
Textbook

Fourth Edition

Introduction to Optimum Design

Introduction to Optimum Design

4th Edition

☆☆☆☆☆ Write a review

Authors: Jasbir Singh Arora

Hardcover ISBN: 9780128008065 eBook ISBN: 9780128009185

View on ScienceDirect >

Imprint: Academic Press Published Date: 28th April 2016

Page Count: 968

https://www.elsevier.com/books/introduction-to-optimum-design/arora/978-0-12-800806-5 https://www.sciencedirect.com/book/9780128008065/introduction-to-optimum-design#book-info

Table of Contents (1)

Part	I. The Basic Concepts			
Ch	Title	U/G1	G1	G2
1	Introduction to Design Optimization	0	0	
2	Optimum Design Problem Formulation	0	0	
3	Graphical Optimization and Basic Concepts	0	0	
4	Optimum Design Concepts: Optimality Conditions	0	0	
5	More on Optimum Design Concepts: Optimality Conditions		0	

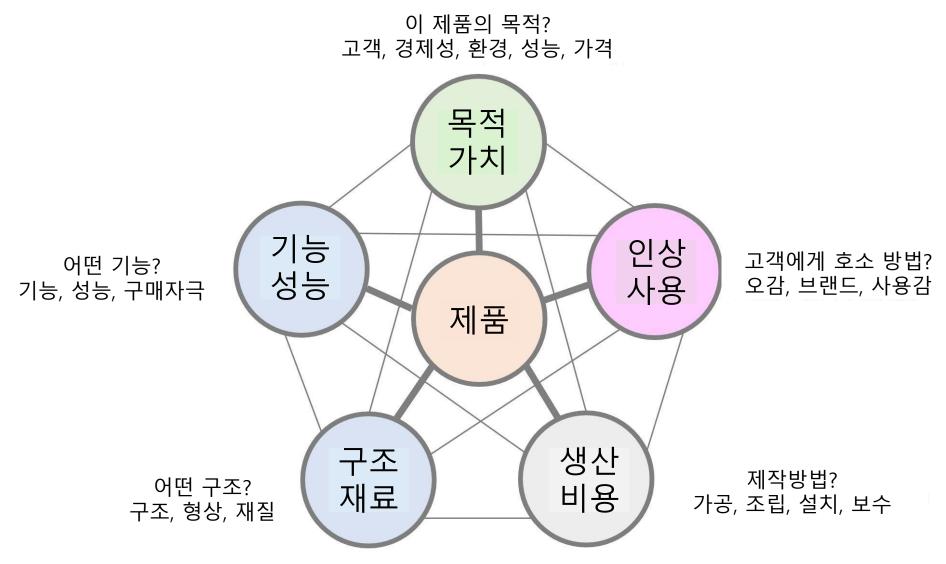
U/G1: Undergraduate/First-Year Graduate Level Course G1: First Graduate Level Course G2 Second Graduate Level Course

Table of Contents (2)

Part	Part II. Numerical Methods for Continuous Variable Optimization					
Ch	Title	U/G1	G1	G2		
6	Optimum Design with Excel Solver	0		0		
7	Optimum Design with MATLAB	0		0		
8	Linear Programming Methods for Optimum Design	0	0	0		
9	More on Linear Programming Methods for Optimum Design		0	0		
10	Numerical Methods for Unconstrained Optimum Design	0	0	0		
11	More on Numerical Methods for Unconstrained Optimum Design		0	0		
12	Numerical Methods for Constrained Optimum Design	0	0	0		
13	More on Numerical Methods for Constrained Optimum Design		0	0		
14	Practical Applications of Optimization			0		

Table of Contents (3)

Part III. Advanced and Modern Topics on Optimum Design					
Ch	Title	U/G1	G1	G2	
15	Discrete Variable Optimum Design Concepts and Methods			0	
16	Global Optimization Concepts and Methods			0	
17	Nature-Inspired Search Methods			0	
18	Multi-Objective Optimum Design Concepts and Methods			0	
19	Additional Topics on Optimum Design			0	


Introduction

- Engineer
 - Design devices and products that perform tasks in an efficient fashion
 - Constrained by the limitations of the physical world and must keep costs down
 - Confronting optimization problems that balance performance and limitations
- Mechanical Design
 - Selection of materials and geometry
 - which satisfies specified and implied functional requirements
 - while remaining within the confines of inherently unavoidable limitations

모델링

- 설계 시작부터 종료까지 프로세스를 통해 설계대상을 구성하는 파라미터와 이들간 관계를 각 프로세스로 이 해가능한 형식으로 표현함으로써 각 설계결과를 평가 가능하도록 하는 것. 즉, 모델링의 결과가 모델임.
- 설계 자체를 제삼자가 이해 가능한 형식으로 표현하여 설계를 효율적으로 창조적인 것으로 하기 위한 프로세 스를 가능한 이론적으로 표현하고 가시화하는 방법
- 기술(記術)모델: 언어, 그림으로 표현, 의사 전달
- 해석(解析)모델: 식으로 표현, 계산 가능 (CAE)
- 형상(型狀)모델: 생산 가능한 형태로 표현 (CAD)

제품설계와 모델링

모델링 사례: 가치 (헤어드라이어)

- QFD: 고객 요청 → 기능(공학적 지표) → 부품(구조) 으로 전개

- 건조속도, 안전, 그립감, 소음, 신뢰도, 전기료, 휴대성, 조작성
- 유량, 공기온도, 밸런스, 중량, 크기, 소음레벨, 소비전력, 스위치 개수
- 모터, 팬, 히터, 스위치, 하네스, 관체

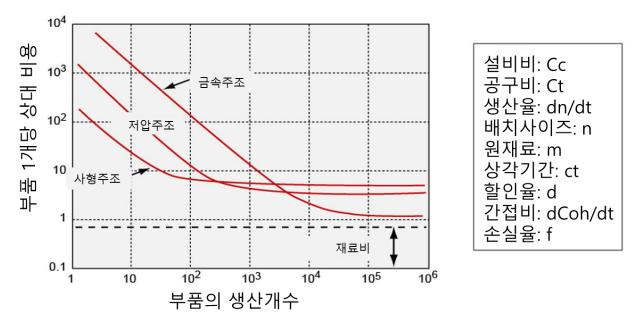
			工学的指標(機能)							ベン	チマ	ーク					
	顧客の声	重み付け	調査	空気温度	持ったいバランス	重量	大きさ	騒音レベル	消費電力	スイッチの数	1 悪い	2	3	4	5 良い		
	早く乾く	9	9	9								С		В	Α		-
	安全である	3	1	9		_		1				Α	_	B,C			
입력	持ち易い	9		3	9	9	3					Α	В		С		
	静かである	3	3					9			Α		В		С		
[고객 요청]	信頼できる	3	1	1				1				С	A	В	_		
1	電気代が安い	3							9				В	A,C			-
	携帯できる	1		_		9	9			3	С	В			A		-
	操作が簡単	1			3	3					С	В	_		Α	1 	_
	目標値		>1.2 m^3 / min	⊃°00 °C	<10 Nm	< 500gram	< 300mmx300mmx100mm	< 60 dB	< 1500 W	<4							-
		良い 5	Α	В	С	Α		С	Α								
		4	в	Α	В		Α	В		Α							
	ベンチマーク	3				В	в		В	С							
		2	С	С	Α		С	Α		В							
		悪い 1				С			С								
		積算値	96	138	93	93	36	33	27	3							
		正規化	0.18	0.27	0.18	0.18	0.07	0.06	0.05	0.01							

			1	新品(構造)		
工学的指標(機能)	正規化後の重み	E-9	777	K-3	スイッチ	ハーネス	筐体
流量	0.18	9	9	3			3
空気温度	0.27	3	3	9		1	
持ったバランス	0.18	9	3	1			9
重量	0.18	9	3	3	1	1	9
大きさ	0.07	3	3	3	1	1	9
騒音レベル	0.06	9	9				3
消費電力	0.05	3	3	9	1	1	
スイッチの数	0.01	3	_	3	9		
	積算値	6.64	4.47	4.36	0.35	0.57	4.60
	正規化	31.6%	21.3%	20.8%	1.7%	2.7%	21.9%
	材料費	30	6	4	2	2	2
	加工費		2	4		3	10
	開発費		1	1			1
	ᅶ	30	9	9	2	5	13
	正規化	44.1%	13.2%	13.2%	2.9%	7.4%	19.1%

출력 [<u>가치</u>, 비용]

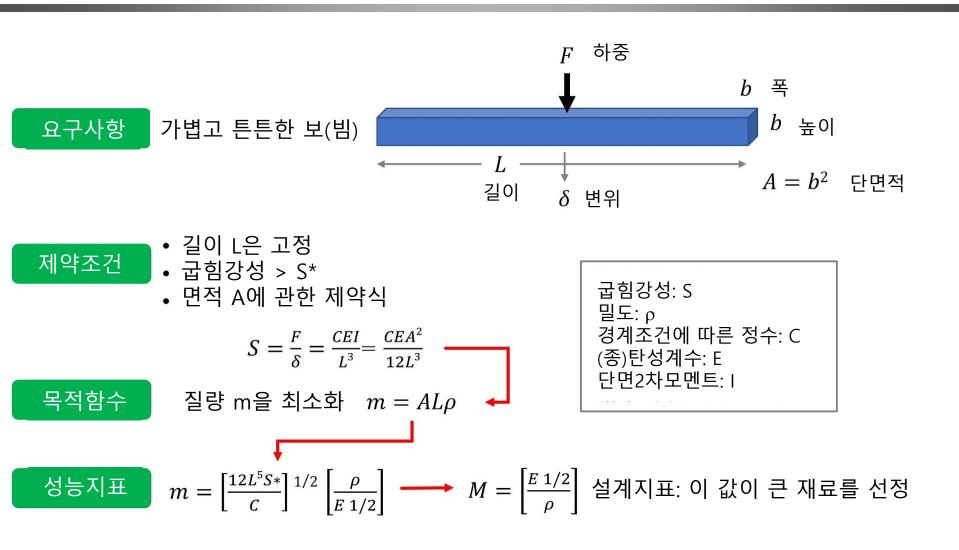
모델링 사례: 비용 (주조)

- 파라미터: 재료, 생산개수, 상각기간

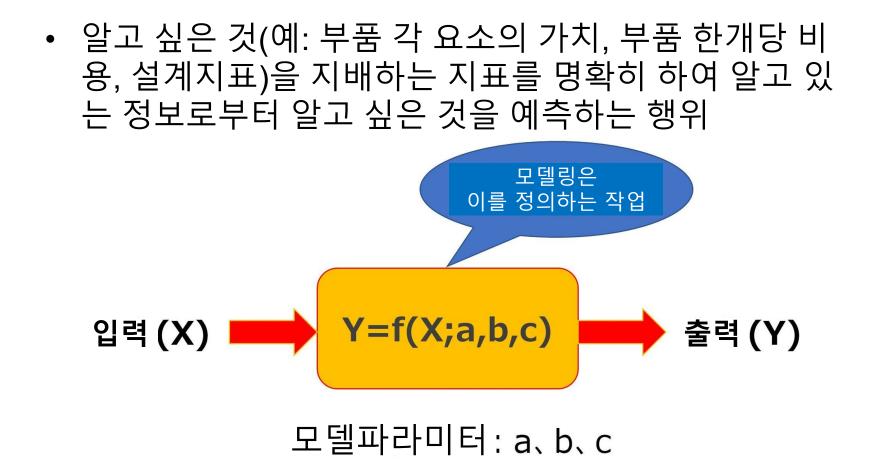

- 선택 가능한 설계변수: 재료, 제조방법
- 정확도가 높지는 않지만 상대적 비교는 가능

재료비

부품 1개당 비용 $C = \left[\frac{mC_m}{1-f}\right] + \left[\frac{C_t}{n}\right] + \frac{1}{dn/dt} \left[\frac{C_c}{Lct}\right] (1+d)^{ct} + \frac{dC_{oh}/dt}{dn/dt}$


공구비

설비비


간접비

모델링 사례: 성능 (경량보)

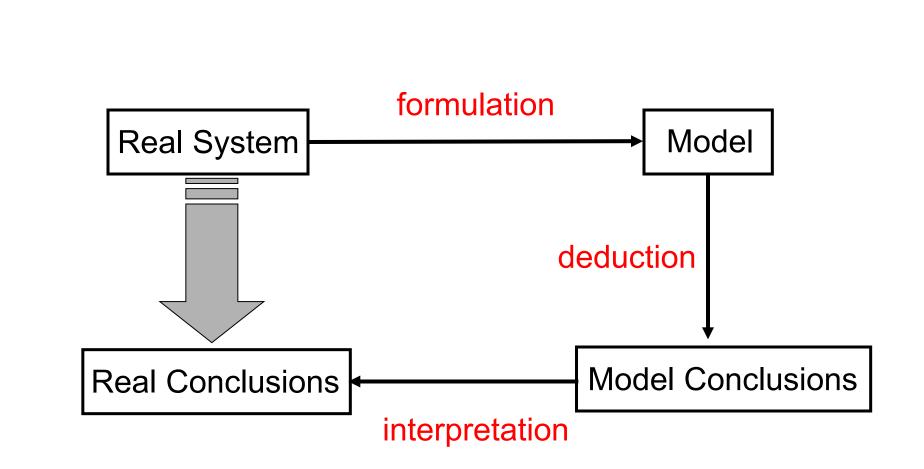
Vehicle Design Optimization

모델링이란?

모델링 = 설계 (디자인)

Engineering Model (1)

- Model
 - Abstract description of the real world giving an approximate representation of more complex functions of physical systems
 - Increase our understanding of how a system works
 - Physical: scale model, prototype
 - Symbolic: drawings, verbalization, logic, mathematics
- Mathematical model
 - A model that represents a system by mathematical expressions of relevant natural laws, experience, and geometry
 - May contain many alternative designs, so criteria must be introduced in the model
 - Best, or optimum, design can be identified with the aid of mathematical methods


Engineering Model (2)

- Real-life engineering design problem
 - very unstructured
- Most difficult and challenging part
- Depends on experience as well as skill
- Thorough understanding of the first principles and fundamentals of engineering
- Describes the physical behavior of the system mathematical model

Engineering Model (3)

- Elements of models
 - Variables / Parameters / Constants / Mathematical relations
- Hierarchical levels
 - Every system is analyzed at a particular level of complexity
 - System \rightarrow Subsystems \rightarrow Components
 - "cut across" the links with environment, input/output characterization: free-body diagram, control volume

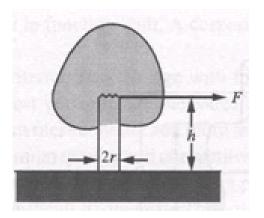
Modeling Process (1)

Modeling Process (2)

- Formulation
 - Often considered to be an art
 - What aspects of the real system should be included, which can be ignored?
 - What assumptions can and should be made?
- Deduction
 - Involves techniques that depend on the nature of the model
 - May involve solving equations, running a computer program, expressing a sequence of logical statements – whatever it takes to solve the problem of interest relative to the model
 - It should not be subject to differences of opinion, provided that the assumptions are clearly stated and identified
- Interpretation
 - Again involves a large amount of human judgment
 - The model conclusions must be translated to the real world conclusions, in full cognizance of possible discrepancies between the model and its real world.

Vehicle Design Optimization

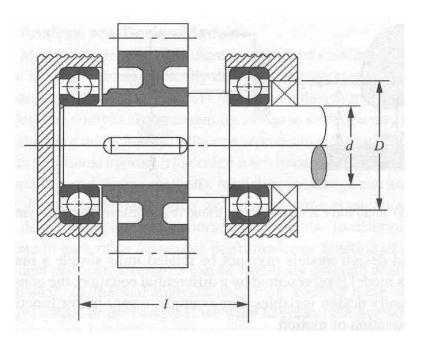
Analysis vs. Design


- Engineering analysis
 - To determine the behavior of an existing system
 - Sizes and configurations are given
- Engineering design
 - To calculate sizes and shapes of various parts to meet performance requirements
- left estimate a design and analyze it to see if it performs according to the specifications

Analysis and Design Model

- Analysis model
 - Based on the principles of engineering science
 - Maximum wind force the tree can withstand before it breaks (*F*) if we take the tree as given (σ_{max} , *h*, *r*: parameters)
- Design model
 - Constructed from the analysis models for specific prediction tasks
 - Protect the tree from high winds by appropriately trimming the foliage to decrease *F* and *h* (variables)

Trunk of a tree subject to a wind force *F* at a height *h*


$$\sigma = \frac{My}{I} \xrightarrow{I = \frac{\pi r^4}{4}} \sigma_{\max} = \frac{4Fh}{\pi r^3}$$

Example: Shaft Design

Influence of a given viewpoint on the design model

	d		materials
Shaft designer	variable	parameter	parameter
Housing designer	variable	variable	parameter
Project manager	variable	variable	variable

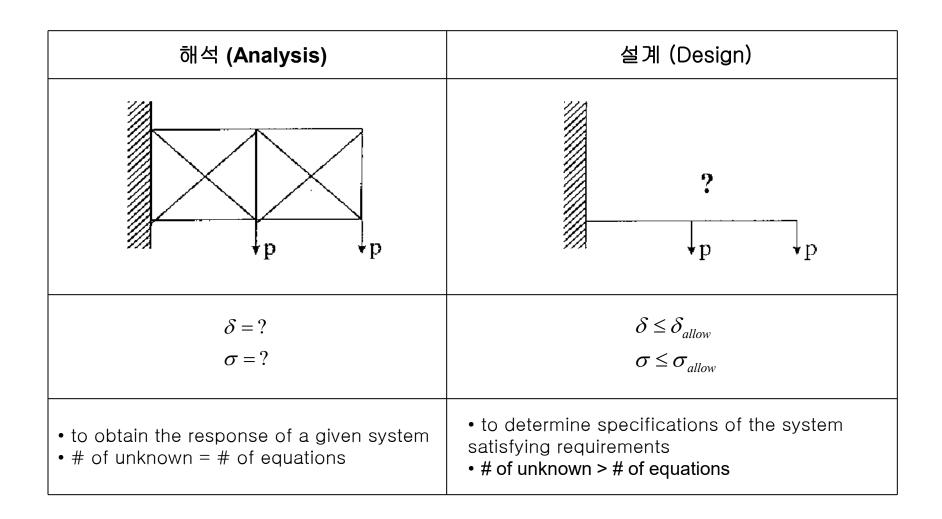
Decision Making

- Criterion: evaluating alternatives and choosing the "best" one
 - Not unique, influenced by many factors
 - Design application, timing, point of view, judgment of the designer
 - May change with time
 - Automobile design: maximum power and comfort \rightarrow fuel economy
- Decision-making (Optimization) model
 - A design model that includes an evaluation criterion (objective)
- Shaft design example

Criterion	
Weight	
Rigidity	Best meshing of the attached gear
Material and manufacturing costs	Shop manager, ease of manufacturing
Cost	Project or plant manager

Design Optimization

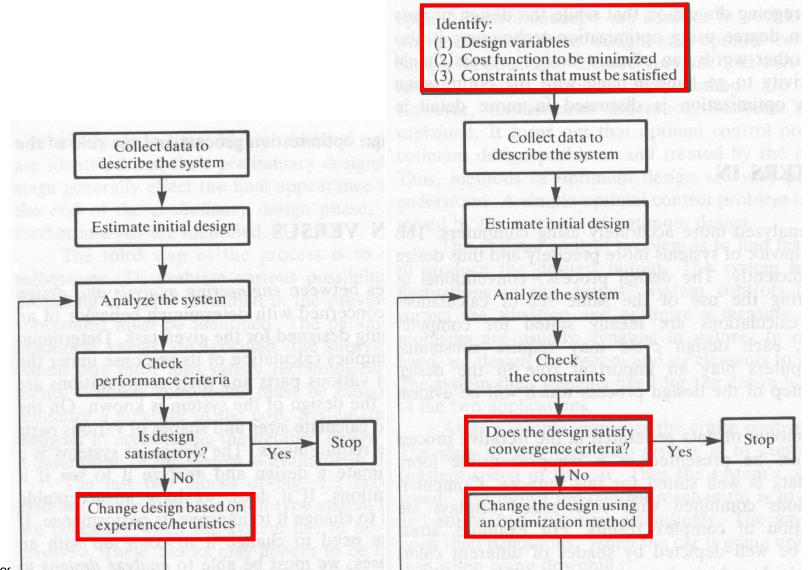
- Goal of engineering
 - To improve the design so as to achieve the best way of satisfying the original need within the available means
- Elements in the design process
 - Recognition of need / act of creation / selection of alternatives
- Design optimization: selection of the "best" alternative
 - How do we describe different designs ? (design model)
 - What is our criterion for "best" design ? (objective)
 - What are the "available means" ? (set of requirements)

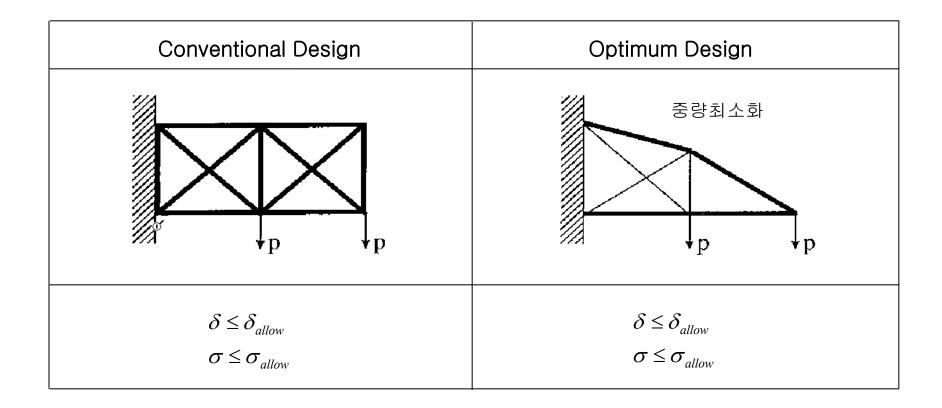

Optimum Design

- Undesirable effects
 - Stress, deflection, vibration, space occupancy, weight, cost
 - Dependent of the application (degree of significance)
 - Tolerable limit
- Desirable effects
 - Power transmission/ energy absorption/ momentary overload/ speed capacity, usable length of life, factor of safety
- Optimum design
 - Best possible one from the standpoint of the most significant effect
 - Minimize/Maximize the most significant undesirable/desirable effect

Problem Formulation Steps

- Identification of *design variables*
 - Parameter chosen to describe the design
 - Independent of each other, minimum number
- Identification of an objective (cost) functions
 - Criterion to compare various designs
 - as a function of the design variables
 - Single/Multi-objective
- Identification of all *design constraints*
 - All restrictions placed on a design
 - Explicit/Implicit, Linear/Nonlinear, Equality/Inequality
 - Feasible/Infeasible


10 Bar Truss Design


Conventional vs. Optimum (1)

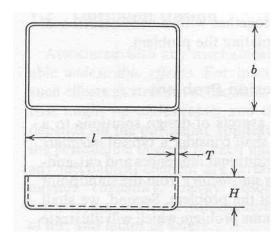
- Conventional design
 - Depends on designer's intuition, experience, and skill
 - Merits in making conceptual changes/additional specs
 - Difficulties in detailed design (complex constraints)
 - Less formal, no objective function/trend information
- Optimum design
 - Identify explicitly a set of design variables, cost function to be minimized, and constraint functions
 - More organized using trend information

Conventional vs. Optimum (2)

Conventional vs. Optimum (3)

Optimization Problems in Engineering (1)

- Design aircraft for minimum weight and maximum strength
- Optimal trajectories of space vehicles
- Design civil engineering structures for minimum cost
- Design water-resource projects like dams to mitigate flood damage while yielding maximum hydropower
- Predict structural behavior by minimizing potential energy
- Material-cutting strategy for minimum cost
- Design pump and heat transfer equipment for maximum efficiency
- Maximize power output of electrical networks and machinery while minimizing heat generation
- Shortest route of salesperson visiting various cities during one sales trip
- Optimal planning and scheduling


Optimization Problems in Engineering (2)

- Statistical analysis and models with minimum error
- Optimal pipeline networks
- Inventory control
- Maintenance planning to minimize cost
- Minimize waiting and idling times
- Design waste treatment systems to meet water-quality standards at least cost

Plastic Tray Design (1)

- Basic design problem
 - Design a plastic tray capable of holding a specified volume of liquid, V, such that the liquid has a specified depth H, and the wall thickness of the tray is to be a specified thickness, T. The tray is to be manufactured in large quantities.
- Adequate design solution
 - Geometry
 - Intuition: rectangular ?

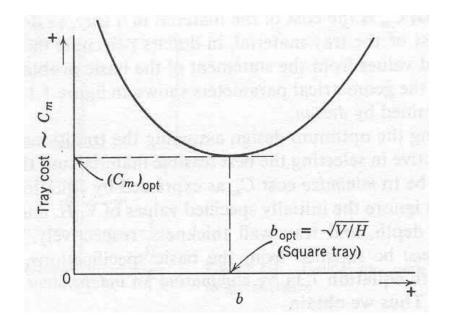
- Infinite number of possible solutions
- Material: experience?
 - · Possible manufacturing techniques: vacuum forming
 - Possible chemical reactions w/ liquid: acrylic thermoplastic sheet

Plastic Tray Design (2)

- Optimum design solution
 - "manufactured in large quantities": cost (most significant undesirable effect)
 - Primary design equation:
 - C_o, C_t, C_l : independent of

$$C = \underbrace{C_o}_{\text{overhead}} + \underbrace{C_t}_{\text{tooling}} + \underbrace{C_l}_{\text{labor}} + \underbrace{C_m}_{\text{material}}$$

- Reasonable geometrical shapes / Feasible plastic materials
- Objective: minimize cost C_m
 - selecting the best feasible material and the best values for b and l


c: unit volume cost of the tray material

- Optimum feasible material
 - c: polystyrene

	c			
	\$/in ³	\$/m ³		
Acrylic	0.030	1831		
Polystyrene	0.012	732		

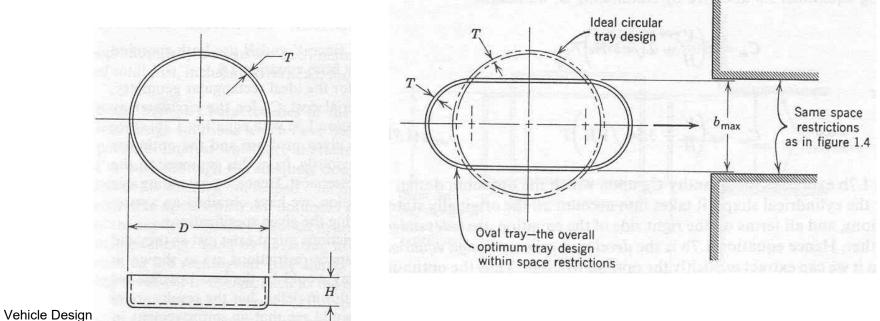
Plastic Tray Design (3)

Optimum geometry for the rectangular tray



Plastic Tray Design (4)

• Space restrictions: $b \le b_{\max}$, $l \le l_{\max}$


 $\begin{cases} b_{\max} \ge \sqrt{V/H} & \text{and } l_{\max} \ge \sqrt{V/H} \text{ : ideal square tray is still the optimum design} \\ b_{\max} < \sqrt{V/H} & \text{ or } l_{\max} < \sqrt{V/H} \text{ : the tray which barely fits within the space restriction} \\ V \end{cases}$

incompatible specifications : $b_{\max} l_{\max} < \frac{V}{H}$

Plastic Tray Design (5)

- Other basic geometrical shape ?
 - Circle: lowest $C_{\rm m}$ from the calculus of variations

