## Classification of Optimization Problems (1)

- Variables
  - Continuous, discrete or mixed
- Objective
  - Function of a single variable
  - Function of many variables
  - Linear
  - Sum of squares
  - Nonlinear
  - Smooth / non-smooth
  - Convex / non-convex
  - 1<sup>st</sup> derivatives are available
  - 2<sup>nd</sup> derivatives are available

- Constraints
  - None
  - Simple bounds
  - Linear
  - Non-linear
  - Equality / inequality
  - Smooth / non-smooth
  - 1<sup>st</sup> derivatives are available
  - 2<sup>nd</sup> derivatives are available
  - Optimum
    - Local
    - Global

## Classification of Optimization Problems (2)

- The choice of solution method is very dependent on
  - the class of the problem
  - the size of the problem
  - the structure of the problem
  - the cost of function and gradient evaluation
  - etc.

## Classification of Optimization Problems (3)

- Some more jargon
  - Gradient
  - Hessian
  - Sensitivity analysis
  - Scaling
  - Normalization
  - Mathematical Programming
  - LP
  - NLP

- Optimization software
  - In
    - EXCEL GRG2
    - MATLAB OPTIM toolbox
    - NAG
    - NETLIB
  - Specialized packages
    - NPSOL
    - IDESIGN
    - LANCELOT
  - Plus hundreds of others

## Structural Optimization (1)

- Rational establishment of a structural design that is the best of all possible designs within a prescribed objective and a given set of geometrical and/or behavioral limitations
- Mathematics and mechanics with engineering
- Broad multidisciplinary field
  - Aeronautical, civil, mechanical, nuclear, off-shore engineering, space technology
- Motivation
  - Limited energy resources, shortage of economic and some material resources, strong technological competition, environmental problem

## Structural Optimization (2)

- Minimum cost or weight of the structure for given performance / Maximum performance for a bound on cost
  - Decreasing the weight of space, aero, or land-borne structures
  - Cost reduction of load-carrying structures for given capacity, strength, and/or stiffness requirements
  - Increasing the efficiency of fibers in composite materials by optimizing their distribution and orientation
  - Minimizing dynamic response of rotating machinery or structures subjected to external excitation
- Research in optimal structural design
  - Fundamental aspects of structural optimization
  - Development of effective numerical solution procedures for optimization of complex practical structures

#### **Analysis Problem**

- Completely specified in deterministic problems / Given in terms of probabilities in probabilistic problems
  - Structural design, properties of materials, support/loading conditions
- Determine the structural response
  - Equilibrium (or state) / constitutive equations, compatibility / boundary conditions
  - Stress, strain, deflection, natural vibration frequencies, load factors for elastic instability

## Redesign (or Sensitivity Analysis)

- Design, material, or support parameters are changed (or varied) and the corresponding changes (or variations) of the structural response are determined via repeated (or special) analysis
- Conventional design procedure
  - A series of repeated changes of the structural parameters followed by analysis
  - A series of redesign analyses until a structure fulfills the behavioral requirements and is reasonable in cost
  - Changes decided by guesswork based on information obtained from the previous analysis

### **Optimization of Structures**

- Set of structural parameters is subdivided into preassigned parameters and design variables
- Problem consists in determining optimal values of the design variables such that they maximize or minimize a specific function termed the objective (or criterion, or cost) function while satisfying a set of geometrical and/or behavioral requirements, which are specified prior to design, and are called constraints.

#### **Beam Design**

• Structural analysis

$$\frac{d^2}{dx^2} \left( EI \frac{d^2 w}{dx^2} \right) = q(x)$$



- Structural designer
  - Optimal distribution of the moment of inertia I(x) of the beam along its length
  - Objective function : mass  $m = c \int_0^l I^p(x) dx$
  - Constraints : displacement  $w_{\max} = \max_{0 \le x \le l} w(x) \le w_0$
  - Optimality condition : in the form of a differential equation in I(x) and  $w(x) \rightarrow$  "calculus of variations"

#### Function vs. Parameter Optimization

|                      | Before 60s                                             | After 60s                                                |  |
|----------------------|--------------------------------------------------------|----------------------------------------------------------|--|
| analysis<br>solution | analytic solutions<br>(e.g., by using infinite series) | computer implementation<br>(e.g., finite element method) |  |
| unknown              | function                                               | discrete value                                           |  |
| equation             | differential                                           | algebraic                                                |  |
| discipline           | calculus of variations                                 | mathematical programming                                 |  |





## Elements of Problem Formulation (1)

- Design variables:  $\mathbf{x} = (x_1, x_2, \dots, x_n)$ 
  - Parameters controlling the geometry of the structure
    - Cross-sectional dimensions
    - Member sizes
  - Material properties
  - Continuous
    - Range of variation
  - Discrete
    - Isolated values
    - Manufacturing considerations
  - Critical to the success of the optimization process



## Elements of Problem Formulation (2)

- Objective function :  $\mathbf{f}(\mathbf{x}) = [f_1(\mathbf{x}), f_2(\mathbf{x}), ..., f_p(\mathbf{x})]$ 
  - Measure of effectiveness of the design
    - Weight, displacements, stresses, vibration frequencies, buckling loads, cost
  - Multicriteria(multiobjective) optimization
    - Generate a composite objective function
    - Select the most important as the only objective function and impose limits on the others
    - Edgeworth-Pareto optimization
- Constraints
  - limits on the design variables : side constraints
  - Impose upper or lower limits on quantities : inequality constraints
  - Equality constraints → inequality constraints (some solution strategies)

## Design Variables (1)

- Cross-sectional DVs: Properties of structural elements
  - Cross-sectional areas (of a bar, rod or beam)
  - Second area moment (of a beam, column or arch)
  - Thickness (of a plate)
  - Continuous (function of the spatial coordinates) / Discrete (distinct, standardized sizes)
- DVs describing the layout of a structure
  - Topological DVs: number, spatial sequence, and mutual connectivity of members and joints (integer)
  - Configurational (or geometrical) DVs: coordinates of joints, centerlines or midsurfaces of structural members (bar, beam, arch, shell)

## Design Variables (2)

- Shape DVs
  - Shape of external boundaries or interface of a structure
  - Cross-sectional shape of a rod, column, or beam
  - Boundary shape of a disk, plate, or shell
- Material DVs
  - Material properties (discrete)
  - Fiber composite materials: concentration and direction of the fibers (continuous)
- Support or loading DVs
  - Support (or boundary) conditions or the distribution of loading on a structure
  - Location, number, and type of support or the external forces

#### Continuous vs. Discrete

- Continuous (or distributed parameter) optimization problem
  - DVs are considered to vary continuously over the length or domain of the element
  - Rod, beam, arch, plate
- Discrete (or parameter) optimization problem
  - Inherently discrete structure
  - Truss, frame, complex practical structures
- The governing equations of both types of problem (as well as mixed types) can be derived by variational analysis

## **Design Variables**

- Finite element model
  - Distribution of DVs should be much coarser
  - Optimal thickness distribution of a plate
    - Thickness of the FE model, 7X7?
  - Optimized shape of a hole in a plate
    - Coordinates of nodes of the FE model







(b)

#### **Objective Function**

- Cost or criterion function
- Function whose value is to be minimized or maximized by the optimal set of values of DVs within the feasible design space
- Structural weight or cost
- Local or global measure of the structural performance
  - Stress, displacement, stress intensity factor, stiffness, plastic collapse load, fatigue life, buckling load, natural vibration frequency, aeroelastic divergence, flutter speed, etc.
- Single-criterion / Multicriteria

## Problems with Multiple Objectives (1)

$$\begin{array}{c}
\text{Min } f_1(\mathbf{x}) \\
\vdots \\
\text{Min } f_M(\mathbf{x})
\end{array} \rightarrow F(\mathbf{x}) = f[f_1(\mathbf{x}), \dots, f_M(\mathbf{x})]$$

- Individual objectives are usually in contradiction with one another, hence
- If  $x_1^*, \ldots, x_M^*$  are the solutions to individual objectives, then  $x_1^* \neq \ldots \neq x_M^*$
- If the individual objectives are controlled by different sets of variables, then the optimum of *f* can be obtained by optimizing the individual *f*<sub>i</sub>'s.

$$F(\mathbf{x}) = f_1(\mathbf{x}_1) + \dots + f_M(\mathbf{x}_M) = \sum_{i=1}^M f_i(\mathbf{x}_i) \text{ where } \mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_M)$$

## Problems with Multiple Objectives (2)

- All objectives are controlled by the same set of variables:
  - Composite objective function

$$F(\mathbf{x}) = \alpha_1 f_1(\mathbf{x}) + \dots + \alpha_M f_M(\mathbf{x}) = \sum_{i=1}^M \alpha_i f_i(\mathbf{x}_i)$$

 Choose the most important to Max(Min), and put limits on the others.

 $Min(Max) \quad f(\mathbf{x}) = f_2(\mathbf{x}) \text{ such that } f_1(\mathbf{x}) \ge A_1 \quad \cdots \quad f_M(\mathbf{x}) \ge A_M$ 

- Optimize each of the objectives w.r.t.  $\boldsymbol{x}$  individually to find  $f_i^*$  and the corresponding  $\boldsymbol{x}_i^*$ .

Min 
$$\max_{i=1,...,M} [d_i(\mathbf{x})]$$
 or Min  $\sum_{i=1}^M d_i^2(\mathbf{x})$  where  $d_i(\mathbf{x}) = \frac{f_i(\mathbf{x}) - f_i^*}{f_i^*}$ 

#### Constraints

- Directly or indirectly impose limits on the range of variations of DVs
- Design space / hypersurfaces  $\rightarrow$  feasible or admissible designs
- Geometrical (or side) constraints
  - Explicit restrictions on DVs
  - Manufacturing limitations, physical practicability, aesthetics
  - Typically inequality constraints: lower and upper bounds
- Behavioral constraints
  - Generally nonlinear and implicit
  - Equality: state and compatibility equations governing the structural response associated with the loading conditions
  - Inequality: restrictions on those quantities that characterize the response of the structure
    - Local (stress, deflection) / global (compliance, natural vibration frequencies)

#### **Solution Process**

- Selection of the active constraint set
- Calculation of a search direction
  - Based on the objective function and the active constraint set
- Determination of a travel distance
  - One dimensional line search
- Termination criteria
  - No improvement of the objective function w/o violating constraints
  - Check for optimality (Kuhn-Tucker conditions)

## Numerical Search Techniques (1)

#### • Procedure

- Selection of an initial design in the *n*-dimensional space
- Evaluation of the function (objective and constraints) at a given point in the design space
- Comparison of the current design with all of the preceding designs
- A rational way to select a new design and repeat the process
- Questions
  - How is the initial design selected and what effect will it have on the outcome of the search?
  - What is a rational way to select the new designs and how does it affect the final outcome?
  - Where to stop the search?

## Numerical Search Techniques (2)

- 50s: simplex method and its variations
  - LP: transportation, scheduling, chemical processes, etc.
- 60s: gradient projection, feasible directions, penalty function methods
- 70s: implementation and serious applications
- 80s: refinement of the algorithms proposed in the 60s and 70s
  - (U.S.) Vanderplaat's implementation of the feasible directions
  - CONMIN, ADS, MICRODOT
  - (Europe) Fleury's CONLIN, Schittkowski's implementation of SQP (NLPL) → IMSL library

## Three Major Design Problems

- Sizing Optimization (1960)
  - How thick it is?
  - Thickness
  - cross sectional properties
  - Finite element model is fixed
- Shape Optimization (1973)
  - What are the boundaries?
  - Location and/or radii of holes/arcs
  - Control points of splines
  - Element shapes change during optimization
- Topology Optimization (1988)
  - Where are the holes?
  - Number of holes
  - Shape of holes
  - Finite element topology possible not defined



Shape of the Outer Boundary

# History (1)





- Galileo's problem
  - Strongest cantilever beam in bending and constant shear for minimum weight under a uniform stress constraint
- Introduction of calculus by Newton and/or Leibniz
  - Development of mathematical optimization
  - Min-max conditions: necessary conditions for optimal solutions
  - Only the unconstrained optimization problems
- Augmented Lagrangian function
  - Extension of simple min-max conditions to constrained optimization problems
  - Lagrangian multipliers: dual variables
    - Weighting factors in establishing the importance of the various constraints at different regions of design space
    - Link between the objective and the constraint functions

# History (2)

- Calculus of variation (attributed to Bernoulli, Euler, Lagrange)
  - Brachistochrone problem
  - Generalization of the elementary theory of minima and maxima
  - Dealing with extremum of a function of functions
  - Solution? One or more functions represented by differential equations
  - Solution of D.E.  $\rightarrow$  optimal path, or all the optimal points
  - Euler-Lagrangian equations  $\rightarrow$  most of field equations of mechanics
  - Principles of least action: originally derived by Euler
    - Hamilton's principle → most of dynamic system equations based on Newton's Laws
    - Lagrange's equation → basis for an elegant description of Newtonian dynamics
  - Numerical difficulties in practical applications

## History (3)

- The Euler-Lagrange equations: extreme conditions
  - Yield one or more nonlinear differential equations for solution
  - Variational approach: difficult to solve, restricted continuity and differentiability
  - Numerical approach: approximation of derivatives by differences and of integrals by sum
    - Differential equation  $\rightarrow$  algebraic equation
    - Reliable? accuracy, time steps, convergence

# History (4)

- Separation of the analysis and design as different problems
  - Analysis: determination of the state of the system as a function of time and spatial coordinates
  - Differential equations of analysis are obtained by minimization or maximization of one or more functions
    - e.g., in solid mechanics, potential energy in the system
    - Dependable variable: state variables → define the state of the system
    - Independent variable: spatial coordinates and time
  - Design: minimization or maximization of a predefined performance function subject to a set of constraint conditions
    - Variables: physical parameters that define the configuration of the system, sizes and/or geometrical quantities of the structural elements

#### Well-Established Areas

- Single-criterion optimization problems
- Optimal plastic design
  - Design against plastic collapse (limit load)
  - Uniform energy dissipation
- Elastic optimal design under static loading
  - Elastic design under strength, stiffness, or stability requirement
- Optimal layout of trusses
- Optimal design under dynamic loading
  - Natural frequency / forced steady state / transient response requirements

## Rectangular Beam (1)

- Design variables
  - Width and height of the cross-section
- Objective functions
  - Minimize the area:  $f_1 = A = wh$
  - Minimize the maximum shear stress :  $f_2 = \tau_{\text{max}} = 1.5 \frac{V}{4} = \frac{3}{2wh}$
- Constraints:  $0.5 \le w, h \le 5$



#### Rectangular Beam (2)

- Weighted sum
- Euclidean norm of the distance from the individual minima



#### Three-bar Truss: Chapter 2.10

- Design variables
  - Cross-sectional areas: A<sub>1</sub>, A<sub>2</sub>, A<sub>3</sub>
  - Horizontal coordinates:  $x_1$ ,  $x_2$ ,  $x_3$
- Objective function
  - Minimize the mass:  $m = \rho \sum_{i=1}^{3} A_i \sqrt{x_i^2 + 100^2}$   $(\rho = 2.9 \, lb / in^3)$
- Constraints
  - Allowable stress in tension and compression:
    - $|\sigma_i| \leq$  30,000 psi
  - Minimum area of any member:
    - $A_i \ge 0.1 in^2$



#### BMT: 10-bar planar truss structure

The 10-bar truss structure, shown in Fig. 2 [16], has previously been analyzed by many researchers, such as Schmit and Farshi [17], Rizzi [18], and Lee and Geem [16]. The material density is 0.1 lb/in<sup>3</sup> and the modulus of elasticity is 10,000 ksi. The members are subjected to the stress limits of  $\pm 25$  ksi. All nodes in both vertical and horizontal directions are subjected to the displacement limits of  $\pm 2.0$  in. There are 10 design variables in this example and the minimum permitted cross-sectional area of each member is 0.1 in<sup>2</sup>. Two cases are considered: Case 1,  $P_1 = 100$  kips and  $P_2 = 0$ ; and Case 2,  $P_1 = 150$  kips and  $P_2 = 50$  kips.



| Variables   |          | Optimal cross-sectional areas (in. <sup>2</sup> ) |            |          |  |
|-------------|----------|---------------------------------------------------|------------|----------|--|
|             |          | Schmit [17]                                       | Rizzi [18] | Lee [16] |  |
| 1           | $A_1$    | 33.43                                             | 30.73      | 30.15    |  |
| 2           | $A_2$    | 0.100                                             | 0.100      | 0.102    |  |
| 3           | $A_3$    | 24.26                                             | 23.93      | 22.71    |  |
| 4           | $A_4$    | 14.26                                             | 14.73      | 15.27    |  |
| 5           | $A_5$    | 0.100                                             | 0.100      | 0.102    |  |
| 6           | $A_6$    | 0.100                                             | 0.100      | 0.544    |  |
| 7           | $A_7$    | 8.388                                             | 8.542      | 7.541    |  |
| 8           | $A_8$    | 20.74                                             | 20.95      | 21.56    |  |
| 9           | $A_9$    | 19.69                                             | 21.84      | 21.45    |  |
| 10          | $A_{10}$ | 0.100                                             | 0.100      | 0.100    |  |
| Weight (lb) |          | 5089.0                                            | 5076.66    | 5057.88  |  |

Comparison of optimal designs for the 10-bar planar truss (Case 2)

| Variables   |          | Optimal cross-sectional areas (in. <sup>2</sup> ) |            |          |
|-------------|----------|---------------------------------------------------|------------|----------|
|             |          | Schmit [17]                                       | Rizzi [18] | Lee [16] |
| 1           | $A_1$    | 24.29                                             | 23.53      | 23.25    |
| 2           | $A_2$    | 0.100                                             | 0.100      | 0.102    |
| 3           | $A_3$    | 23.35                                             | 25.29      | 25.73    |
| 4           | $A_4$    | 13.66                                             | 14.37      | 14.51    |
| 5           | $A_5$    | 0.100                                             | 0.100      | 0.100    |
| 6           | $A_6$    | 1.969                                             | 1.970      | 1.977    |
| 7           | $A_7$    | 12.67                                             | 12.39      | 12.21    |
| 8           | $A_8$    | 12.54                                             | 12.83      | 12.61    |
| 9           | $A_9$    | 21.97                                             | 20.33      | 20.36    |
| 10          | $A_{10}$ | 0.100                                             | 0.100      | 0.100    |
| Weight (lb) |          | 4691.84                                           | 4676.92    | 4668.81  |

#### **Optimal Weight Design Problem: 10 Bar Truss**



$$\begin{array}{ll} \min & W(A) = \rho \sum_{i=1}^{10} l_i A_i \\ \text{s. t.} & G_i = \sigma_i \leq b_i, (i = 1, 2, .., 10) \\ & G_k = v_k \leq b_k, (k = 2, 3, 5, 6) \\ & A_i^L \leq A_i \leq A_i^U, \quad (i = 1, 2, .., 10), \\ & \sigma_i^L \leq \sigma_i \leq \sigma_i^U, \quad (i = 1, 2, .., 10), \\ & v_k^L \leq v_k \leq v_k^U, \quad (k = 2, 3, 5, 6), \end{array}$$

where

$$\sigma_{i} = \epsilon_{i} E, (i = 1, 2, .., 10)$$
$$\begin{bmatrix} u_{k} \\ v_{k} \end{bmatrix} = \{F\} [K]^{-1}, (k = 2, 3, 5, 6)$$

| $11.5 \le A_1 \le 12.5$            | $8.0 \leq A_2 \leq 9.0$  |  |  |
|------------------------------------|--------------------------|--|--|
| $0.1 \leq A_3 \leq 1.0$            | $5.5 \le A_4 \le 6.5$    |  |  |
| $5.5 \leq A_5 \leq 6.0$            | $8.0 \leq A_6 \leq 9.0$  |  |  |
| $8.0 \leq \overline{A_7} \leq 9.0$ | $0.1 \le A_8 \le 1.0$    |  |  |
| $0.1 \leq A_9 \leq 1.0$            | $0.1 \le A_{10} \le 1.0$ |  |  |
| $E = 10^7$                         | $\rho = 0.1$             |  |  |
| $ \sigma  \le 25000$               | $ v_6  \le 5.0$          |  |  |
| $l_{1-4,9,10} = 360$               | $P = 10^{5}$             |  |  |
| $l_{5-8} = 360\sqrt{2}$            |                          |  |  |

Vehicle Design Optimization

Structural Optimization - 34

#### Results: 10 Bar Truss

|                 | improved GA | DCOC         | Dual         | DOC-FSD      |
|-----------------|-------------|--------------|--------------|--------------|
| $A_1$           | 12.131896   | 12.161173957 | 12.161173956 | 12.126576172 |
| $A_2$           | 8.794619    | 8.707029023  | 8.707029026  | 8.827450732  |
| A <sub>3</sub>  | 0.100000    | 0.100000000  | 0.100000000  | 0.100000000  |
| A4              | 6.065801    | 6.040579884  | 6.040579884  | 6.046585281  |
| As              | 5.100000    | 5.560164853  | 5.560164853  | 5.564322434  |
| A <sub>6</sub>  | 8.539911    | 8.573640198  | 8.573640196  | 8.497882192  |
| A7              | 8.575261    | 8.542669996  | 8.542669996  | 8.551162911  |
| A8              | 0.100000    | 0.10000000   | 0.100000000  | 0.100000000  |
| A9              | 0.100000    | 0.100000000  | 0.100000000  | 0.100000000  |
| A <sub>10</sub> | 0.100000    | 0.100000000  | 0.100000000  | 0.10000000   |
| W(lb)           | 2118.626    | 2139.105     | 2139.105     | 2139.198     |

|                 | $\sigma_i$ | fi           |
|-----------------|------------|--------------|
| $l_1$           | 166.2779   | 20215.11096  |
| $l_2$           | -2249.6584 | -19784.88904 |
| $l_3$           | 475.6522   | 47.56522     |
| 4               | -1640.7454 | -9952.43478  |
| $l_5$           | 2713.3182  | 13837.92279  |
| 16              | -1691.6275 | -1446.34846  |
| 17              | 1641.3341  | 14074.86824  |
| 18              | -672.6738  | -67.26738    |
| lg              | 2626.7618  | 262.67618    |
| l <sub>10</sub> | 475.6522   | 47.56522     |

| node | u <sub>k</sub> | $v_k$     |
|------|----------------|-----------|
| 1    | 0              | 0         |
| 2    | 0.606673       | -1.817000 |
| 3    | 0.768973       | -4.83595  |
| 4    | 0              | 0         |
| 5    | -0.827898      | -2.78003  |
| 6    | -1.422710      | -4.99826  |

#### Size Design in MCAE



## Shape Optimization (1)

- FEM + Design Sensitivity + SLP
  - O. C. Zienkiewicz and J. S. Campbell, Shape Optimization and Sequential Linear Programming, International Symposium on Optimization of Structural Design, University of Wales, Swansea, January 1973
- Adaptation of Nodal Points on the Boundary
- Without using parametric representation, they adapted the nodes of the finite element model → a lot of problem !
  - possibility of non-smoothed optimum shape due to non-smooth stresses on the design boundary
  - possibility of excessive element distortion
  - unclear adaptation schemes





## Shape Optimization (2)

- Reducing stresses at a boundary by changing that boundary
- Difficulties in shape optimization
  - Accuracy of the FE analysis? continuously changing FE model
  - Good sensitivity derivatives w.r.t. shape design variables? expensive



R.T. Haftka and R.V. Grandhi, Structural Shape Optimization–A Survey, *Computer Methods in Applied Mechanics and Engineering*, 57, pp.91-10, 1986

## Shape: Formulation

Typical Setting of Optimization Finite Element Representation



 $\Omega$ : variable unknown domain



## **Practical Approach**

- Difficulties
  - Every FEA code does have their own special finite elements, and then design sensitivity must be performed in such a FEA code
  - Geometric representation of the control points and the FE nodes must be related, and then this requires full link with CAD representation and mesh generation scheme
  - Full integration of
    - CAD like representation of Design Segments
    - Control Point Adaptation
    - Adaptive Finite Element Method
    - Full Automatic Mesh Generation Method

is not realistic in practice.

• What is a possible alternate ?

## Shape Design Parameters (1)

- Geometry-based mesh parameterization
  - Higher-level geometry data: surface control points, fillet radii
  - Mapped / free meshes
  - Integration with parametric solid modelers ③
  - Mesh generator must be included  $\otimes$
- Reduced basis approach
  - Base configuration with a distinct mesh topology that remains fixed during the optimization
  - How to generate the design velocities (design base shapes for complex FE meshes)?  ${X(b)} = {X_0} + \sum_{k=1}^{N_s} b_k \{V_k\}$

original nodal coordinates

 $\{V_k\} = \{X_k\} - \{X_0\}: k$ -th design velocity vector

 $b_k$ : shape parameters

Structural Optimization - 41

0

**Design Boundary Segment** 

Ο

Control Points

Ο

## Shape Design Parameters (2)

 Design velocities giving shape changes as a function of shape design parameters



## Engine Connecting Rod: Problem Description

- Minimize mass with a limit on the maximum allowable von Mises stress developed under the applied pressure load
- 1120 3D solid elements
- Design variables
  - Outer radius at crank
  - Outer radius at piston
  - Rod body curvature
  - Flange thickness
  - Flange width



#### **Engine Connecting Rod: Basis Vectors**





Vehicle Design Optimization

#### **Engine Connecting Rod: Results**

| Design<br>Cycle | $b_1$   | $b_2$   | <i>b</i> 3 | $b_4$    | <i>b</i> 5 |
|-----------------|---------|---------|------------|----------|------------|
| 0               | 0.00000 | 0.00000 | 0.00000    | 0.00000  | 0.00000    |
| 1               | 0.10000 | 0.10000 | 0.10000    | 0.00397  | -0.01313   |
| 2               | 0.15121 | 0.20000 | 0.20000    | -0.01992 | -0.11313   |
| 3               | 0.18213 | 0.33333 | 0.33333    | -0.09861 | -0.21313   |
| 4               | 0.21461 | 0.56275 | 0.37941    | -0.10697 | -0.35258   |
| 5               | 0.21317 | 0.56275 | 0.37876    | -0.10733 | -0.35314   |





#### weight reduction (23.1%)