Why Numerical Method ?

* Analytical method — Numerical method

« # of design variables and constraints can be large.
— Necessary conditions — a large number of equations

— Functions for the design problem (cost and constraint) can
be highly nonlinear.

« Cost and/or constraint functions can be implicit in
terms of design variables.

« Search for the general purpose code through the
Internet to minimize developing your own code
— Appendix B, https://neos-guide.org/
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Advantages of Numerical Optimization

* Reduce the design time

— When the same computer program can be applied to many
design projects

* Provide a systematized logical design procedure

« Deal with a wide variety of design variables and
constraints

* Yield some design improvement
* Not biased by intuition or experience in engineering

* Require a minimal amount of human-machine
Interaction
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Limitations of Numerical Optimization

* Increased computational time as the number of
design variables increases (ill-conditioned?)

* No stored experience or intuition

« Misleading results if the analysis program is not
theoretically precise

 Difficulty in dealing with discontinuous functions and
highly nonlinear problems

« Seldom be guaranteed that the optimization algorithm
will obtain the global optimum design

« Significant reprogramming of analysis routines for
adaptation to an optimization code
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Physical Problem
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Linear Programming (LP) Problem

« Constrained optimization
« “Liner”: the objective and the constraints
« "Programming”: scheduling or setting an agenda

* Minimization of a function with equality constraints
and nonnegativity of design variables

Minimize f = ch.xi Minimize f =c¢'x
i=l1
" subjectto Ax=Db
subject to Zayxj=bi; i=L...,m x>0
j=1

X; >0; j=1...,n

(bl. > 0 : resource limits, ¢, and a;, : known constants)
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Standard LP Definition

 Linear constraints

— Inequality: nonnegative slack variable s;(s;> 0)
« Why not s? ? (nonlinear)
— Treatment of “< type” / “> type” constraints

2x,—x, <4 >2x,—x,+s, =4 (S1 ZO)
X, +2x, 22> —x,+2x,—s5,=2 (S1 20)

* Unrestricted variables in sign
— All design variables to be nonnegative

: N _
X, >

N _ {nonnegatlve.xj 2 X;

i . . + —

. ' < .

nonpositive: x; < x,

x;.LZOande_.ZO
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Basic Concepts

e LP problem is convex. If an optimum solution exists,
it is global.
— Feasible region (constraint set) is convex
— Cost function is linear, so it is convex

« Solution always lies on the boundary of the feasible
region if it exists. of

— For an unconstrained optimum, contradiction: 8— =0—>c¢ =0
X .

l

* Optimum solution must satisfy equality constraints —
more than one solution (m < n)

— Infinite solutions — feasible solution that minimizes the cost
function
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Example 8.19 < 8.13

Maximize z=x,+4x, (Minimize f =-x, —4x,
subject to (1) x,+2x,<5 subjectto x,+2x, + x, =
(2)2x,+x, =4 >4 2x, + x, +x, =
B)x,—x, =1 X, — X, -x, +Xx,=
X, X%, 20 | x,20; i=1...,6
X3
L= 1405, 1
)
\5—2:‘%: L @)1-2, f=

- A
Fderrrr sl s fad Fe P rad il riredl 1

2 3 4 3

-]
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LP in Excel Solver: Example 8.19
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Reports : Example 8.19+21+23

DI 2 A Range of —70<Ac. <0
Zre upm M cost coeff. = 1=
H & eHA| =z d 3HEIts S It —a=l vy _80<c <0
4 olE Zt H|8 A % o o R | I
$D$1  x1 1.666666667 0 1 7 1E+30 —0<Ac. <3.5
$D$2  x2 0.666666667 0 4 ) BASH 3.5 2
o=t 5 _w<ce, <—
N —a= 50 <, <-0.5
A A X Mt =4 s8I B It
4 ol zt 71 28 B7bx zas
$D$6 >=0 0 =2.3333839488 0 1 g
$D$4 <=0 -2 0 0 1E+30 )
$D$5 0 0 1.666666667 0 D 2
Lagrange Range of

multiplier resource limit

(D)x,+2x,<5>-2<A f0—>3<) <o
(2)2x,+x,=4—>-2<A,<2-52<),<6
B)x,—x,21>-2<A,<1>-1<ph, <2
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Nonlinear Optimization

« Unlike for linear problems, a global optimum for a
nonlinear problem cannot be guaranteed, except for
special cases, e.g., if you know the space is unimodal,
or convex, or monotonicity exists

« Two standard heuristics that most people use:

— Find local extrema starting from widely varying starting
points of variables and then pick the most extreme of these
extrema

— Perturb a local extremum by taking a finite amplitude step
away from it, and then see whether your routine returns you
to a better point or “always” to the same one

— Question: How would you “automate” a search for a global
extremum?
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Basic Steps in Nonlinear Optimization

* In its simplest form, a numerical search procedure
consists of four steps when applied to unconstrained
minimization problem:

— (1) Selection of an initial design in the n-dimensional space,
where n is the number of design variables

— (2) A procedure for the evaluation of the objective function at
a given point in the design space

— (3) Comparison of the current design with all of the
preceding designs

— (4) A rational way to select a new design and repeat the
process

— Constrained optimization requires step for evaluation of
constraints as well. Same applies for evaluating multiple
objective functions
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Nonlinear Optimization Process

* Most design tasks seek to find a perturbation to an
existing design which will lead to an improvement.
Thus we seek a new design which is the old design
plus a change

— Xnew = Xold + §¥X

* Optimization algorithms apply a two step process :
— Xkt1) = XK + g, oK)
— You have to provide an initial design X(©)

— The optimization will then determine a search direction d®
that will improve the design

— How far we can move in direction d% — one-dimensional
search to determine the scalar o, to improve the design
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General Algorithm

reasonable starting design x(0, k=0

compute a search direction d®

\ 4

calculate a step size o,

\ 4

Calculate a new design x**1)=x®+ o d® | k= k+1
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Classification of Unconstrained Optimization

* One-dimensional unconstrained optimization: line search
— Golden-section search
— Quadratic interpolation

« Multidimensional unconstrained optimization
— Nongradient or Direct methods
— Gradient or Descent methods

* You often must choose between algorithms which need only

evaluations of the objective function or methods that also require
the derivatives of that function

 Algorithms using derivatives are generally more powerful, but do not
always compensate for the additional calculations of derivatives

* Note that you may not be able to compute the derivatives
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Multidimensional Unconstrained Optimization

Direct Search Methods Indirect(Descent) Methods
» Random search method » Steepest descent (Cauchy) method
» Univariate method = Conjugate gradient method
» Pattern search method — Fletcher-Reeves
— Powell’'s method — Polak-Rebiere
» Simplex method * Newton’s method

» Simulated Annealing (SA) | » Marquardt's method

» Genetic Algorithm (GA) * Quasi-Newton methods

— DFP (Davidon-Fletcher-Powell)

— BFGS(Broydon-Fletcher-Goldfarb-Shanno)
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Nelder—Mead Simplex Method

* Does not use gradients of the cost function

« |dea of a simplex

— Geometric figure formed by a set of (n+1) points in the n-
dimensional space

— When the points are equidistant, the simplex is said to be regular

* Nelder—Mead method (Nelder and ead, 1965)
— Compute cost function value at the (n+1) vertices of the simplex
— Move this simplex toward the minimum point

— reflection, expansion, contraction, and shrinkage
— MATLAB: fminsearch
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Descent Directions (1)

« Steepest descent direction: d=-Vf :_gi
X
« Conjugate Gradient direction:
G
d® = —Vf(x(k))+,8kd(k_1) where S, = HVf(X )H >
for (<)

Newton’s method:
f(x+Ax) =f(x)+VfT (x)Ax+%AxTHAx
i=0:>Vf(x)+HAx:0

0(Ax)

d® = Ax = —H_1Vf(x) Sx =x) 4 Ax (step length =1)

Marquardt's method: a® = —(H+a1)" vr(x)
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Descent Directions (2)

* Quasi-Newton Method (Variable Metric Method)

— Use of previous information, speed up the convergence !
q®© :_A(k)vf(x(k)):A(kH) _AB  AK) _askow oyl

— DFP Method: Davidon (1959) — Fletcher and Powell (1963)
» Approximate inverse of Hessian matrix

— BFGS Method: Broyden-Fletcher-Goldfarb-Shanno (1981)
» Direct update the Hessian matrix

KD (0 g g0
g0 = A(k)Vf( x(k))

k) (KT k) _(k)T
) _ gy, SPOT 200

S(k)Ty(k) y(k)TZ(k)

$H) = g g = (D _ (B

X

Y0 = Vf( k4D ) _ Vf( () )

20 = 4005, ®)
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KD 0 4 g g
g 0 _ _vf( x(k))
k) ()T k) (k) ()T yy(k
L _ gty , YOV HOSOOT 0
SOT 0 (T (8 ()

0 =gkt _ 0 _ gy g6
HOSE g o®

(k) (k)T (k) ()T
)H(kﬂ):H(k)_I_y ) +C c

SOT (0T )

NG

k k+1 k k+1 k
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Gradient-Based Methods

Method Direction
Steepest .
Descent d =-Vf <x(k))
' t 4 _
conugate | g = vy s " where = vy () el
Newton’s d® =—H'Vf(x®)

Quasi-Newton

DFP; d%“ = —AVf(x(k))where A% = 4P 4 _

BFGS: H*d" =-vf(x®)where H*"" = H® + 2

T T
¢ G(F) Z(B) (k)

T T
¢, y(k) ()

y
T T
(), (07 L) L)

+
T T
y(k) ¢F BT g )
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Constrained Optimization Methods

Direct (Primal) Methods Indirect Methods
» Objective and constraint approximation | = Sequential unconstrained
methods minimization technique
— Sequential Linear Programming method — Interior penalty function method
— Sequential Quadratic Programming method | — EXterior penalty function method
— Augmented Lagrange multiplier

» Gradient Projection Method
= Methods of Feasible Directions
» Generalized Reduced Gradient Method

method
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Characteristics of a Constrained Problem (1)

« The constraints may have no effect on the optimum point.

— In most practical problems, it is difficult to identify whether the
constraints have an influence on the minimum point.

« The optimum (unique) solution occurs on a constraint
boundary.

— The negative of the gradient must be expressible as a positive
linear combination of the gradients of the active constraints.

X2

/—gf:O

Vf=\Veg.
fopt = 0, Xop(1, 2) f=%Vg, A>0

I | I ; -
0 x 1 X 1
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Characteristics of a Constrained Problem (2)

— If the objective function has two or more unconstrained local
minima, the constrained problem may have multiple minima.

— Even if the objective function has a single unconstrained
minimum, the constraints may introduce multiple local
minima.

ANONANONRNRRNROCNANNNNNINN

LA LA AELEALA AL,
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Basic Concepts (1)

* From feasible starting point (inside the feasible region)
— Vf = 0: Unconstrained stationary point—check sufficient condition
— Vf # 0: Moving along a descent direction
* (Assume the optimum is on the boundary of the constraint set)

» Travel along a tangent to the boundary —correct to a feasible point
» Deflect the tangential direction, toward the feasible region —line search

Optimum point

D — 0 A

= x4 g, a%
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Basic Concepts (2)

« From infeasible starting point

— Correct constraints to reach the constraint boundary —->same
as previous steps

— lterate through the infeasible region to the optimum point

Optimum point
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Basic Concepts (3)

* Numerical algorithm

— Linearization of cost and constraint functions about the
current design point

— Definition of a search direction determination subproblem
using the linearized functions

— Solution of the subproblem that gives a search direction in
the design space.

— Calculation of a step size to minimize a descent function in
the search direction

« Constraint status @ a design point
— Active / Inactive / Violated / s—,g\ctive

Infeasible
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Sequential Linear Programming

 Basic idea

— Use linear approximation of the nonlinear functions and apply
standard linear programming techniques

— Repeated process successively as the optimization process

— Major concern: How far from the point of interest are these
approximations valid? move limits: depend on degree of nonlinearity)

~AY <d <A

iu 2

i=1,...,n
— Some fraction of the current design variables (1~100%)
* Quite powerful and efficient for engineering design

iﬁ"]l’ ‘ﬁ'l u
__ Infeasible
k.

| I Y 20

X :_‘iﬁg

uf_.u.iff-’ulfﬁmﬁ:im;i :

g A

-‘t'lll""ll-.l'l_ii
),r/f/’ B '{“-"--t',,-'q_{h
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Linearization

min f(x(") + Ax(")); f(x(k))+ VfT(x("))Ax(")
subject to A, (x(k) + Ax(k)); h

LP subproblem
Ny (W0 ) . ey .
min f = Z%)Ax(k) min 7=3cd
& ) i i=1 min j} :ch
S. t. Z hj(x(k))>—)<s.t. an'j'di:ej>_)<s.t, C]’\-{Td:e
= =1 (nxp)
Z‘ Ja . Ax(k) <-g (x<k>)) | ;ai]dl. <b 0ol &
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SLP Algorithm

© g,: constraint feasibility parameter
x ,k=0,¢, ¢,

&, stopping parameter

Evaluatef(x(k) ): h, (X(k) )’gj (X(k))

) o () ()
Ox,

an
Ox, Ox,

1 1 1

(k) <Move limit>
Define LP subproblem and Solve for d + Bound the linearized subproblem

(Select the proper move limit) « Design change w/o line search

x & — x () +d(k)
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Quadratic Programming Subproblem

 Quadratic cost function + linear constraints
« SLP: linear move limits — quadratic step size constraint

d Feasibl
min f _ Zcidl ) \ €asiolic
i=1 min f = CTd
st. Yond=e, j=l..,p| |st N'd=e ‘min [ =c"d+0.5d"d
=1 > —> < (nXp)T s<>4s.t. N'd=e
< <
i=1 -
AN | 0.5d7d <&’
O.SZ (@) <¢& Strictly convex =
i=1 J Minimum is global and unique

2 2
(di+¢) +(d,+¢,) =r* >d?+c¢’+2¢d, +d,” +¢,” +2¢,d, =r?

1 1 o
| o _—(r2 —c - czz) =cd, +c,d, + —(a’l2 +d) ): hypersphere with its center at —¢
Vehicle Design Opt|m|zat|8n 2
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Sequential Quadratic Programming (SQP)

* QP subproblem « curvature information of Lagrange
function into the quadratic cost function

— Constrained Quasi-Newton Methods
— Constrained Variable Metric(CVM)
— Recursive Quadratic Programming(RQP)

« Gradient of the Lagrange function at the two points —
Approximate Hessian of the Lagrange function

« quite simple and straightforward, but very effective
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Generalized Reduced Gradient Method

« Elimination of variables using the equality constraints

— One variable can be reduced from the set x; for each of the
m+p equality constraints

minimize f(x) mm'lmlze f(x)
: , subjectto g, (x)+ x,..=0, i=1...,m
subject to gl.(x)SO, i=1,...,m h( ) 0 il
—> . = =
h(x)=0, j=1,..,0 [ PXT=T T = e
L U .
sh<x, <xV k=l...n x, <x, <x;, k=1...,n
x. 20, i=1...,m
minimize f(x)
: =N . b2 z,
— Jsubject to hj(x)—O, j=1....m+I y _
X = R = ) = :
x/ <x,<x/, i=l...,n+m Z d
ym+lJ Zn—lJ

~
state or dependent  design or independent
variables variables
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Reduced Gradient

m+l

df (x) Zefdl+2 s, =V fdy+ V' fdz

=0y, = 82 ;
o (o o o
o, Oz, dy, dz,
Vif:< C L VIf=¢ 0 bdy={ i hdz=3 i }
g g AY dz,
aym+l aZ ’ ’
| [k o
% - OV i 0z, h 0z,
B = _e - e , C= _e R _
ahm+l ahm+l ahm+l 8hm+l
i ayl aymH 1 i aZl ayn—l 1
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GRG: Direction

dh = Bdy + Cdz =0 (h(x)=0)—>dy=-B"'Cdz

df (x)= (—vﬁﬂe—lcwgf)dz N

T
G, =V._f —(B_lC ) V,f : generalized reduced gradient

— projection of the original »n - dimensional gradient onto

d
) g,

the (n - m) dimensional feasible region described

by the design variables

d{ﬂ*(@),.m

-
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( -1
dy =—-B Cdz

_(GR)i
0 if z,=z" and (Gg). >0
0 if z=z" and (Gg). <0

h(xq,%,%3) =0

[
|
| X1
[
I x|
e
t il - xZ
Z |
zy
d
dx;
E[il]’yzxaa d = |dx,
2 dx,
e e
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