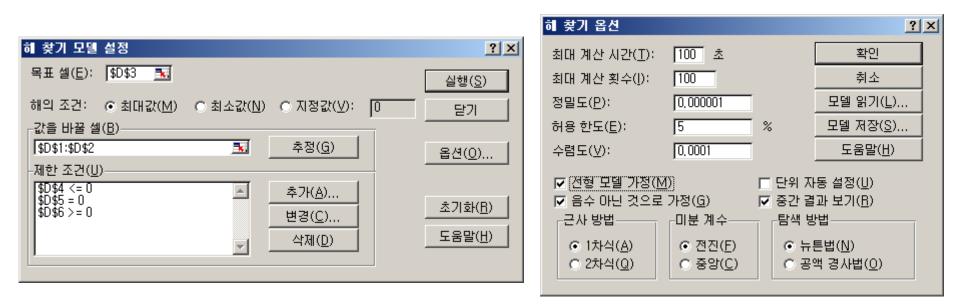
$$\frac{\partial f}{\partial e_2} = -y_2 = \quad ; (2) 4 \to 5, \ f = \frac{\partial f}{\partial e_3} = -y_3 = \quad ; (3) 1 \to 2, \ f = \frac{\partial f}{\partial e_3} = -y_3 = \quad ; (3) 1 \to 2, \ f = \frac{\partial f}{\partial e_3} = -y_3 = -y_3 = \frac{\partial f}{\partial e_3} = -y_3 =$$

Vehicle Design Optimization

LP in Excel Solver: Example 8.19

	A	В	С	D
1	×1	0		1,66667
2	x2	0		0,66667
3	z	0	max	4,33333
4	g1	-P	<= 0	-2
5	g2	-4	= 0	0
6	g3	-1	>= 0	0





Reports : Example 8.19+21+23

값을 바꿀	: 셀		민감도보고서			ge of coeff.	$-7.0 \le \Delta c_1 \le \infty$
		계산	한계	목표 셀		허용 가능	$\xrightarrow{c_1=-1} -8.0 \le c_1 \le \infty$
<u></u>	이름	값	비용	계수	증가치	감소치	-
\$D\$1	x1	1.666666667	0		7		$-\infty \le \Delta c_2 \le 3.5$
\$D\$2	x2	0.666666667	0	4	1E+30	3.5	-
제 <u>한 조건</u>	ł					247/11/02/11/07/201	$\xrightarrow{c_2=-4} -\infty \le c_2 \le -0.5$
		계산	잠재	제한 조건	허용 가능	허용 가능	
<u>셀</u>	이름	값	가격	우변	증가치	감소치	
\$D\$6	>= 0	0	-2.333333333	0	1	2	
<u>\$D\$4</u>	<= 0	-2	0		1E+30	2	
\$D\$5	0	0	1.666666667	0	2	2	
	$\begin{array}{c} x_2 \\ (2) \\ -2 \\ 3 \\ F \\ 2 \\ 1 \\ f \\ A \end{array}$	+2 +2 	Lagrange multiplier	1)	(1): (2):	$\frac{1}{2x_1 + 2x_2} \le \frac{1}{2x_1 + x_2} = \frac{1}{2x_1 + x_2}$	$\leq 5 \rightarrow -2 \leq \Delta_1 \leq \infty \rightarrow 3 \leq b_1 \leq \infty$ $= 4 \rightarrow -2 \leq \Delta_2 \leq 2 \rightarrow 2 \leq b_2 \leq 6$ $1 \rightarrow -2 \leq \Delta_3 \leq 1 \rightarrow -1 \leq b_3 \leq 2$
Vehicle Desi	gn Optim	ization	3 4 -	2 5			Numerical Method

lethods - 11

Nonlinear Optimization

- Unlike for linear problems, a global optimum for a nonlinear problem cannot be guaranteed, except for special cases, e.g., if you know the space is unimodal, or convex, or monotonicity exists
- Two standard heuristics that most people use:
 - Find local extrema starting from widely varying starting points of variables and then pick the most extreme of these extrema
 - Perturb a local extremum by taking a finite amplitude step away from it, and then see whether your routine returns you to a better point or "always" to the same one
 - Question: How would you "automate" a search for a global extremum?

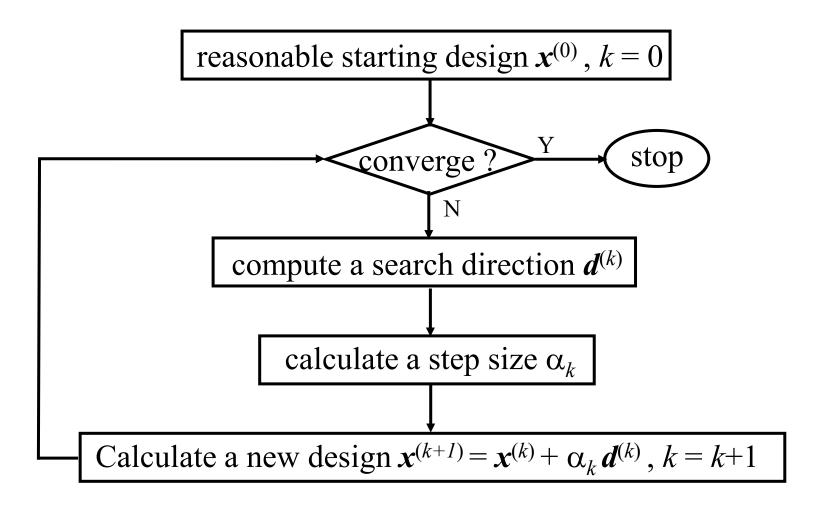
Basic Steps in Nonlinear Optimization

- In its simplest form, a numerical search procedure consists of four steps when applied to unconstrained minimization problem:
 - (1) Selection of an initial design in the *n*-dimensional space, where *n* is the number of design variables
 - (2) A procedure for the evaluation of the objective function at a given point in the design space
 - (3) Comparison of the current design with all of the preceding designs
 - (4) A rational way to select a new design and repeat the process
 - Constrained optimization requires step for evaluation of constraints as well. Same applies for evaluating multiple objective functions

Nonlinear Optimization Process

- Most design tasks seek to find a perturbation to an existing design which will lead to an improvement. Thus we seek a new design which is the old design plus a change
 - $X^{new} = X^{old} + \delta X$
- Optimization algorithms apply a two step process :
 - $X^{(k+1)} = X^{(k)} + \alpha_k d^{(k)}$
 - You have to provide an initial design $X^{(0)}$
 - The optimization will then determine a search direction $d^{(k)}$ that will improve the design
 - How far we can move in direction $d^{(k)} \rightarrow$ one-dimensional search to determine the scalar α_k to improve the design

General Algorithm



Classification of Unconstrained Optimization

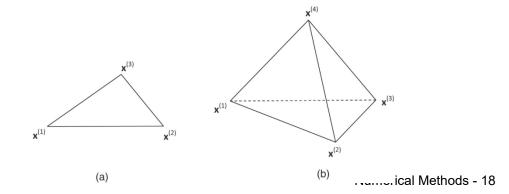
- One-dimensional unconstrained optimization: line search
 - Golden-section search
 - Quadratic interpolation
- Multidimensional unconstrained optimization
 - Nongradient or Direct methods
 - Gradient or Descent methods
 - You often must choose between algorithms which need only evaluations of the objective function or methods that also require the derivatives of that function
 - Algorithms using derivatives are generally more powerful, but do not always compensate for the additional calculations of derivatives
 - Note that you may not be able to compute the derivatives

Multidimensional Unconstrained Optimization

Direct Search Methods	Indirect(Descent) Methods
Random search method	Steepest descent (Cauchy) method
Univariate method	Conjugate gradient method
Pattern search method	– Fletcher-Reeves
 Powell's method 	– Polak-Rebiere
Simplex method	Newton's method
Simulated Annealing (SA)	Marquardt's method
 Genetic Algorithm (GA) 	Quasi-Newton methods
	 DFP (Davidon-Fletcher-Powell)
	– BFGS(Broydon-Fletcher-Goldfarb-Shanno)

Nelder–Mead Simplex Method

- Does not use gradients of the cost function
- Idea of a *simplex*
 - Geometric figure formed by a set of (*n*+1) points in the *n*-dimensional space
 - When the points are equidistant, the simplex is said to be *regular*
- Nelder–Mead method (Nelder and ead, 1965)
 - Compute cost function value at the (n+1) vertices of the simplex
 - Move this simplex toward the minimum point
 - reflection, expansion, contraction, and shrinkage
 - MATLAB: fminsearch



Descent Directions (1)

- Steepest descent direction: $\mathbf{d} = -\nabla f = -\frac{\partial f}{\partial r}$
- Conjugate Gradient direction:

$$\mathbf{d}^{(k)} = -\nabla f(\mathbf{x}^{(k)}) + \beta_k \mathbf{d}^{(k-1)} \text{ where } \beta_k = \frac{\left\|\nabla f(\mathbf{x}^{(k)})\right\|^2}{\left\|\nabla f(\mathbf{x}^{(k-1)})\right\|^2}$$

II / JI2

• Newton's method:

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f^{T}(\mathbf{x}) \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x}$$
$$\frac{\partial f}{\partial (\Delta x)} = 0 \Longrightarrow \nabla f(\mathbf{x}) + \mathbf{H} \Delta \mathbf{x} = 0$$
$$\mathbf{d}^{(k)} \equiv \Delta \mathbf{x} = -\mathbf{H}^{-1} \nabla f(\mathbf{x}) \rightarrow \mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \Delta \mathbf{x} \text{ (step length = 1)}$$

• Marquardt's method: $\mathbf{d}^{(k)} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \nabla f(\mathbf{x})$

Descent Directions (2)

- Quasi-Newton Method (Variable Metric Method) •
 - Use of previous information, speed up the convergence !

$$\mathbf{d}^{(k)} = -\mathbf{A}^{(k)} \nabla f\left(\mathbf{x}^{(k)}\right) \Longrightarrow \mathbf{A}^{(k+1)} = \mathbf{A}^{(k)} + \mathbf{A}_{c}^{(k)} \xrightarrow{\text{as } k \to \infty} \mathbf{H}^{-1}$$

- DFP Method: Davidon (1959) \rightarrow Fletcher and Powell (1963)
 - Approximate inverse of Hessian matrix
- BFGS Method: Broyden-Fletcher-Goldfarb-Shanno (1981)
 - Direct update the Hessian matrix

$$\begin{aligned} x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)} \\ d^{(k)} &= -A^{(k)} \nabla f\left(x^{(k)}\right) \\ A^{(k+1)} &= A^{(k)} + \frac{s^{(k)} s^{(k)T}}{s^{(k)T} y^{(k)}} - \frac{z^{(k)} z^{(k)T}}{y^{(k)T} z^{(k)}} \\ A^{(k+1)} &= A^{(k)} + \frac{s^{(k)} s^{(k)T}}{s^{(k)T} y^{(k)}} - \frac{z^{(k)} z^{(k)T}}{y^{(k)T} z^{(k)}} \\ S^{(k)} &= \alpha_k d^{(k)} &= x^{(k+1)} - x^{(k)} \\ y^{(k)} &= \nabla f\left(x^{(k+1)}\right) - \nabla f\left(x^{(k)}\right) \\ z^{(k)} &= A^{(k)} y^{(k)} \\ esign Optimization \end{aligned}$$

$$\begin{aligned} x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)} \\ H^{(k)} d^{(k)} &= -\nabla f\left(x^{(k)}\right) \\ F^{(k)} d^{(k)} &= -\nabla f\left(x^{(k+1)}\right) - \frac{H^{(k)} s^{(k)} s^{(k)T} H^{(k)}}{s^{(k)T} H^{(k)} s^{(k)}} \\ \frac{S^{(k)} &= x^{(k+1)} - x^{(k)} \\ H^{(k)} s^{(k)} &= -\alpha_k d^{(k)} \\ F^{(k)} d^{(k)} &= x^{(k+1)} - x^{(k)} \\ S^{(k)} &= \alpha_k d^{(k)} = x^{(k+1)} - x^{(k)} \\ y^{(k)} &= c^{(k+1)} - c^{(k)} = \nabla f\left(x^{(k+1)}\right) - \nabla f\left(x^{(k)}\right) \\ \text{Numerical Methods - 20} \end{aligned}$$

Vehicle Design Optimization

Gradient-Based Methods

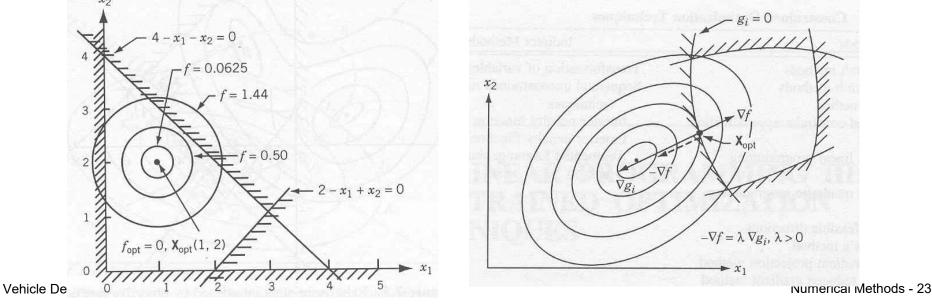
Method	Direction
Steepest Descent	$\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)})$
Conjugate Gradient	$\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)}) + \beta_k \boldsymbol{d}^{(k-1)} \text{ where } \beta_k = \left\ \nabla f(\boldsymbol{x}^{(k)}) \right\ ^2 / \left\ \nabla f(\boldsymbol{x}^{(k-1)}) \right\ ^2$
Newton's	$\boldsymbol{d}^{(k)} = -\boldsymbol{H}^{-1} \nabla f(\boldsymbol{x}^{(k)})$
Quasi-Newton	DFP: $d^{(k)} = -A\nabla f(\mathbf{x}^{(k)})$ where $A^{(k+1)} = A^{(k)} + \frac{s^{(k)}s^{(k)^{T}}}{s^{(k)^{T}}y^{(k)}} - \frac{z^{(k)}z^{(k)^{T}}}{y^{(k)^{T}}z^{(k)}}$ BFGS: $H^{(k)}d^{(k)} = -\nabla f(\mathbf{x}^{(k)})$ where $H^{(k+1)} = H^{(k)} + \frac{y^{(k)}y^{(k)^{T}}}{y^{(k)^{T}}s^{(k)}} + \frac{c^{(k)}c^{(k)^{T}}}{c^{(k)^{T}}d^{(k)}}$

Constrained Optimization Methods

Direct (Primal) Methods	Indirect Methods
 Objective and constraint approximation methods 	 Sequential unconstrained minimization technique
 Sequential Linear Programming method Sequential Quadratic Programming method Gradient Projection Method Methods of Feasible Directions Generalized Reduced Gradient Method 	 Interior penalty function method Exterior penalty function method Augmented Lagrange multiplier method

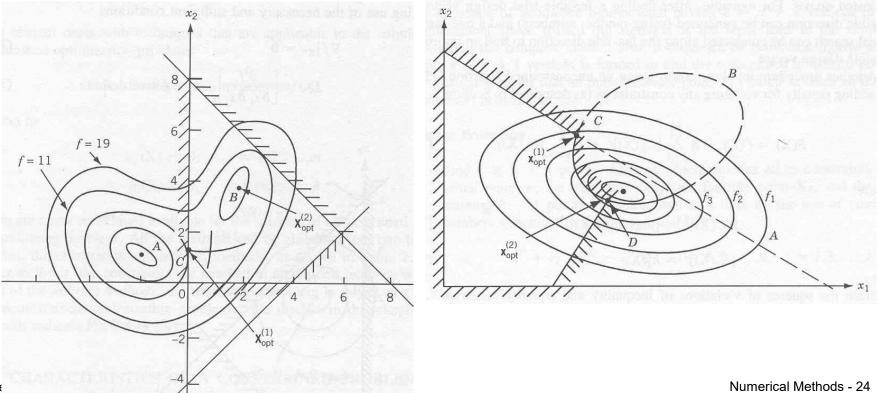
Characteristics of a Constrained Problem (1)

- The constraints may have no effect on the optimum point.
 - In most practical problems, it is difficult to identify whether the constraints have an influence on the minimum point.
- The optimum (unique) solution occurs on a constraint boundary.
 - The negative of the gradient must be expressible as a positive linear combination of the gradients of the active constraints.



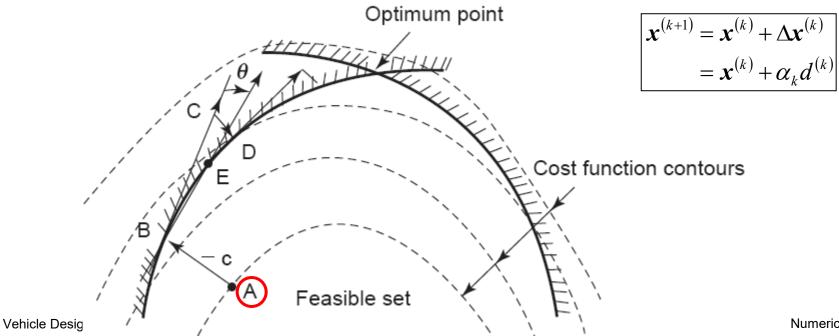
Characteristics of a Constrained Problem (2)

- If the objective function has two or more unconstrained local minima, the constrained problem may have multiple minima.
- Even if the objective function has a single unconstrained minimum, the constraints may introduce multiple local minima.



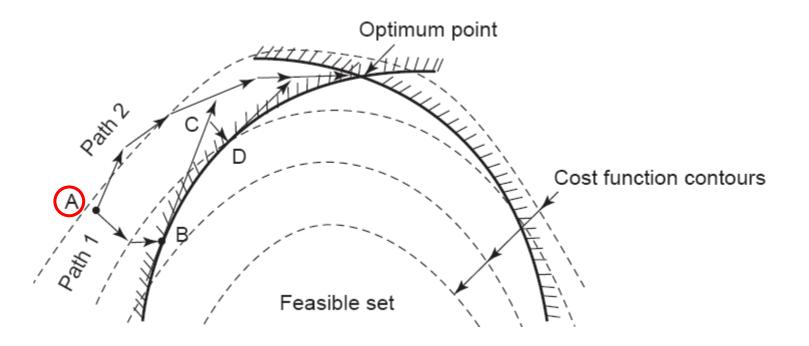
Basic Concepts (1)

- From feasible starting point (inside the feasible region)
 - $\nabla f = 0$: Unconstrained stationary point->check sufficient condition
 - $\nabla f \neq 0$: Moving along a descent direction
 - (Assume the optimum is on the boundary of the constraint set)
 - Travel along a tangent to the boundary $\rightarrow \text{correct}$ to a feasible point
 - Deflect the tangential direction, toward the feasible region \rightarrow line search



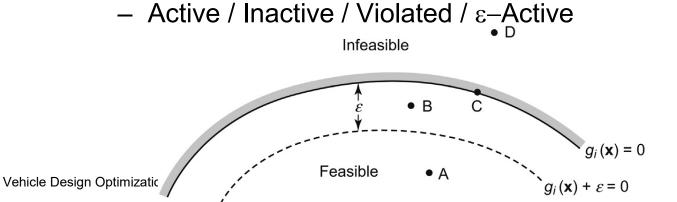
Basic Concepts (2)

- From infeasible starting point
 - Correct constraints to reach the constraint boundary →same as previous steps
 - Iterate through the infeasible region to the optimum point



Basic Concepts (3)

- Numerical algorithm
 - Linearization of cost and constraint functions about the current design point
 - Definition of a search direction determination subproblem using the linearized functions
 - Solution of the subproblem that gives a search direction in the design space.
 - Calculation of a step size to minimize a descent function in the search direction
- Constraint status @ a design point

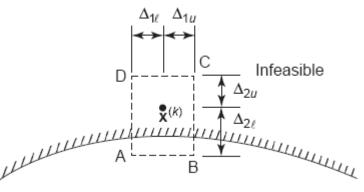


Sequential Linear Programming

- Basic idea
 - Use linear approximation of the nonlinear functions and apply standard linear programming techniques
 - Repeated process successively as the optimization process
 - Major concern: How far from the point of interest are these approximations valid? move limits: depend on degree of nonlinearity)

$$-\Delta_{il}^{(k)} \le d_i \le \Delta_{iu}^{(k)}, \quad i = 1, \dots, n$$

- Some fraction of the current design variables (1~100%)
- Quite powerful and efficient for engineering design



Feasible

Linearization

min
$$f(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong f(\mathbf{x}^{(k)}) + \nabla f^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)}$$

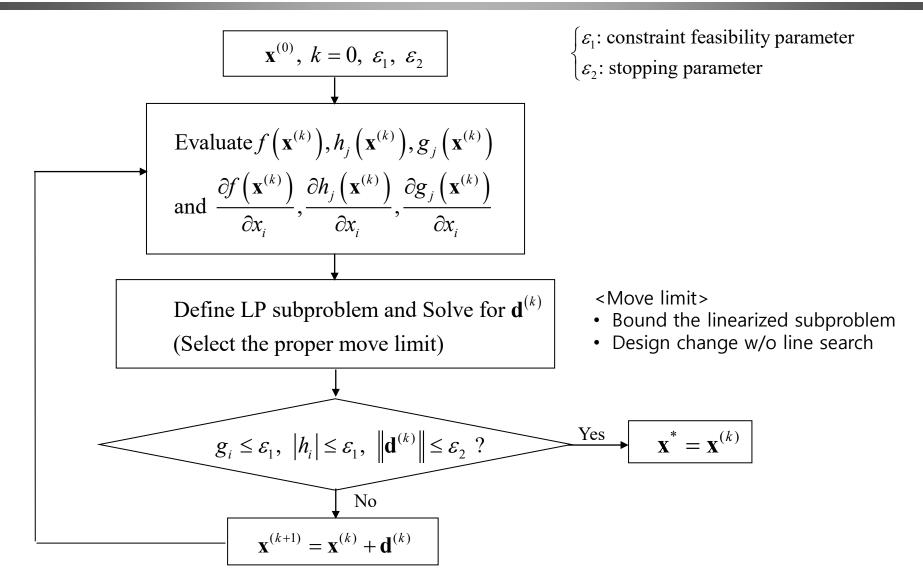
subject to $h_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong h_j(\mathbf{x}^{(k)}) + \nabla h_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = 0, \quad j = 1, ..., p$
 $g_j(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong g_j(\mathbf{x}^{(k)}) + \nabla g_j^T(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} \le 0, \quad j = 1, ..., m$

LP subproblem

$$\min \quad \bar{f} = \sum_{i=1}^{n} \frac{\partial f(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)}$$
s. t.
$$\sum_{i=1}^{n} \frac{\partial h_{j}(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} = -h_{j}(\mathbf{x}^{(k)})$$

$$\rightarrow \begin{cases} \min \quad \bar{f} = \sum_{i=1}^{n} c_{i}d_{i} \\ \text{s. t. } \sum_{i=1}^{n} n_{ij}d_{i} = e_{j} \\ \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \end{cases} \rightarrow \begin{cases} \min \quad \bar{f} = c^{T}d \\ \text{s. t. } \sum_{i=1}^{n} n_{ij}d_{i} = e_{j} \\ \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \end{cases} \rightarrow \begin{cases} \min \quad \bar{f} = c^{T}d \\ \text{s. t. } \sum_{i=1}^{n} n_{ij}d_{i} = e_{j} \\ \sum_{i=1}^{n} a_{ij}d_{i} \leq b_{j} \end{cases}$$

SLP Algorithm



Quadratic Programming Subproblem

- Quadratic cost function + linear constraints
- SLP: linear move limits \rightarrow quadratic step size constraint

$$-\Delta_{il}^{(k)} \le d_{i} \le \Delta_{iu}^{(k)} \to ||d|| \le \xi \to 0.5 \sum_{i=1}^{n} (d_{i})^{2} \le \xi^{2}$$
min $\bar{f} = \sum_{i=1}^{n} c_{i}d_{i}$
s. t. $\sum_{i=1}^{n} n_{ij}d_{i} = e_{j}, \quad j = 1, ..., p$

$$\sum_{i=1}^{n} a_{ij}d_{i} \le b_{j}, \quad j = 1, ..., m$$

$$0.5 \sum_{i=1}^{n} (d_{i})^{2} \le \xi^{2}$$

$$(d_{1} + c_{1})^{2} + (d_{2} + c_{2})^{2} = r^{2} \to d_{1}^{2} + c_{1}^{2} + 2c_{1}d_{1} + d_{2}^{2} + c_{2}^{2} + 2c_{2}d_{2} = r^{2}$$
Feasible

 $\frac{1}{2} \left(r^2 - c_1^2 - c_2^2 \right) = c_1 d_1 + c_2 d_2 + \frac{1}{2} \left(d_1^2 + d_2^2 \right)$: hypersphere with its center at $-\mathbf{c}$ Vehicle Design Optimization

Numerical Methods - 31

Sequential Quadratic Programming (SQP)

- QP subproblem ← curvature information of Lagrange function into the quadratic cost function
 - Constrained Quasi-Newton Methods
 - Constrained Variable Metric(CVM)
 - Recursive Quadratic Programming(RQP)
- Gradient of the Lagrange function at the two points \rightarrow Approximate Hessian of the Lagrange function
- quite simple and straightforward, but very effective

Generalized Reduced Gradient Method

- Elimination of variables using the equality constraints •
 - One variable can be reduced from the set x_i for each of the *m*+*p* equality constraints

(

$$\begin{array}{ll} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m \\ & h_j(\mathbf{x}) = 0, \quad j = 1, \dots, l \\ & x_k^L \leq x_k \leq x_k^U, \quad k = 1, \dots, n \end{array} \right\} \rightarrow \begin{cases} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & g_i(\mathbf{x}) + x_{n+i} = 0, \quad i = 1, \dots, m \\ & h_j(\mathbf{x}) = 0, \quad j = 1, \dots, n \\ & x_{k}^L \leq x_k \leq x_k^U, \quad k = 1, \dots, n \\ & x_{n+i} \geq 0, \quad i = 1, \dots, m \end{cases}$$
$$\rightarrow \begin{cases} \text{minimize} & f(\mathbf{x}) \\ \text{subject to} & \overline{h}_j(\mathbf{x}) = 0, \quad j = 1, \dots, m + l \\ & x_i^L \leq x_i \leq x_i^U, \quad i = 1, \dots, n + m \end{cases} \quad \mathbf{x} = \begin{cases} \mathbf{y} \\ \mathbf{z} \end{cases}, \quad \mathbf{y} = \begin{cases} y_1 \\ \vdots \\ y_{m+l} \end{cases}, \quad \mathbf{z} = \begin{cases} z_1 \\ \vdots \\ z_{n-l} \end{cases}$$

state or dependent variables

variables

design or independent

Reduced Gradient

 $df(\mathbf{x}) = \sum_{i=1}^{m+1} \frac{\partial f}{\partial V_i} dy_i + \sum_{i=1}^{n-1} \frac{\partial f}{\partial Z_i} dz_i = \nabla_y^T f d\mathbf{y} + \nabla_z^T f dz$ $d\overline{h}_{i}(\boldsymbol{x}) = \sum_{j=1}^{m+l} \frac{\partial \overline{h}_{i}}{\partial y_{j}} dy_{j} + \sum_{j=1}^{n-l} \frac{\partial \overline{h}_{i}}{\partial z_{j}} dz_{j} \rightarrow d\overline{\boldsymbol{h}} = \boldsymbol{B} d\boldsymbol{y} + \boldsymbol{C} d\boldsymbol{z}$ $\nabla_{y}^{T} f = \begin{cases} \frac{\partial f}{\partial y_{1}} \\ \vdots \\ \frac{\partial f}{\partial y_{l}} \end{cases}, \nabla_{z}^{T} f = \begin{cases} \frac{\partial f}{\partial z_{1}} \\ \vdots \\ \frac{\partial f}{\partial z_{n-l}} \end{cases}, d\boldsymbol{y} = \begin{cases} dy_{1} \\ \vdots \\ dy_{m+l} \end{cases}, d\boldsymbol{z} = \begin{cases} dz_{1} \\ \vdots \\ dz_{n-l} \end{cases}$ $\boldsymbol{B} = \begin{bmatrix} \frac{\partial \overline{h_1}}{\partial y_1} & \cdots & \frac{\partial \overline{h_1}}{\partial y_{m+l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \overline{h_{m+l}}}{\partial y_1} & \cdots & \frac{\partial \overline{h_{m+l}}}{\partial y_{m+l}} \end{bmatrix}, \quad \boldsymbol{C} = \begin{bmatrix} \frac{\partial \overline{h_1}}{\partial z_1} & \cdots & \frac{\partial \overline{h_1}}{\partial z_{n-l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \overline{h_{m+l}}}{\partial z_1} & \cdots & \frac{\partial \overline{h_{m+l}}}{\partial y_{m-l}} \end{bmatrix}$

GRG: Direction

$$d\overline{h} = Bdy + Cdz = 0 \ (\overline{h} (x) = 0) \rightarrow dy = -B^{-1}Cdz$$

$$df (x) = \left(-\nabla_y^T f B^{-1}C + \nabla_z^T f\right) dz \rightarrow \frac{df (x)}{dz} = G_R$$

$$G_R = \nabla_z f - \left(B^{-1}C\right)^T \nabla_y f : \text{ generalized reduced gradie}$$

$$\rightarrow \text{ projection of the original } n \text{ - dimensional gradient ont}$$

the $(n - m)$ dimensional feasible region described
by the design variables

$$\boldsymbol{d} = \begin{bmatrix} \boldsymbol{d}_{y} \\ \boldsymbol{d}_{z} \end{bmatrix} \rightarrow \begin{cases} \boldsymbol{d}_{y} = -\boldsymbol{B}^{-1}\boldsymbol{C}\boldsymbol{d}_{z} \\ \begin{pmatrix} \boldsymbol{d}_{z} \end{pmatrix}_{i} = \begin{cases} -(\boldsymbol{G}_{R})_{i} \\ 0 \quad \text{if } z_{i} = z_{i}^{L} \text{ and } (\boldsymbol{G}_{R})_{i} > 0 \\ 0 \quad \text{if } z_{i} = z_{i}^{U} \text{ and } (\boldsymbol{G}_{R})_{i} < 0 \end{cases}$$

