25.19 The two differential equations to be solved are

dv Cd .2
—_— g ——=
dr m
dx

—_— -y

dt

(a) Here are the first few steps of Euler’'s method with a step size of 1 =0.2.

t X v dx/dt dvidt
0 1000 0 0 9.81
0.2 1000 1.962 -1.962 9.800376

04 9996076 3.922075 -3.92208 9.771543
06 998.8232 5.876384 -5.87638  9.72367
0.8 9976479 7.821118 -7.82112 9.657075

1 996.0837 9.752533 -9.75253  9.57222

(b) Here are the results of the first few steps of the 4®-order RK method with a step size of 1 = 0.2.

t X v
0 1000 0
0.2 999.8038 1.961359
04 999.2157 3.918875
06 9982368 5868738
08 996.869  7.807195
1 995.1149 9.730582

The results for x of both methods are displayed graphically on the following plots. Because the step size 1s
sufficiently small the results are in close agreement. Both indicate that the parachutist would hit the ground at a
little after 20 s. The more accurate 4*-order RK method indicates that the solution reaches the ground between ¢
=20.2and 204 s.
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26.13 The second-order equation can be composed into a pair of first-order equations as

g ax g

—_—=X —_—

ar a 1

We can use MATLAB to solve this system of equations.

tspan=[0,5]";

x0=[0,0.25]";

[t,x]=0de45 ('dxdt', tspan,x0);

plo‘;(t,x{:,;),‘;,x(:,i‘.) r Fmsi)

grid

title('Angle Theta and Angular Velocity Versus Time')
xlabel ('Time, tT')

ylabel ('Theta (Solid) and Angular Velocity (Dashed)')
axis([0 2 0 10])

zZoom

function dx=dxdt(t,x)
dx=[x(2):(9.81/0.5)*x(1)]:

Angle Theta and Angular Velocity Versus Time

-
o

& (=] (=]

Theta (Solid) and Angular Velocity (Dashed)
8]

L=
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26.15 (a) Analytic solution:

1000y -1001w

X

where w =)'. Using the same approach as described in Sec. 26.1. the following simultaneous equations
need to be solved to advance each time step,

Yisy ~Iwg =,

10004y, +1001/w;,; = w;

If these are implemented with a step size of 0.5, the following values are simulated

X y w
0 1 0

05 0.667332 -0.66534
1 0.444889 -0.44489

1.5 0.296593 -0.29659
2 0.197729 -0.19773

25 0.131819 -0.13182
3 0.087879 -0.08788

3.5 0.058586 -0.05859
4 0.039057 -0.03906

45 0.026038 -0.02604
5 0.017359 -0.01736

The results for y along with the analytical solution are displayed below:

1.2

1
0.8
0.6
0.4
0.2

0

Implicit numerical

b,
/o
Analytical

- i L n T S—1 i I —

0 1 2 3 4 5
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1.2

0.8
0.6
04
0.2

Implicit numerical

Analytical

4 i 1 i i

0 1 2 3 4 5

Finally, we can also solve this problem using one of the MATLAB routines expressly designed for stiff
systems. To do this. we first develop a function to hold the pair of ODEs.

function dy = dydx(x, y)
dy = [y(2);-1000*y(1)-1001*y(2)1;

Then the following session generates a plot of both the analytical and numerical solutions. As can be seen,
the results are indistinguishable.

x=[0::3:5];

y=1/9%%* (1000*exp (-x) —exp (-1000*x) ) ;
xspan=[0 5];

x0=[1 0];

[%x, yy]=ode23s (@dydx, xspan, x0) ;
plot(x,y,xx,yy(:,1),'0")

grid

xlabel ('x')

ylabel('y')

=
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27.4 The second-order ODE can be expressed as the following pair of first-order ODEs,

v _.

T

d 2z+y-x
a7

These can be solved for two guesses for the mitial condition of . For our cases we used -1 and —0.5. We

solved the ODEs with the Heun method without iteration using a step size of 0.125. The results are

2(0) -1 -05
y(20) -11,837.64486 22,712.34615

Clearly, the solution is quite sensitive to the imitial conditions. These values can then be used to derive the

correct mitial condition,

2(0)==1+ —05+1 (8—(~11837.64486)) = ~0.82857239

22712.34615—(—11837.64486)

The resulting fit 1s displayed below:

X Yy

0 5
2 4.151601
- 4.461229
6 5.456047
8 6.852243
10 8.471474
12 10.17813
14 11.80277
16 12.97942
18 12.69896
20 8
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27.5 Centered finite differences can be substituted for the second and first derivatives to give,

PRI, ) ) g1 s A
7 Jis1 —'.‘: +JYia _2-1:+12A;l—1 -V +X =0
Ax~ ’

or substituting Ax = 2 and collecting terms yields
=225y, ,+4.5y, =125y, =x;
This equation can be written for each node and solved with methods such as the Tridiagonal solver, the

Gauss-Seidel method or LU Decomposition. The following solution was computed using Excel’s Minverse
and Mmult functions:

X ¥

0 5

2 4.199592
4 4518531
6 5507445
8 6.893447
10  8.503007
12 10.20262
14 11.82402
16 13.00176
18 12.7231
20 8
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27.27 (a) The exact solution 1s
y=de" +12 +0.4r+0.08
If the initial conditionat 1 =015 0.8. 4 =0,

y=1>+0.4r+0.08

Note that even though the choice of the imitial condition removes the positive exponential terms, 1t still
lurks 1n the background. Very tiny round off errors in the numenical solutions bring it to the fore. Hence all
of the following solutions eventually diverge from the analytical solution.

(b) 4® order RK. The plot shows the numerical solution (bold line) along with the exact solution (fine line).

15

(BA—ARNRAEI ALREEERAREEIEEnS]

()

function yp=dy(t,y)
yp=5*(y-t+2);

>> tspan=[0,3];

>> y0=0.08;

>> [t,y]=ode45('dyl’, tspan,y0);

(d)

>> [t,y]l=ode23S('dyl',tspan,yl);

(e)
>> [t,y]=ode23TB('dyl’',tspan,y0);

30 ¢
20 4
10 ¢

0 Aemreen
=10 +
20 +
30 £

— RK4 —---—Analytical ——ODE45
<.« ODE23S ——ODE23TP
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