Why Numerical Method?

- Analytical method → Numerical method
- # of design variables and constraints can be large.
 - Necessary conditions → a large number of equations
 - Functions for the design problem (cost and constraint) can be highly nonlinear.
- Cost and/or constraint functions can be implicit in terms of design variables.
- Search for the general purpose code through the internet to minimize developing your own code
 - Appendix B, https://neos-guide.org/

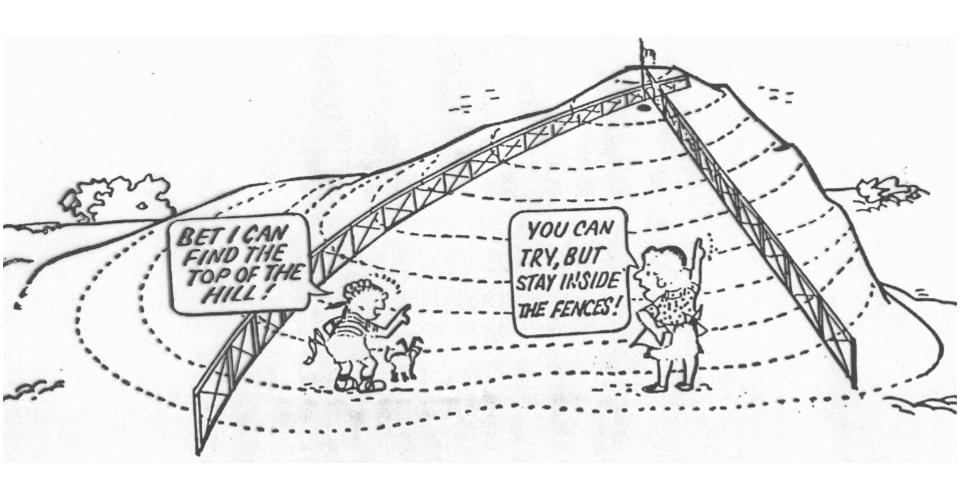
Advantages of Numerical Optimization

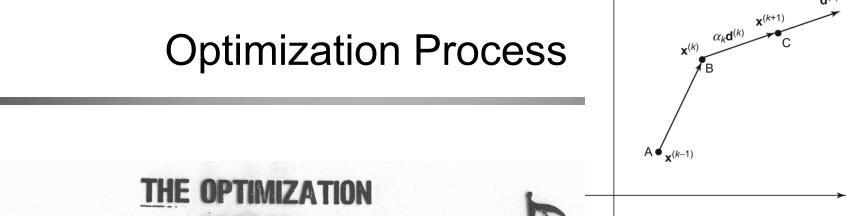
- Reduce the design time
 - When the same computer program can be applied to many design projects
- Provide a systematized logical design procedure
- Deal with a wide variety of design variables and constraints
- Yield some design improvement
- Not biased by intuition or experience in engineering
- Require a minimal amount of human-machine interaction

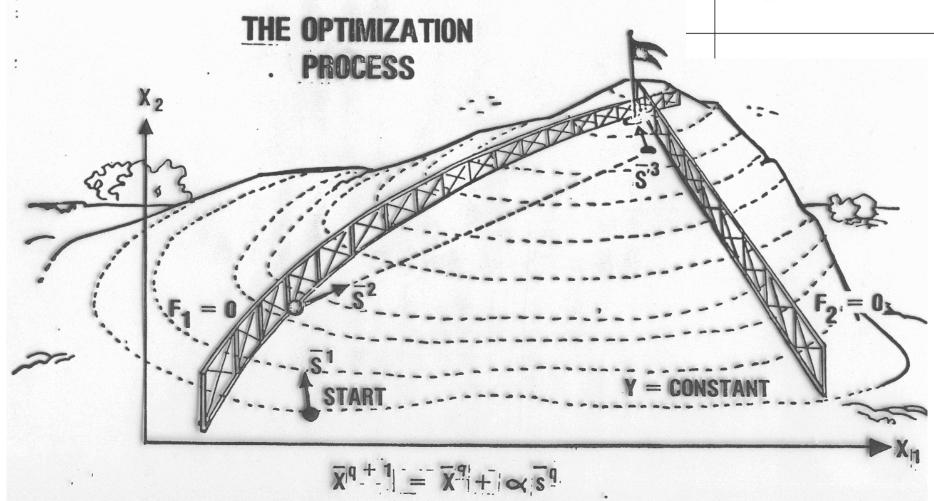
Limitations of Numerical Optimization

- Increased computational time as the number of design variables increases (ill-conditioned?)
- No stored experience or intuition
- Misleading results if the analysis program is not theoretically precise
- Difficulty in dealing with discontinuous functions and highly nonlinear problems
- Seldom be guaranteed that the optimization algorithm will obtain the global optimum design
- Significant reprogramming of analysis routines for adaptation to an optimization code

Physical Problem







Linear Programming (LP) Problem

- Constrained optimization
- "Liner": the objective and the constraints
- "Programming": scheduling or setting an agenda
- Minimization of a function with equality constraints and nonnegativity of design variables

Minimize
$$f = \sum_{i=1}^{n} c_i x_i$$

Subject to $\sum_{j=1}^{n} a_{ij} x_j = b_i$; $i = 1, ..., m$

Subject to $x_j \ge 0$; $j = 1, ..., m$

Subject to $x_j \ge 0$; $x_j \ge$

Vehicle Design Optimization

Standard LP Definition

Linear constraints

- Inequality: nonnegative slack variable $s_i (s_i \ge 0)$
 - Why not s_i^2 ? (nonlinear)
- Treatment of "≤ type" / "≥ type" constraints

$$\begin{cases} 2x_1 - x_2 \le 4 \to 2x_1 - x_2 + s_1 = 4 & (s_1 \ge 0) \\ -x_1 + 2x_2 \ge 2 \to -x_1 + 2x_2 - s_1 = 2 & (s_1 \ge 0) \end{cases}$$

- Unrestricted variables in sign
 - All design variables to be nonnegative

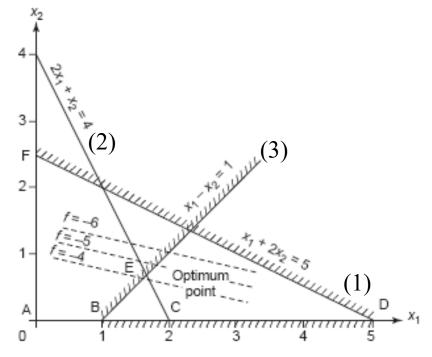
$$x_{j} = x_{j}^{+} - x_{j}^{-} = \begin{cases} \text{nonnegative: } x_{j}^{+} \ge x_{j}^{-} \\ \text{nonpositive: } x_{j}^{+} \le x_{j}^{-} \end{cases}$$
$$x_{j}^{+} \ge 0 \text{ and } x_{j}^{-} \ge 0$$

Basic Concepts

- LP problem is convex. If an optimum solution exists, it is global.
 - Feasible region (constraint set) is convex
 - Cost function is linear, so it is convex
- Solution always lies on the boundary of the feasible region if it exists.
 - For an unconstrained optimum, contradiction: $\frac{\partial f}{\partial x_i} = 0 \rightarrow c_i = 0$
- Optimum solution must satisfy equality constraints → more than one solution (m < n)
 - Infinite solutions → feasible solution that minimizes the cost function

Example 8.19 ← 8.13

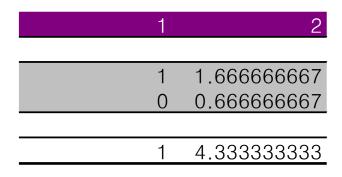
$$\begin{array}{lll} \textit{Maximize} & z = x_1 + 4x_2 \\ \textit{subject to} & (1) \ x_1 + 2x_2 \leq 5 \\ & (2) \ 2x_1 + x_2 = 4 \\ & (3) \ x_1 - x_2 \geq 1 \\ & x_1, x_2 \geq 0 \end{array} \right\} \rightarrow \begin{cases} \textit{Minimize} & f = -x_1 - 4x_2 \\ \textit{subject to} & x_1 + 2x_2 + x_3 \\ & 2x_1 + 2x_2 + x_3 \\ & 2x_1 + x_2 + x_3 \\ & x_1 - x_2 + x_3 + x_4 \\ & x_1 - x_2 + x_3 + x_4 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_5 \\ & x_2 - x_3 + x_5 \\ & x_1 - x_2 + x_5 \\ & x_2 - x_3 + x_5 \\ & x_1 - x_2 + x_5 \\ & x_2 - x_3 + x_5 \\ & x_2 - x_3 + x_5 \\ & x_1 - x_2 + x_3 \\ & x_2 - x_3 + x_5 \\ & x_1 - x_2 + x_3 \\ & x_2 - x_3 + x_3 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_3 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_3 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_3 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_2 - x_3 + x_5 + x_5 \\ & x_1 - x_2 + x_5 + x_5 \\ & x_2 - x_3 + x_5 + x_5 + x_5 \\ & x_1 - x_2 + x_5 + x_5 + x_5 \\ & x_2 - x_3 + x_5 + x_5 + x_5 \\ & x_1 - x_2 + x_5 + x_5 + x_5 + x_5 \\ & x_2 - x_3 + x_5 + x_5 + x_5 + x_5 + x_5 + x_5 \\ & x_2 - x_3 + x_5 + x_5$$

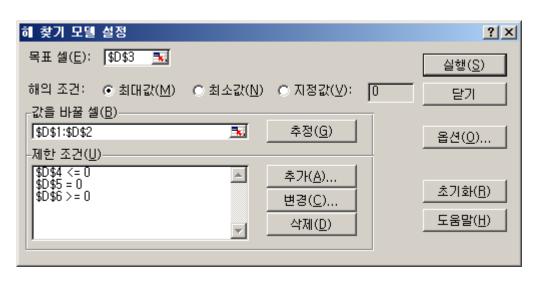


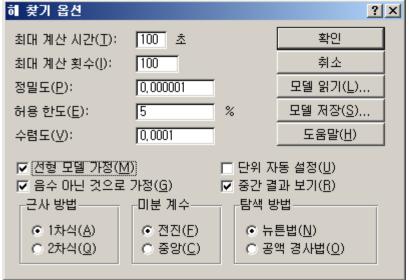
$$\begin{cases} \frac{\partial f}{\partial e_2} = -y_2 = & ; (2) \ 4 \to 5, \ f = \\ \frac{\partial f}{\partial e_3} = -y_3 = & ; (3) \ 1 \to 2, \ f = \end{cases}$$

LP in Excel Solver: Example 8.19

	Α	В	С	D
1	×1	0		1,66667
2	x2	0		0,66667
3	Z	0	max	4,33333
4	g1	ြု	<= 0	-2
5	g2	-4	= 0	0
6	g3	-1	>= 0	0





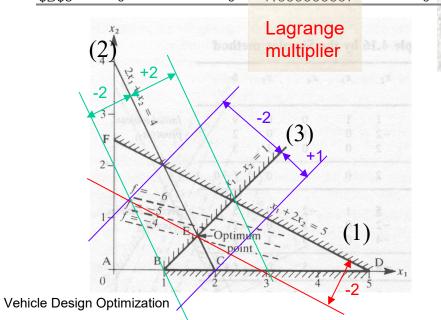


Reports : Example 8.19+21+23

값을 바뀔	· 셀		민감도보고서		Rang cost	ge of coeff.
		계산	한계	목표 셀	허용 가능	
셀_	이름	값	비용	계수	증가치	감소치
\$D\$1	x1	1.666666667	0	1	7	1E+30
\$D\$2	x2	0.666666667	0	4	1E+30	3.5
			·		TABLE TO SERVICE STATE OF THE PARTY OF THE P	THE PERSON NAMED IN

$-7.0 \le \Delta c_1 \le \infty$
$\xrightarrow{c_1=-1} -8.0 \le c_1 \le \infty$
$-\infty \le \Delta c_2 \le 3.5$
$\xrightarrow{c_2=-4} -\infty \le c_2 \le -0.5$

· <u> </u>	-				C 4 - T - T - T - T - T - T - T - T - T -	ACCUPATION AND ADDRESS OF
		계산	잠재	제한 조건	허용 가능	허용 가능
셀	이름	값	가격	우변	증가치	감소치
\$D\$6	>= 0	0	-2.333333333	0	1	2
\$D\$4	<= 0	-2	0	0	1E+30	2
\$D\$5	0	0	1.666666667	0	2	2



제한 조건

Range of resource limit

$$(1) x_1 + 2x_2 \le 5 \longrightarrow -2 \le \Delta_1 \le \infty \longrightarrow 3 \le b_1 \le \infty$$

(2)
$$2x_1 + x_2 = 4 \rightarrow -2 \le \Delta_2 \le 2 \rightarrow 2 \le b_2 \le 6$$

$$(3) x_1 - x_2 \ge 1 \longrightarrow -2 \le \Delta_3 \le 1 \longrightarrow -1 \le b_3 \le 2$$

Nonlinear Optimization

- Unlike for linear problems, a global optimum for a nonlinear problem cannot be guaranteed, except for special cases, e.g., if you know the space is unimodal, or convex, or monotonicity exists
- Two standard heuristics that most people use:
 - Find local extrema starting from widely varying starting points of variables and then pick the most extreme of these extrema
 - Perturb a local extremum by taking a finite amplitude step away from it, and then see whether your routine returns you to a better point or "always" to the same one
 - Question: How would you "automate" a search for a global extremum?

Basic Steps in Nonlinear Optimization

- In its simplest form, a numerical search procedure consists of four steps when applied to unconstrained minimization problem:
 - (1) Selection of an initial design in the *n*-dimensional space,
 where *n* is the number of design variables
 - (2) A procedure for the evaluation of the objective function at a given point in the design space
 - (3) Comparison of the current design with all of the preceding designs
 - (4) A rational way to select a new design and repeat the process
 - Constrained optimization requires step for evaluation of constraints as well. Same applies for evaluating multiple objective functions

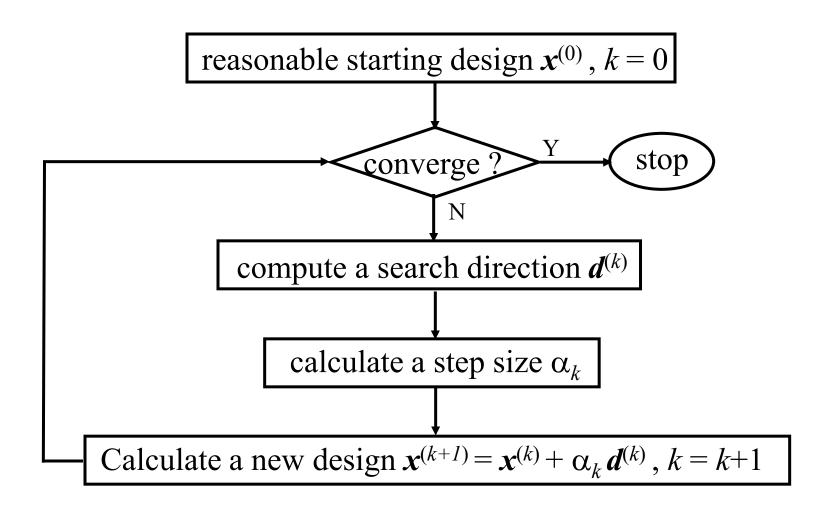
Nonlinear Optimization Process

 Most design tasks seek to find a perturbation to an existing design which will lead to an improvement.
 Thus we seek a new design which is the old design plus a change

$$- X^{new} = X^{old} + \delta X$$

- Optimization algorithms apply a two step process :
 - $X^{(k+1)} = X^{(k)} + \alpha_k d^{(k)}$
 - You have to provide an initial design X⁽⁰⁾
 - The optimization will then determine a search direction $d^{(k)}$ that will improve the design
 - How far we can move in direction $d^{(k)} \rightarrow$ one-dimensional search to determine the scalar α_k to improve the design

General Algorithm



Classification of Unconstrained Optimization

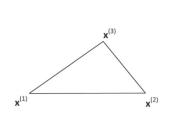
- One-dimensional unconstrained optimization: line search
 - Golden-section search
 - Quadratic interpolation
- Multidimensional unconstrained optimization
 - Nongradient or Direct methods
 - Gradient or Descent methods
 - You often must choose between algorithms which need only evaluations of the objective function or methods that also require the derivatives of that function
 - Algorithms using derivatives are generally more powerful, but do not always compensate for the additional calculations of derivatives
 - Note that you may not be able to compute the derivatives

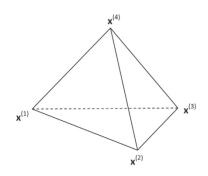
Multidimensional Unconstrained Optimization

Direct Search Methods	Indirect(Descent) Methods
Random search method	■ Steepest descent (Cauchy) method
Univariate method	Conjugate gradient method
Pattern search method	Fletcher-Reeves
Powell's method	– Polak-Rebiere
Simplex method	■ Newton's method
Simulated Annealing (SA)	Marquardt's method
Genetic Algorithm (GA)	Quasi-Newton methods
	– DFP (Davidon-Fletcher-Powell)
	BFGS(Broydon-Fletcher-Goldfarb-Shanno)

Nelder-Mead Simplex Method

- Does not use gradients of the cost function
- Idea of a simplex
 - Geometric figure formed by a set of (n+1) points in the ndimensional space
 - When the points are equidistant, the simplex is said to be regular
- Nelder–Mead method (Nelder and ead, 1965)
 - Compute cost function value at the (n+1) vertices of the simplex
 - Move this simplex toward the minimum point
 - reflection, expansion, contraction, and shrinkage
 - MATLAB: fminsearch





Descent Directions (1)

- Steepest descent direction: $\mathbf{d} = -\nabla f = -\frac{\partial f}{\partial x}$
- Conjugate Gradient direction:

$$\mathbf{d}^{(k)} = -\nabla f\left(\mathbf{x}^{(k)}\right) + \beta_k \mathbf{d}^{(k-1)} \text{ where } \beta_k = \frac{\left\|\nabla f\left(\mathbf{x}^{(k)}\right)\right\|^2}{\left\|\nabla f\left(\mathbf{x}^{(k-1)}\right)\right\|^2}$$

Newton's method:

$$f(\mathbf{x} + \Delta \mathbf{x}) = f(\mathbf{x}) + \nabla f^{T}(\mathbf{x}) \Delta \mathbf{x} + \frac{1}{2} \Delta \mathbf{x}^{T} \mathbf{H} \Delta \mathbf{x}$$
$$\frac{\partial f}{\partial (\Delta x)} = 0 \Rightarrow \nabla f(\mathbf{x}) + \mathbf{H} \Delta \mathbf{x} = 0$$
$$\mathbf{d}^{(k)} = \Delta \mathbf{x} = -\mathbf{H}^{-1} \nabla f(\mathbf{x}) \rightarrow \mathbf{x}^{(1)} = \mathbf{x}^{(0)} + \Delta \mathbf{x} \text{ (step length = 1)}$$

• Marquardt's method: $\mathbf{d}^{(k)} = -(\mathbf{H} + \lambda \mathbf{I})^{-1} \nabla f(\mathbf{x})$

Descent Directions (2)

- Quasi-Newton Method (Variable Metric Method)
 - Use of previous information, speed up the convergence!

$$\mathbf{d}^{(k)} = -\mathbf{A}^{(k)} \nabla f\left(\mathbf{x}^{(k)}\right) \Longrightarrow \mathbf{A}^{(k+1)} = \mathbf{A}^{(k)} + \mathbf{A}_{c}^{(k)} \xrightarrow{\text{as } k \to \infty} \mathbf{H}^{-1}$$

- DFP Method: Davidon (1959) → Fletcher and Powell (1963)
 - Approximate inverse of Hessian matrix
- BFGS Method: Broyden-Fletcher-Goldfarb-Shanno (1981)
 - Direct update the Hessian matrix

$$\begin{split} x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)} \\ d^{(k)} &= -A^{(k)} \nabla f \left(x^{(k)} \right) \\ A^{(k+1)} &= A^{(k)} + \frac{s^{(k)} s^{(k)T}}{s^{(k)T} y^{(k)}} - \frac{z^{(k)} z^{(k)T}}{y^{(k)T} z^{(k)}} \\ s^{(k)} &= \alpha_k d^{(k)} = x^{(k+1)} - x^{(k)} \\ y^{(k)} &= \nabla f \left(x^{(k+1)} \right) - \nabla f \left(x^{(k)} \right) \\ z^{(k)} &= A^{(k)} y^{(k)} \end{split}$$

$$\begin{split} x^{(k+1)} &= x^{(k)} + \alpha_k d^{(k)} \\ H^{(k)} d^{(k)} &= -\nabla f \left(x^{(k)} \right) \\ H^{(k+1)} &= H^{(k)} + \frac{y^{(k)} y^{(k)T}}{y^{(k)T} s^{(k)}} - \frac{H^{(k)} s^{(k)} s^{(k)T} H^{(k)}}{s^{(k)T} H^{(k)} s^{(k)}} \\ &\xrightarrow{s^{(k)} = x^{(k+1)} - x^{(k)} = \alpha_k d^{(k)}} \\ \xrightarrow{H^{(k)} s^{(k)} = -\alpha_k c^{(k)}} & \rightarrow H^{(k+1)} = H^{(k)} + \frac{y^{(k)} y^{(k)T}}{y^{(k)T} s^{(k)}} + \frac{c^{(k)} c^{(k)T}}{c^{(k)T} d^{(k)}} \\ s^{(k)} &= \alpha_k d^{(k)} = x^{(k+1)} - x^{(k)} \\ y^{(k)} &= c^{(k+1)} - c^{(k)} = \nabla f \left(x^{(k+1)} \right) - \nabla f \left(x^{(k)} \right) \quad \text{Numerical Methods - 20} \end{split}$$

Gradient-Based Methods

Method	Direction
Steepest Descent	$\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)})$
Conjugate Gradient	$\boldsymbol{d}^{(k)} = -\nabla f(\boldsymbol{x}^{(k)}) + \beta_k \boldsymbol{d}^{(k-1)} \text{ where } \beta_k = \ \nabla f(\boldsymbol{x}^{(k)})\ ^2 / \ \nabla f(\boldsymbol{x}^{(k-1)})\ ^2$
Newton's	$\boldsymbol{d}^{(k)} = -\boldsymbol{H}^{-1} \nabla f(\boldsymbol{x}^{(k)})$
Quasi-Newton	DFP: $d^{(k)} = -A\nabla f(x^{(k)})$ where $A^{(k+1)} = A^{(k)} + \frac{s^{(k)}s^{(k)^T}}{s^{(k)^T}y^{(k)}} - \frac{z^{(k)}z^{(k)^T}}{y^{(k)^T}z^{(k)}}$ BFGS: $H^{(k)}d^{(k)} = -\nabla f(x^{(k)})$ where $H^{(k+1)} = H^{(k)} + \frac{y^{(k)}y^{(k)^T}}{y^{(k)^T}s^{(k)}} + \frac{c^{(k)}c^{(k)^T}}{c^{(k)^T}d^{(k)}}$

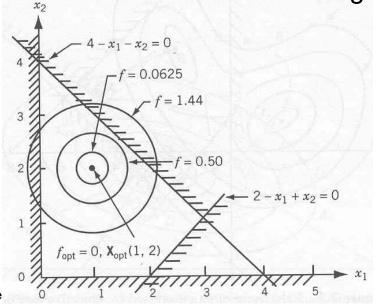
Constrained Optimization Methods

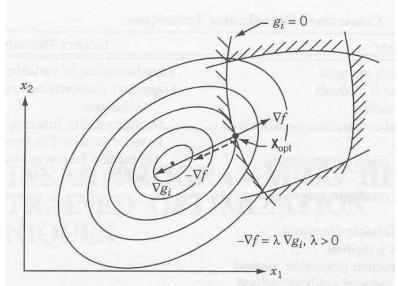
Direct (Primal) Methods	Indirect Methods
Objective and constraint approximation methods	 Sequential unconstrained minimization technique
 Sequential Linear Programming method Sequential Quadratic Programming method Gradient Projection Method Methods of Feasible Directions Generalized Reduced Gradient Method 	 Interior penalty function method Exterior penalty function method Augmented Lagrange multiplier method

Characteristics of a Constrained Problem (1)

- The constraints may have no effect on the optimum point.
 - In most practical problems, it is difficult to identify whether the constraints have an influence on the minimum point.
- The optimum (unique) solution occurs on a constraint boundary.

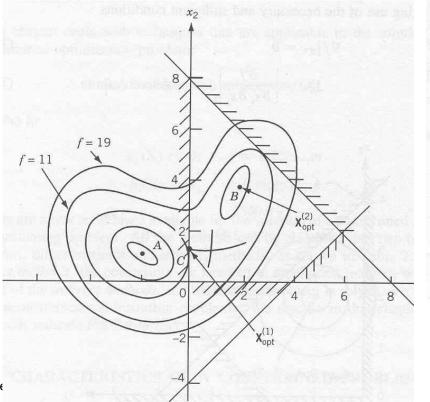
 The negative of the gradient must be expressible as a positive linear combination of the gradients of the active constraints.

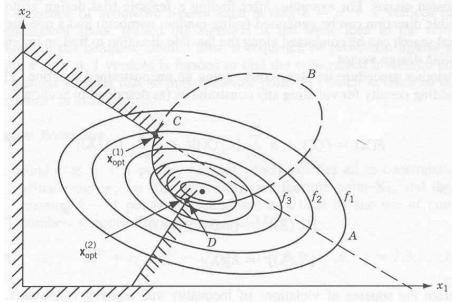




Characteristics of a Constrained Problem (2)

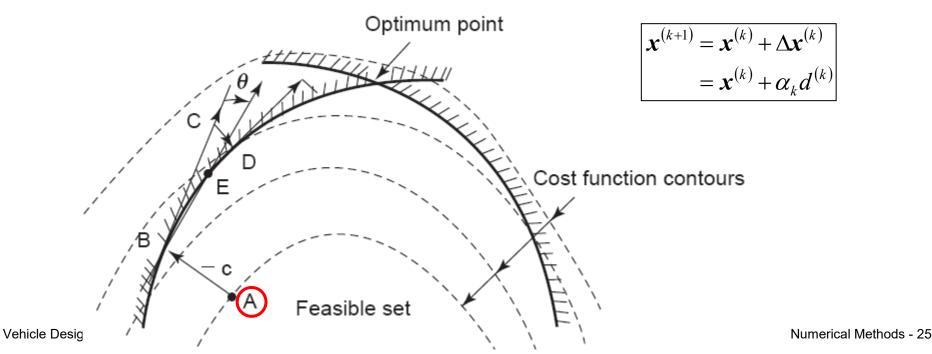
- If the objective function has two or more unconstrained local minima, the constrained problem may have multiple minima.
- Even if the objective function has a single unconstrained minimum, the constraints may introduce multiple local minima.





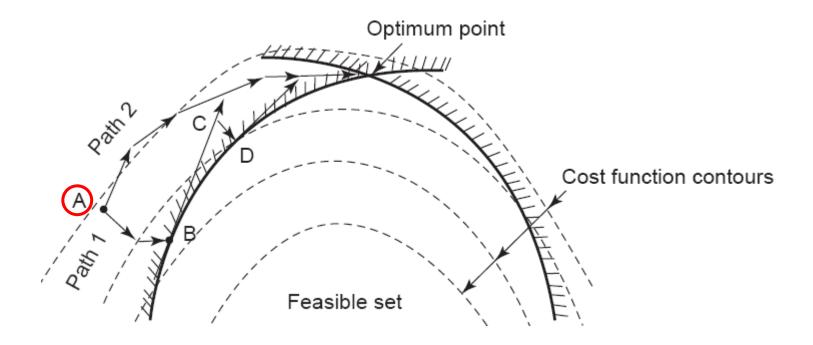
Basic Concepts (1)

- From feasible starting point (inside the feasible region)
 - ∇f = 0: Unconstrained stationary point→check sufficient condition
 - $-\nabla f \neq 0$: Moving along a descent direction
 - (Assume the optimum is on the boundary of the constraint set)
 - Travel along a tangent to the boundary →correct to a feasible point
 - Deflect the tangential direction, toward the feasible region →line search



Basic Concepts (2)

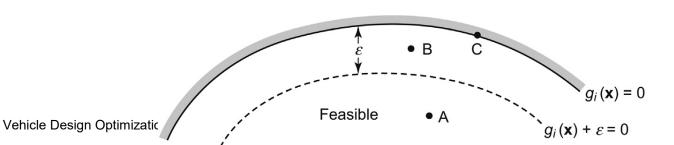
- From infeasible starting point
 - Correct constraints to reach the constraint boundary →same as previous steps
 - Iterate through the infeasible region to the optimum point



Basic Concepts (3)

Numerical algorithm

- Linearization of cost and constraint functions about the current design point
- Definition of a search direction determination subproblem using the linearized functions
- Solution of the subproblem that gives a search direction in the design space.
- Calculation of a step size to minimize a descent function in the search direction
- Constraint status @ a design point
 - Active / Inactive / Violated / ε–Active



Infeasible

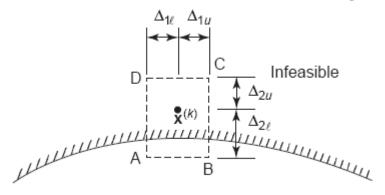
Sequential Linear Programming

Basic idea

- Use linear approximation of the nonlinear functions and apply standard linear programming techniques
- Repeated process successively as the optimization process
- Major concern: How far from the point of interest are these approximations valid? move limits: depend on degree of nonlinearity)

$$-\Delta_{il}^{(k)} \le d_i \le \Delta_{iu}^{(k)}, \quad i = 1, \dots, n$$

- Some fraction of the current design variables (1~100%)
- · Quite powerful and efficient for engineering design



Linearization

min
$$f(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong f(\mathbf{x}^{(k)}) + \nabla f^{T}(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)}$$

subject to $h_{j}(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong h_{j}(\mathbf{x}^{(k)}) + \nabla h_{j}^{T}(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} = 0, \quad j = 1, ..., p$
 $g_{j}(\mathbf{x}^{(k)} + \Delta \mathbf{x}^{(k)}) \cong g_{j}(\mathbf{x}^{(k)}) + \nabla g_{j}^{T}(\mathbf{x}^{(k)}) \Delta \mathbf{x}^{(k)} \leq 0, \quad j = 1, ..., m$

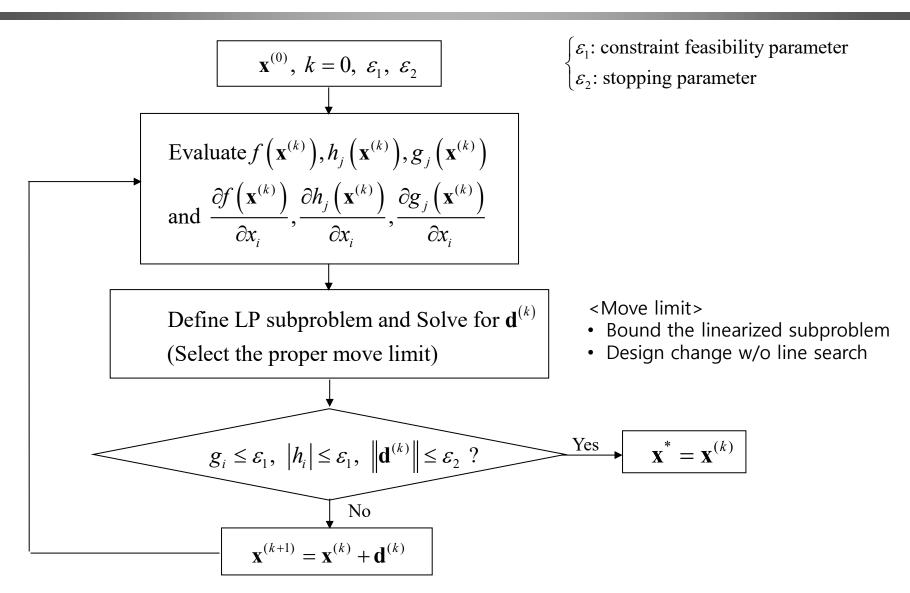
LP subproblem

$$\min \quad \bar{f} = \sum_{i=1}^{n} \frac{\partial f(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} \\
\text{s. t. } \sum_{i=1}^{n} \frac{\partial h_{j}(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} = -h_{j}(\mathbf{x}^{(k)}) \\
\sum_{i=1}^{n} \frac{\partial g_{j}(\mathbf{x}^{(k)})}{\partial x_{i}} \Delta \mathbf{x}^{(k)} \leq -g_{j}(\mathbf{x}^{(k)}) \\
\sum_{i=1}^{n} a_{ij} d_{i} \leq b_{j}$$

$$\min \quad \bar{f} = \sum_{i=1}^{n} c_{i} d_{i} \\
\text{s. t. } \sum_{i=1}^{n} n_{ij} d_{i} = e_{j} \\
\sum_{i=1}^{n} a_{ij} d_{i} \leq b_{j}$$

$$\sum_{i=1}^{n} a_{ij} d_{i} \leq b_{j}$$

SLP Algorithm



Quadratic Programming Subproblem

- Quadratic cost function + linear constraints
- SLP: linear move limits → quadratic step size constraint

$$-\Delta_{il}^{(k)} \leq d_{i} \leq \Delta_{iu}^{(k)} \to ||d|| \leq \xi \to 0.5 \sum_{i=1}^{n} (d_{i})^{2} \leq \xi^{2}$$

$$\min \quad \bar{f} = \sum_{i=1}^{n} c_{i} d_{i}$$
s. t. $\sum_{i=1}^{n} n_{ij} d_{i} = e_{j}, \quad j = 1, ..., m$

$$\sum_{i=1}^{n} a_{ij} d_{i} \leq b_{j}, \quad j = 1, ..., m$$

$$0.5 \sum_{i=1}^{n} (d_{i})^{2} \leq \xi^{2}$$

$$(d_{1} + c_{1})^{2} + (d_{2} + c_{2})^{2} = r^{2} \to d_{1}^{2} + c_{1}^{2} + 2c_{1}d_{1} + d_{2}^{2} + c_{2}^{2} + 2c_{2}d_{2} = r^{2}$$

$$\lim_{i \to \infty} \bar{f} = c^{T} d + 0.5 d^{T} d$$
s. t. $N^{T} d = e$

$$A^{T} d \leq b$$
Strictly convex \to
Minimum is global and unique
$$(d_{1} + c_{1})^{2} + (d_{2} + c_{2})^{2} = r^{2} \to d_{1}^{2} + c_{1}^{2} + 2c_{1}d_{1} + d_{2}^{2} + c_{2}^{2} + 2c_{2}d_{2} = r^{2}$$
The raise Containing $2c$

Numerical Methods - 31

Sequential Quadratic Programming (SQP)

- QP subproblem ← curvature information of Lagrange function into the quadratic cost function
 - Constrained Quasi-Newton Methods
 - Constrained Variable Metric(CVM)
 - Recursive Quadratic Programming(RQP)
- Gradient of the Lagrange function at the two points → Approximate Hessian of the Lagrange function
- quite simple and straightforward, but very effective

Generalized Reduced Gradient Method

- Elimination of variables using the equality constraints
 - One variable can be reduced from the set x_i for each of the *m*+*p* equality constraints

minimize
$$f(\mathbf{x})$$

subject to $g_i(\mathbf{x}) \le 0$, $i = 1, ..., m$
 $h_j(\mathbf{x}) = 0$, $j = 1, ..., l$
 $x_k^L \le x_k \le x_k^U$, $k = 1, ..., n$

$$x_{n+i}^L \ge 0$$
, $i = 1, ..., m$

$$\Rightarrow \begin{cases}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & \overline{h}_{j}(\mathbf{x}) = 0, \quad j = 1, \dots, m + l \\
& x_{i}^{L} \leq x_{i} \leq x_{i}^{U}, \quad i = 1, \dots, n + m
\end{cases} \qquad \mathbf{x} = \begin{cases} \mathbf{y} \\ \mathbf{z} \end{cases}, \quad \mathbf{y} = \begin{cases} y_{1} \\ \vdots \\ y_{m+l} \end{cases}, \quad \mathbf{z} = \begin{cases} z_{1} \\ \vdots \\ z_{n-l} \end{cases}$$

$$x = \begin{cases} y \\ z \end{cases}, \quad y = \begin{cases} y_1 \\ \vdots \\ y_{m+l} \end{cases}, \quad z = \begin{cases} z_1 \\ \vdots \\ z_{n-l} \end{cases}$$
state or dependent variables design or independent variables

Reduced Gradient

$$df(\mathbf{x}) = \sum_{i=1}^{m+l} \frac{\partial f}{\partial y_i} dy_i + \sum_{i=1}^{n-l} \frac{\partial f}{\partial z_i} dz_i = \nabla_y^T f dy + \nabla_z^T f dz$$

$$d\overline{h}_i(\mathbf{x}) = \sum_{j=1}^{m+l} \frac{\partial \overline{h}_i}{\partial y_j} dy_j + \sum_{j=1}^{n-l} \frac{\partial \overline{h}_i}{\partial z_j} dz_j \rightarrow d\overline{h} = \mathbf{B} dy + \mathbf{C} dz$$

$$\nabla_y^T f = \left\{ \begin{array}{c} \frac{\partial f}{\partial y_1} \\ \vdots \\ \frac{\partial f}{\partial y_{m+l}} \end{array} \right\}, \nabla_z^T f = \left\{ \begin{array}{c} \frac{\partial f}{\partial z_1} \\ \vdots \\ \frac{\partial f}{\partial z_{n-l}} \end{array} \right\}, dy = \left\{ \begin{array}{c} dy_1 \\ \vdots \\ dy_{m+l} \end{array} \right\}, dz = \left\{ \begin{array}{c} dz_1 \\ \vdots \\ dz_{n-l} \end{array} \right\}$$

$$\mathbf{B} = \begin{bmatrix} \frac{\partial \overline{h}_1}{\partial y_1} & \dots & \frac{\partial \overline{h}_1}{\partial y_{m+l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \overline{h}_{m+l}}{\partial y_1} & \dots & \frac{\partial \overline{h}_{m+l}}{\partial y_{m+l}} \end{array} \right\}, \mathbf{C} = \begin{bmatrix} \frac{\partial \overline{h}_1}{\partial z_1} & \dots & \frac{\partial \overline{h}_1}{\partial z_{n-l}} \\ \vdots & \ddots & \vdots \\ \frac{\partial \overline{h}_{m+l}}{\partial z_1} & \dots & \frac{\partial \overline{h}_{m+l}}{\partial y_{n-l}} \end{array}$$

Vehicle Design Optimization

GRG: Direction

$$d\overline{h} = Bdy + Cdz = 0 \left(\overline{h}(x) = 0\right) \to dy = -B^{-1}Cdz$$
$$df(x) = \left(-\nabla_y^T f B^{-1}C + \nabla_z^T f\right) dz \to \frac{df(x)}{dz} = G_R$$

 $G_R = \nabla_z f - (B^{-1}C)^T \nabla_y f$: generalized reduced gradient \rightarrow projection of the original n-dimensional gradient onto the (n-m) dimensional feasible region described by the design variables

$$d = \begin{bmatrix} d_y \\ d_z \end{bmatrix} \rightarrow \begin{cases} d_y = -B^{-1}Cd_z \\ (d_z)_i = \begin{cases} -(G_R)_i \\ 0 & \text{if } z_i = z_i^L \text{ and } (G_R)_i > 0 \\ 0 & \text{if } z_i = z_i^U \text{ and } (G_R)_i < 0 \end{cases}$$

