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Why Numerical Method ?

• Analytical method → Numerical method

• # of design variables and constraints can be large.

– Necessary conditions → a large number of equations

– Functions for the design problem (cost and constraint) can 

be highly nonlinear.

• Cost and/or constraint functions can be implicit in 

terms of design variables.

• Search for the general purpose code through the 

internet to minimize developing your own code

– Appendix B, https://neos-guide.org/
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Advantages of Numerical Optimization

• Reduce the design time

– When the same computer program can be applied to many 

design projects

• Provide a systematized logical design procedure

• Deal with a wide variety of design variables and 

constraints

• Yield some design improvement

• Not biased by intuition or experience in engineering

• Require a minimal amount of human-machine 

interaction
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Limitations of Numerical Optimization

• Increased computational time as the number of 

design variables increases (ill-conditioned?)

• No stored experience or intuition

• Misleading results if the analysis program is not 

theoretically precise

• Difficulty in dealing with discontinuous functions and 

highly nonlinear problems

• Seldom be guaranteed that the optimization algorithm 

will obtain the global optimum design

• Significant reprogramming of analysis routines for 

adaptation to an optimization code
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Physical Problem
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Optimization Process
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Linear Programming (LP) Problem

• Constrained optimization

• “Liner”: the objective and the constraints

• “Programming”: scheduling or setting an agenda

• Minimization of a function with equality constraints 

and nonnegativity of design variables
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Standard LP Definition

• Linear constraints

– Inequality: nonnegative slack variable si (si  0)

• Why not si
2 ? (nonlinear)

– Treatment of “ type” / “ type” constraints

• Unrestricted variables in sign

– All design variables to be nonnegative
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Basic Concepts

• LP problem is convex. If an optimum solution exists, 

it is global.

– Feasible region (constraint set) is convex

– Cost function is linear, so it is convex

• Solution always lies on the boundary of the feasible 

region if it exists.

– For an unconstrained optimum, contradiction:

• Optimum solution must satisfy equality constraints →

more than one solution (m < n)

– Infinite solutions → feasible solution that minimizes the cost 

function
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Example 8.19  8.13
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LP in Excel Solver: Example 8.19

1 2

1 1.666666667
0 0.666666667

1 4.333333333
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(1)

(2)

(3)

-2

+2

-2

+1

-2

Reports : Example 8.19+21+23

값을 바꿀 셀

계산 한계 목표 셀 허용 가능 허용 가능

셀 이름 값 비용 계수 증가치 감소치

$D$1 x1 1.666666667 0 1 7 1E+30

$D$2 x2 0.666666667 0 4 1E+30 3.5

제한 조건

계산 잠재 제한 조건 허용 가능 허용 가능

셀 이름 값 가격 우변 증가치 감소치

$D$6 >= 0 0 -2.333333333 0 1 2
$D$4 <= 0 -2 0 0 1E+30 2

$D$5 0 0 1.666666667 0 2 2
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Nonlinear Optimization

• Unlike for linear problems, a global optimum for a 

nonlinear problem cannot be guaranteed, except for 

special cases, e.g., if you know the space is unimodal, 

or convex,  or monotonicity exists

• Two standard heuristics that most people use:

– Find local extrema starting from widely varying starting 

points of variables and then pick the most extreme of these 

extrema

– Perturb a local extremum by taking a finite amplitude step 

away from it, and then see whether your routine returns you 

to a better point or “always” to the same one

– Question: How would you “automate” a search for a global 

extremum?
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Basic Steps in Nonlinear Optimization

• In its simplest form, a numerical search procedure 
consists of four steps when applied to unconstrained 
minimization problem:
– (1) Selection of an initial design in the n-dimensional space, 

where n is the number of design variables

– (2) A procedure for the evaluation of the objective function at 
a given point in the design space

– (3) Comparison of the current design with all of the 
preceding designs

– (4) A rational way to select a new design and repeat the 
process

– Constrained optimization requires step for evaluation of 
constraints as well. Same applies for evaluating multiple 
objective functions
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Nonlinear Optimization Process

• Most design tasks seek to find a perturbation to an 

existing design which will lead to an improvement. 

Thus we seek a new design which is the old design 

plus a change

– Xnew = Xold + X

• Optimization algorithms apply a two step process :

– X(k+1) = X(k) + k d(k)

– You have to provide an initial design X(0)

– The optimization will then determine a search direction d(k)

that will improve the design

– How far we can move in direction d(k) → one-dimensional 

search to determine the scalar k to improve the design
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General Algorithm

reasonable starting design x(0) , k = 0

compute a search direction d(k)

converge ?

calculate a step size k

Calculate a new design x(k+1) = x(k) + k d
(k) , k = k+1

stopY

N
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Classification of Unconstrained Optimization

• One-dimensional unconstrained optimization: line search

– Golden-section search

– Quadratic interpolation

• Multidimensional unconstrained optimization

– Nongradient or Direct methods

– Gradient or Descent methods

• You often must choose between algorithms which need only 

evaluations of the objective function or methods that also require 

the derivatives of that function

• Algorithms using derivatives are generally more powerful, but do not 

always compensate for the additional calculations of derivatives

• Note that you may not be able to compute the derivatives
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Multidimensional Unconstrained Optimization

Direct Search Methods Indirect(Descent) Methods

▪ Random search method

▪ Univariate method

▪ Pattern search method

– Powell’s method

▪ Simplex method 

▪ Simulated Annealing (SA)

▪ Genetic Algorithm (GA)

▪ Steepest descent (Cauchy) method

▪ Conjugate gradient method

– Fletcher-Reeves

– Polak-Rebiere

▪ Newton’s method

▪ Marquardt’s method

▪ Quasi-Newton methods

– DFP (Davidon-Fletcher-Powell)

– BFGS(Broydon-Fletcher-Goldfarb-Shanno)
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Nelder–Mead Simplex Method

• Does not use gradients of the cost function 

• Idea of a simplex 

– Geometric figure formed by a set of (n+1) points in the n-

dimensional space 

– When the points are equidistant, the simplex is said to be regular 

• Nelder–Mead method (Nelder and ead, 1965) 

– Compute cost function value at the (n+1) vertices of the simplex 

– Move this simplex toward the minimum point 

– reflection, expansion, contraction, and shrinkage

– MATLAB: fminsearch
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Descent Directions (1)

• Steepest descent direction:

• Conjugate Gradient direction:

• Newton’s method:

• Marquardt’s method:
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Descent Directions (2)

• Quasi-Newton Method (Variable Metric Method)

– Use of previous information, speed up the convergence !

– DFP Method: Davidon (1959) → Fletcher and Powell (1963)

• Approximate inverse of Hessian matrix

– BFGS Method: Broyden-Fletcher-Goldfarb-Shanno (1981)

• Direct update the Hessian matrix
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Gradient-Based Methods

Method Direction

Steepest 

Descent

Conjugate 

Gradient

Newton’s

Quasi-Newton

DFP:

BFGS:
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Constrained Optimization Methods

Direct (Primal) Methods Indirect Methods

▪ Objective and constraint approximation 

methods

– Sequential Linear Programming method

– Sequential Quadratic Programming method

▪ Gradient Projection Method

▪ Methods of Feasible Directions

▪ Generalized Reduced Gradient Method

▪ Sequential unconstrained 

minimization technique

– Interior penalty function method

– Exterior penalty function method

– Augmented Lagrange multiplier 

method
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Characteristics of  a Constrained Problem (1)

• The constraints may have no effect on the optimum point.

– In most practical problems, it is difficult to identify whether the 

constraints have an influence on the minimum point.

• The optimum (unique) solution occurs on a constraint 

boundary.

– The negative of the gradient must be expressible as a positive 

linear combination of the gradients of the active constraints.
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Characteristics of  a Constrained Problem (2)

– If the objective function has two or more unconstrained local 

minima, the constrained problem may have multiple minima.

– Even if the objective function has a single unconstrained 

minimum, the constraints may introduce multiple local 

minima.
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Basic Concepts (1)

• From feasible starting point (inside the feasible region)

– : Unconstrained stationary point→check sufficient condition

– : Moving along a descent direction

• (Assume the optimum is on the boundary of the constraint set)

• Travel along a tangent to the boundary →correct to a feasible point

• Deflect the tangential direction, toward the feasible region →line search 
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Basic Concepts (2)

• From infeasible starting point

– Correct constraints to reach the constraint boundary →same 

as previous steps

– Iterate through the infeasible region to the optimum point
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Basic Concepts (3)

• Numerical algorithm

– Linearization of cost and constraint functions about the 

current design point

– Definition of a search direction determination subproblem

using the linearized functions

– Solution of the subproblem that gives a search direction in 

the design space.

– Calculation of a step size to minimize a descent function in 

the search direction

• Constraint status @ a design point
– Active / Inactive / Violated / −Active
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Sequential Linear Programming

• Basic idea

– Use linear approximation of the nonlinear functions and apply 

standard linear programming techniques

– Repeated process successively as the optimization process

– Major concern: How far from the point of interest are these 

approximations valid? move limits: depend on degree of nonlinearity)

– Some fraction of the current design variables (1~100%)

• Quite powerful and efficient for engineering design
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Linearization
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SLP Algorithm

(0)

1 2,  0,  ,  k  =x

( )

1 1 2,  ,   ?k

i ig h    d
* ( )k=x x

Yes

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

Evaluate , ,

and , ,

k k k

j j

k k k

j j

i i i

f h g

f h g

x x x

  

  

x x x

x x x

( 1) ( ) ( )k k k+ = +x x d

( )
Define LP subproblem and Solve for 

(Select the proper move limit)

k
d

No

1

2

: constraint feasibility parameter

: stopping parameter









<Move limit>
• Bound the linearized subproblem
• Design change w/o line search



Vehicle Design Optimization Numerical Methods - 31

Quadratic Programming Subproblem

• Quadratic cost function + linear constraints

• SLP: linear move limits → quadratic step size constraint
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Sequential Quadratic Programming (SQP)

• QP subproblem  curvature information of Lagrange 

function into the quadratic cost function

– Constrained Quasi-Newton Methods

– Constrained Variable Metric(CVM)

– Recursive Quadratic Programming(RQP)

• Gradient of the Lagrange function at the two points →

Approximate Hessian of the Lagrange function

• quite simple and straightforward, but very effective 



Vehicle Design Optimization Numerical Methods - 33

Generalized Reduced Gradient Method

• Elimination of variables using the equality constraints

– One variable can be reduced from the set xi for each of the 

m+p equality constraints
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Reduced Gradient
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GRG: Direction
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