Problem Formulation Process (1)

« Step 1: Project/Problem Statement
— Is the project goal clear?
— descriptive statement for the project/ problem
— overall objectives of the project and the requirements to be met

« Step 2: Data and Information Collection
— Is all the information available to solve the problem?
— Performance requirements, resource limits, cost of raw materials
— ldentification of analysis procedures and tools

— project statement is vague, and assumptions about modeling of
the problem need to be made in order to formulate and solve it

Vehicle Design Optimization Ch. 2-1



Problem Formulation Process (2)

« Step 3: Identification/Definition of Design Variables
— What are these variables? How do | identify them?

— identify a set of variables that describe the system, called the
design variables

— should be independent of each other, minimum number
— As many independent parameters as possible should be
designated as design variables at the problem formulation phase
« Step 4: Optimization Criterion
— How do | know that my design is the best?

— must be a scalar function whose numerical value can be obtained
once a design is specified (function of the design variable vector )

— maximized or minimized depending on problem requirements

— criterion that is to be minimized is usually called a cost function in
engineering literature
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Problem Formulation Process (3)

« Step 5: Formulation of Constraints
— What restrictions do | have on my design?
— All restrictions placed on the design
— identify all constraints and develop expressions for them

— must be designed and fabricated with the given resources and
must meet performance requirements
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Problem Formulation Steps

* Identification of design variables
— Parameters chosen to describe the design
— Independent of each other, minimum number

« |dentification of an objective (cost) functions
— Criterion to compare various designs

— As a function of the design variables I
— Single/Multi-objective
+ |dentification of all design constraints
— All restrictions placed on a design " >

— Feasible/Infeasible
— Explicit/Implicit, Linear/Nonlinear, Equality/Inequality
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Design of a Cantilever Beam (1)

« Step 1: Problem Statement

Cantilever beams are used in many practical applications in civil, mechanical, and aerospace en-
gineering. To illustrate the step of problem description, we consider the design of a hollow square-
cross-section cantilever beam to support a load of 20 kN at its end. The beam, made of steel, is 2m
long, as shown in Fig. 2.1. The failure conditions for the beam are as follows: (1) the material should
not fail under the action of the load, and (2) the deflection of the free end should be no more than
1 cm. The width-to-thickness ratio for the beam should be no more than 8 to avoid local buckling
of the walls. A minimum-mass beam is desired. The width and thickness of the beam must be within
the following limits:

60 < width < 300 mm (a)

3 < thickness £ 15 mm (b)

—

A
i
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Design of a Cantilever Beam (2)

« Step 2: Data and Information Collection

MNotation Data A=w?- (w— Zﬂz =4t(w—1), mm?
- i - 2 1 1 1 1
A Cross-sectional area, mm = —wxw® ——(w—28)x (w—2t) = —w* ——(w—2#), mm?*
E Modulus of elasticity of steel, 21 X 10* N/mm? 12 12 12 12
G Shear modulus of steel, 8 x 10* N/ mm? 1 1 _9n 1 1
L . . Q:—wzXE——(W—EHEXM:—wg——(W—Zf)‘g,mg
I Moment of inertia of the cross-section, mm 2 4 2 4 a8
L Length of the member, 2000 mm
M= PL,N/mm
M Bending moment, N/mm
P Load at the free end, 20,000 N V=P N
Q Moment about the neutral axis of the area above the neutral axis, mm” Muw
_ 2
q Vertical deflection of the free end, mm Y N/mm
a Allowable vertical deflection of the free end, 10 mm
Vv Shear force, N = —Z? SN/ 2
i
w Width (depth) of the section, mm
t Wall thickness, mm P12
§==———,mm
o Bending stress, N/mm? 3EI
, Allowable bending stress, 165 N/ mm?
: . V(x)0(y)
T Shear stress, N /mm 0= IA vdA : first moment of area — 7 = Yo
T Allowable shear stress, 90 N /mm’ (y)
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Design of a Cantilever Beam (3)

» Step 3: Definition of Design Variables
— w = outside width (depth) of the section, mm
— t=wall thickness, mm
« Step 4: Optimization Criterion
— Design a minimum-mass cantilever beam
— cross-sectional area of the beam:

« Step 5: Formulation of Constraints
— Bending stress constraint
— Shear stress constraint
— Deflection constraint
— Width-thickness restriction
— Dimension restrictions
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Design of a Can (1)

« Step 1: Problem Statement
— Design a can to hold at least 400ml of liquid
— Production in billions — Minimize the manufacturing cost
— Cost directly related to the surface area of the sheet metal
— Minimize the sheet metal required to fabricate the can

— Diameter of the can should be no more than 8 cm. Also, it
should not be less than 3.5 cm.

— Height of the can should be no more than 18 cm and no less

than 8 cm. —

« Step 2: Data and Information Collection ~——
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Design of a Can (2)

« Step 3: Design variables
— Diameter of the can (cm) / Height of the can (cm)

« Step 4: Cost function

— Total surface area of the sheet metal

f(D,H):ﬂDH+2£7T§2j

« Step 5: Constraints

. 2
— Volume: (ﬂi jH24OO

— Size of the can: side/technological/sizing constraints, simple
bounds, upper and lower limits

35<sD<g, 8<HKLIS
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Saw Mill Operation (1)

« Step 1: Problem Statement

— Each forest can yield up to 200 logs/day

— Cost to transport the logs is estimated at 15 cents/km/log
— Atleast 300 logs are needed each day

— Minimize the cost of transportation of logs each day

« Step 2: Data and Information Collection

Mill A

Distance (km) Capacity

Mill | Forest1 | Forest2 | /day
A 24.0 20.5 240 logs
B 17.2 18.0 300 logs
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Ch. 2-10



Saw Mill Operation (2)

« Step 3: Design variables: x,, X5, X3, X4
« Step 4: Cost function

— Cost of transportation of logs each day

« Step 5: Constraints

— Mill capacities:
— Yield of forests:

— Daily needs:

Linear Programming problem
—Integer Programming problem
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Vehicle Design Optimization

find x1, X2, x3, x4 to minimize
=24*x1+20.5*x2+17.2*x3+18*x4 subject to
x1+x2<=240, x1+x3<=300, x1+x3<=200,
x2+x4<=200, x1+x2+x3+x4>=300

& Pro Search

Formulate the linear programming model with the objective function and constraints v
Use an optimization library to solve the linear programming problem ~
IEISI Perplexity

Based on the optimization results provided, | can interpret the solution for you:

The optimal solution to minimize the objective function f = 24x71 + 20.5x2 + 17.2x3 + 18x4
subject to the given constraints is:

x1=0
x2=0
x3 =300
x4 =0

This solution results in a minimum value of f = 5160.0.

Let's verify that this solution satisfies all the constraints:
1. x1+x2=<240: 0+ 0 =0 =< 240 (Satisfied)
2. x1+x3 =300: 0 + 300 = 300 = 300 (Satisfied)
3. x1=200: 0 = 200 (Satisfied)
4. x2+x4 =200:0+ 0 =0 = 200 (Satisfied)
5. x1+x2+x3+x42300:0+0+ 300+ 0 =300 2 300 (Satisfied)

All constraints are satisfied by this solution. The optimization algorithm determined that
the most cost-effective way to meet all constraints is to produce 300 units of product 3
(x3) and none of the other products.

This solution makes sense because product 3 has the lowest cost coefficient (17.2) among
all products, allowing for the minimization of the total cost while meeting the production
requirement of at least 300 units total.
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Two-Bar Structure (1)

« Step 1: Problem Statement

— Design a two-bar bracket to support a force W without failure

— Cost directly related to the size of the two bars

— To minimize the total mass of the bracket while satisfying
performance, fabrication, and space limitations

(A)

ZFx =-Fsma+F,sma—Wcos0 =0
ZFy =—F cosa—F,cosa—Wsmf =0

. S h , (s ?
simae=—, cosa=—, [=.h"+|—
2/ [
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Two-Bar Structure (2)

==

ZFX =-Fsina+F,sina—Wcosf =0
ZFy =-F cosa—F,cosa—Wsinf =0

2
= ing = S — h 2
Height h St YK cosa = & I=h +(Ej

— [} =———(cosacos@+sinasin )
2sina cosa
21 : 2 i :
= —O.SWL(ﬁ cos @ +—-sin 9) = —O.SWZ( cos0 + s1n6?j: compression
sh 2] s h
2 2 .
l-<‘s/24~\<75/2—>. S0 :ﬂzzW\/xl +(0.5x,) [20059+sm€]36
4 ﬂ(x32 —x42) X X1
siné  2cos6, compression
w h s P
2
______ F, 2W\/x12 +(0.5x,) 2cos@ siné
= —> 0'2 = A— = ( 2 2) - X + X S Ua
: 2 (xs" —xg 2 1
F F, = 0.5 _20056’+sm9 S
s h sind 2cos@ .

[ : tension

| h S

I

[ 2
= . F, 2w X12 +(0.5x2) 2cosf@ sinf
Free body diagram for node | >0, =—"=- > > - + <o,
4, 7r(x5 - Xg ) X2 X
Ch. 2-14
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solve F1and F2 in the following equations: -
Fi*sin(alpha)+F2*sin(alpha)-W*cos(theta)=0, -
Fi*cos(alpha)-F2*cos(alpha)-W*sin(theta)=0

B & Pro Search T

Rearrange the given equations to isolate F1and F2 v

Solve the rearranged equations for F1 and F2 given specific values for alpha, W, and
theta

Summarize the results of the solutions for F1 and F2 v

o Sources

-W#sin(theta)/(2*cos(alpha)) - -W*sin(theta)/(2*cos(alpha)) +
Wtcos(theta)/(2*sin(alpha)) - W#cos(theta)/(2*sin(alpha)) -
Wolfram|Alpha Wolfram|Alpha

£x wolframalpha - 1 % wolframalpha - 2
lﬁﬂl Answer

To solve for F1 and F2 in the given equations, I'll use the results from the symbolic solution
provided in the search results. The equations we're solving are:

1. -Fisin(alpha) + FZsin(alpha) - W*cos(theta) = 0

2. -Flcos(alpha) - F2cos(alpha) - W*sin(theta) = O
The solution for F1 and F2 is:

F1 = -Wsin(theta)/(2cos(alpha)) - Wcos(theta)/(Zsin(alpha))
F2 = -Wsin(theta)/(2cos(alpha)) + Wcos(theta)/(Zsin(alpha))

Let's break down these solutions:

F1 Solution

F1=-Wsin(theta)/(2cos(alpha)) - Weos(theta)/(Zsin(alpha))
This can be simplified to:

F1=-1/2 W (sec(alpha) * sin(theta) + csc(alpha) * cos(theta))

Or, using trigonometric identities:

Ve F1=-W * csc(2*alpha) * cos(alpha - theta)

F2 Solution
F2 = -Wsin(theta)/(2cos(alpha)) + Wcos(theta)/(Zsin(alpha))

This can be simplified to:

F2 =1/2 W (csc(alpha) * cos(theta) - sec(alpha) * sin(theta))
Or, using trigonometric identities:

F2 = W * csc(2*alpha) * cos(alpha + theta)

These solutions represent the forces F1 and F2 in terms of the weight W, the angles alpha
and theta. The solutions satisfy both original equations and provide a complete
description of how F1 and F2 depend on the other variables in the system.

&

@ Share 3> Rewrite B
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Two-Bar Structure (3)

« Step 3: Design variables (hollow circular tubes)
— X4: height of the truss, x,: span of the truss

(d,,r) where r=—L

— X3, X4: outer/inner diameters of member 1 d,
— Xs, Xg: Outer/inner diameters of member 2 (dy.d,)
L, 7)?
Al=%(x32—x42)Az=%(x52—x62) (doadmr)
« Step 4: Cost function
— Minimize the mass: m=p[i(4 +4,)]= p/x” +(0.5x,) Z( % —xl v x)

« Step 5: Constraints
— stress in each member < material allowable stress
— Side constraints
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Design of a Cabinet

« Determine the number of components to be bolted and

riveted to minimize the cost

Each cabinet requires 8*C,, 5* C,, 15* C; components
Assembly of C, needs either 5 bolts or 5 rivets; C, 6 bolts or 6

rivets ; C4 3 bolts or 3 rivets

A total of 100 cabinets must be assembly daily

Bolting and riveting capacities per day are 6000 and 8000,
respectively

Cost ($) C, C, C,
bolt 0.7 1.0 0.6
rivet 0.6 0.8 1.0

Vehicle Design Optimization

8*C,

5

bolts
rivets

cabinet
\
5*C, 15° (‘33
6 3

bolts
rivets

bolts
rivets
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Formulation 1 (component level)

* Design variables (for 100 cabinets)
— X4/ X5/ X5 = number of C,/ C,/ C; to be bolted
— X,/ X4/ Xg = number of C,/ C,/ C; to be riveted

« Cost function (bolts/rivets)

 (Constraints
— Number of components

— Capacity of bolts/rivets
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Formulation 2 (bolt/rivet level)

* Design variables
— X4/ X,/ X4 = total number of bolts required for all C,/ C,/ C,4
— X4/ X5/ Xg = total number of rivets required for all C,/ C,/ C,

« Cost function (bolts/rivets)

« Constraints
— Number of bolts/rivets in a component

— Capacity of bolts/rivets
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Formulation 3 («-Formulation 1)

« Design variables (for one cabinet)
— X4/ X5/ X5 = number of C,/ C4/ C; to be bolted on one cabinet
— X,/ x4/ X = number of C,/ C,/ Cg4 to be riveted on one cabinet

 (Cost function

 (Constraints
— Number of components

— Capacity of bolts/rivets
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Minimum Weight Tubular Column Design

« Step 1: Problem Statement

— Straight columns: structural elements (street light pole, traffic
light post, water tower support)

— Design a minimum mass tubular column of length /
supporting a load P w/o buckling or overstressing

« Step 2: Data and Information Collection

— Buckling load p _TE
l” 42
| —
i i 'f-// | ?\ .\'- lfF .“/ R\B.".
ro | —httrre (LR
: : . T @
| | - 27 T
’}‘}?’;’ﬂ: f;!’??ff:"’f,e??,!f T Formulation 1 Formulation 2
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Buckling of an Euler Column

d2y

d2y

M
—=——> El =
dx El dx

d’y (P
4+ —|y=0
dx’ (E[jy

. / P P
y=c¢sin| ,[—x |+c, cos ,/—x
EI El

+ boundary conditions
7’ El

M =-Py

—>P =

cr

2
Ly
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N \ \ , \
l ! \ | ] / \
& | \ ' !
" 'l l a'f
| f /
| . If’ | | - 7 il -
1 .u( ML M (,
P P P P P
{a) Rounded-rounded (&) Pinned-pinned (c) Fixed-free {d) Fixed-pinned (e} Fised-fixed
End Conditions Thearetical AlSC” Conservative
Value Recommends Value
Rounded-Rounded legr=1 lg=1 legr=1
Finned-Finned lg=1 lg=1 Lgr=1
Fixed-Free L= 21 lg=2.1 lopr=2.41
Fixed-Pinned *Iul.l_';' = (3,707 J.-_ﬂ" = {180 "Iu_.l_';' =/
Fixed-Fixed logr=0.51 logr = 0.651 lg=1
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Formulation 1

« Step 3: Design variables
— R (mean radius of column) / t (wall thickness)

« Step 4: Cost function
mass = p(I4) = 2 pl Rt
[assuming thin wall (R >> t) —> A=2nRt; I = 7zR3t]

« Step 5: Constraints

P P
=—=— <o
J A 27xRt %
2 3 3
PSﬂEI:ﬂERt
\ 47> 4]
R_.<R<R o <t<t

max ’ min
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Formulation 2

« Step 3: Design variables
— R, (outer radius of column) / R; (inner radius of column)

« Step 4: Cost function
mass = p(l4) = zpl(R? - R?) { A=7x(RZ-R*} I = %(Rg‘ ~R! )}
« Step 5: Constraints

e

G=£= P <o
A 7Z(R2—R.2)_ ¢
0 i

P< =

\ 47 16/°

(RO )min = RO < (RO )max ’ (Rl )min = Ri = (Rl )max

R, > R; R = K, + &, <k (thin-walled: R >> ¢,k > 20)
t 2(R,—R)

0 avoid local buckling

0 i

7°El 7r3E(R4 )
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Design of Coil Spring

« Step 1: Problem Statement

— To design a minimum mass spring to carry a given axial load
without material failure and while satisfying two performance
requirement: the spring must deflect by at least A (in), and
the frequency of surge waves must not be less than o, (Hz)

()
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Step 2: Data and Information Collection (1)

— Deflection along the axis of the spring: o (in)
— Mean coil diameter: D (in)

— Wire diameter: d (in)

— Number of active coils: N

— Gravitational constant: g = 386 (in/s?)

— Frequency of surge waves: o (Hz)
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Step 2: Data and Information Collection (2)

* Material property
— Weight density: y = 0.285 (Ib/in3)
— Shear modulus: G = 1.15E7 (Ib/in?)
— Mass density: p = 7.38342E-4 (Ib-s?/in%)
— Allowable shear stress: t, = 80000 (Ib/in?)
« Other data

— Number of inactive coils: Q = 2

— Applied load: P = 10 (lbs)

— Minimum spring deflection: A = 0.5 (in)

— Lower limit on surge wave frequency: o, = 100 (Hz)
— Limit on outer diameter of the coil: Dy = 1.5 (in)
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Design equations for the spring (1)

 Load-deflection

U= + =
2GJ 2GA

torsion shear

by Castigliago's theorm 5 _
>0 =

_T’L F’L F*(D/2) zD(N+Q) . F’zD(N+Q) 4F’D’(N+Q) . 2F’D(N+0Q)

2G(nd*/32) 2G(nd’/4)

oU _8FD’(N+Q) 4FD(N+Q)

—< 90

+
oF d‘G d’G

c-2 :8FD3(N+Q)(1+ 1 j~8FD3(N+Q)
2

d‘G

C’ d‘G

e Shear stress

T
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A (m')32)
SFD +4Fd d \8FD
= = 1 ﬂZl?’ =

Ir F_ F(D/2)d/2) F

_8FD 4F

3 oA
7ed 2D
K =1 +O.5i
D
4D-1 0.615d
= +

" 4D-d) D

+ = +
md’/4  wd®  md?

8FD
s 7Z'd3
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Design equations for the spring (2)

« Frequency of surge waves

2 2
81;: W2 0 ’2’" B.C. u(0,6)=0 and u(l,t)=0
oy~ kgl” ot

2
W=ALy = [ﬂj J(ﬁDN))/

2a’zDNy

@, =Mmm, / kg , fundamental frequency (m =1)

/kg Gg _
h= 27z 2 7Z'ND2 32y 27zND2 2,0
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Problem Formulation

« Step 3: Identification of design variables
— Wire diameter: d
— Mean coil diameter: D
— Number of active coils: N

« Step 4: Identification of an objective function

— Mass 2 2
m = pAL =p(%)ﬂD(N+Q): 7 pd D(N+Q)

4
« Step 5: Identification of constraints
— Deflection: 6 > A
— Shear stress: t < 1,
— Frequency of surge waves: © > o,
— Diameter: D +d <D,

— Side constraints: d_.. <d <d

min —

D..<D<D

max’ min max?
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Mathematical Formulation

2 2
MmMMBmzﬂ;ﬂlxN+Q)
d,D,N 4
3 3
subject to 8FD (4N+Q)2A—>1—8FD 4(N+Q)£O
d d"GA
4D—-d 0.615d |8FD 4D—-d 0.615d | 8FD
+ ST, + 3
4D-d) D |md 4D-d) D |md’r,
d2 GZ%—H— d2 GSO
27ND~* \ 2 27iND*w, \ 2p
p+d<D, -2 1<0
0
d. <d<d__
DminSDSDmax
Nmin— S]vmax

—-1<0
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Standard Design Optimization Model

Vehicle Design Optimization

Find an n-vector x = (x,,...,x, ) of design variables

to minimize a cost function

f(x)=r(x,....x,)
subject to

(the p equality constraints

and the m 1nequality constraints

bounds on design variables:

x. 20 orx,<x<x,; i=L...,n

<hj.(x):hj(xl,...,xn):O; j=1,..

\gj(x):gj(xlrﬂaxn)go; izl,..

P

L, m
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Observations (1)

* Functions must depend on design variables.

 Number of independent equality constraints: p < n

— p > n: overdetermined system of equations
» redundant equality constraints
* Inconsistent formulation

— p =n :no optimization is necessary
 Inequality constraints written as “<0”
— No restriction on the number of inequality constraints

« Scaling effect
— optimum design does not change. optimum cost function
value, however, changes.
 cost function by a positive constant
* Inequality constraints by a positive constant
« equality constraints by any constants
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Observations (2)

« Maximization problem treatment

f(x)=-F(x)
« “>type” constraints
G.(X)Z 0— gj(x): —Gj(x)ﬁ 0

J

* Discrete and Integer design variables

— Approach 1
» Solve the problem assuming continuous DVs
» Assign nearest discrete/integer values
» Check feasibility «— numerous combinations
— Approach 2 (adaptive numerical optimization)
» Obtain optimum solution with continuous DVs
* Assign only DVs close to their discrete/integer values
» Optimize the problem until all DVs have proper values
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Observations (3)

» Feasible set: collection of all feasible designs

S=Wh(x)=0;j=1,....p; g(x)<0;i=1,...,m|
* Inequality constraint:

(active/tig ht/binding : g, (x* ) =0
g.(x)< 0 — { inactive : g, (x*)< 0

\violated : g, (x* ) >0
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