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Data

« Key input for mechanistic data science

 Where does the data come from? It can come from many sources and
iIn many formats. = multimodal data collection and generation
— Physical observation: very costly and difficult to control independent variables

— Modern computer HW and SW: simulate the physical experiments and generate
further complimentary data

« Efficient data collection and management through a database
— Expedite the problem-solving timeline - Help in rapid decision making

« Goal of mechanistic data science (MDS)
— Mining the data intelligently to extract the science
— Combining data and mechanisms for decision making
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Data is the central piece for science

* Question: how are forces transmitted by structural members?
« Galileo’s approach:

Data collection: performed many experiments on how size and shape
of structural members affects their ability to carry and transmit loads

Observations : as length of a beam increases, its strength decreases,
unless you increase the thickness and breadth at an even greater rate

Science: This led Galileo to recognize what we now call the scaling
problem, there are limits to how big nature can make a tree, or an

animal, for beyond a certain limit, the branches of the tree or the limbs
of the animal, will break under their own weight. will break under their
own weight.

3
deflction: 6 = % This formula to calculate deflection of cantilever

beams works for macroscopic beams made with all materials, size,
shape and loads

Mechanistic Data Science
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Data is the central piece for science

« Evolution of scientific discovery: from data to empiricism to mechanism
— Astronomical data: Observations of planetary orbits

[Kepler’s three laws of ) * Newton's Laws of
planetary motion (1609-1619) Motion (1687)

+ The Law of Orbits L F =ma
» The Law of Areas _ GMy My

72

\’ The Law of Periods Y \_ Y,
Data Mechanism Science

€ Physical ) (- Empiricism to ) 4 )
observation of the mechanism . Physical law (e
system » « Helps understanding » Ne?//vton’s " o;‘g.’

« Basis of finding underlying theory for o
: : . gravitation)

system’s governing new scientific

\_ mechanism W, \__discovery -/ \_ -/

 Mechanistic data science is the hidden link between data to science
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Kepler's Law (Data to Mechanism)

« First law (law of orbits): Each planet revolves around the sun in an
elliptical orbit with the sun situated at one of the two foci.

« Second law (law of areas): The real velocity of a planet around the sun
remains constant, OR, The radius vector drawn from the sun to the
planet sweeps out equal areas in equal intervals of time.

« Third law (law of periods): The square of the time period period(T)of
revolution of a planet around the sun is proportional to the cube of the

semi major axis (r)of its elliptical orbit. T the p
e a a \

A\ |
2 months\ a / — N

Aq 2 months A _ \ T '
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Mechanism to Science: Discovery of gravity

« Newtons universal law of gravitation

— Every point mass attracts every single other point mass by a force acting along the
line intersecting both points. The force is proportional to the product of the two
masses and inversely proportional to the square of the distance between them.

« Force on a falling object (apple from a tree) |n earth due to gravity is

given by F=mg

v e
s :.u.—.l ‘:‘

GM
- l Earth gravity, g = E

Newtons universal law of gravitation /¥
_ GMgMpm, GMpm
Fo =2 =, (4
EM TEM

Gravitational l
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Discovery of gravitation from planetary motion data

/ Mechanism (Kepler’s three laws of planetary motion) \ /" Data (Planetary motion data) )
! . * Physical
O 4 month; L observation of
e A, ‘O;\ 2 months A the system
74 . + Basis of finding
. system’s

Law of orbits .
governing

] Law of areas .
mechanism
/ . * Empiricism to mechanism P
Q * Helps understanding
kel r underlying theory for new
scientific discovery
\ Law of periods

Mechanistic
Data Science
for decision
making

Science (Universal law of gravitation)
* Physical law (e.g., Newton’s law of gravitation) @

... Moon

F=mg
. GMg
- 1 Earth gravity, g =

rE

Fem .- “Tem

Mechanistic data science is the
hidden link between data to science.

Newtons universal law of gravitation | ¥
_ GMgMy, _ My
Fo =84 =, (%
Em EM

Gravitational !
Earth ftatio
acceleration
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What is Data”

« Data: collection of information (numbers, words, measurements,
observations) or descriptions of things
— Qualitative

“It's too hot outside”
Descriptive

Counted data

Discrete data can only take certain
values (ex. only whole numbers)

Data

7 data points = 7 people. You can’t
measure height for “7.3” people.

— Quantitative
“It's 90°F outside”
Numerical

Measured data
= Text, numbers, images, graphs, and _
signals are all common forms of data Continuous data can take any value

(within a range)

» Data represents all industries and
problems: finance, climate,
transportation, etc.
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@
=
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Temperature can take any value within
Earth’s range. It changes continuously,
forming an infinite curve.
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Common Databases for
Machine Learning Applications

« Database: organized collection of data, generally stored and accessed
electronically from a computer system

Mechanistic Data Science

(" Kaggle ( ) A

« Machine learning datasets
Open source
Anyone can upload data

\ Wide range of topics )

(NCDC (National Climate Data Center)\
( )
Weather and climate database
Daily weather data
 Local climate data

(
NIST (National Institute of Standard &

Technology) (

\ « Marine data j

« Materials physical testing database

\
)

J

g
(I\/Iaterials Project (
 Materials database

compounds
* 63,876 molecules

530243 nanoporous materials

» Materials data for : 144,595 inorganic

B

J
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https://towardsdatascience.com/top-sources-for-machine-learning-datasets-bb6d0dc3378b/
http://www.kaggle.com/
https://materialsdata.nist.gov/
https://www.ncdc.noaa.gov/cdo-web/
https://materialsproject.org/
https://medium.com/@vaishnaviyada/top-free-machine-learning-datasets-to-use-in-2025-b9f32b37bedb

Data Preparation for Analysis

— Raw data: collected from the source directly Raw

— Data wrangling: mapping and transforming raw data
data to another format for machine
interpretation (ex. map Yes/No to 1/0) |

— Data Formatting: formatting data for '
consistency (ex. formatting text data with labels) [ Data H Data }{ Database }

— Data Cleaning: providing attributes to missing Wrangling | | Cleansing ] | Preparation
values and removing unwanted characters from Data Engineering
the data
— Database preparation: adding data from 1+ t
sources to build your own database L Data Visualization }
— Feature Extraction
» |dentification of important features in the data Data analysis
« Determined with human expertise (feature extraction)

https://developer.ibm.com/articles/ba-intro-data-science-1
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Understanding the data

Step 6: Publishing
Releasing data for analytics

Mechanisti

Data Wrangling/Munging/Janitor Work

Strubturing different data types
into standardized formats

Step 3: Cleaning
Eliminating redundant and
incomplete data

Step 4: Enriching

Enhancing data by supplementing it
with data from internal/external
sources

Step 5: Validating
Checking for accuracy
and data quality

Common Data Wrangling
Challenges

Inconsistent data formatting

Data comes in many different
formats, such as date and time
formats, text encodings, and
numerical units.

®

Missing data

Data may be missing for various
reasons, such as incomplete
surveys or technical errors.

Data may contain duplicates,
which can lead to errors in

Duplicates Data errors

Data may contain errors, such as
incorrect values or typos.

%

analysis.

Outliers

Outliers are data points that are
significantly different from the
rest of the data, and can skew

analysis results.

www.capella.io
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Dataset for Machine Learning (1)

i=1
j=1
=2 f(XiV) j=2 | 1 =input feature index
i=3 j = output feature index
N N = number of data points/samples
l ] j =
i =i

Dataset Output/Label

Dataset Inputs

. f(X’iV) maps input Xﬁv to output y}v.
" Machine Learning Goal = find the functional form y}v = f(X’iV)

* For Kaggle diamond dataset:
— i=1...9 (Carat, Cut, etc.)
— j=1 (Price)
— N=53,940 (number of diamonds sampled)

Mechanistic Data Science Data Generation and Collection - 12



Dataset for Machine Learning (2)

N
N f(Xi ) N i = input feature index
Xi E—) yj j = output feature index
Dataset Inputs Dataset Output/Label N = number of data points/samples

— The dataset is divided into training (70%), validation (15%), and testing (15%) sets
to find the functional relationship and confirm it is the best possible fit

— This process is iterative. The model is repeatedly trained, validated, and tested
— Final performance on the testing set is evaluated when function error is minimal

Dataset ﬂ
_|-""ﬂ\'"-\_
a _ Q Training set: Inputs and outputs fit
to mapping function f(X?’)
O Validation set: Evaluate function
(frequently after each training step)
S, Y F Y J
T v M O Testing set: Evaluate the final
Training Validation Test ; N
Set Set Set function f(Xi )
70% 15% 15%

Mechanistic Data Science Data Generation and Collection - 13



Example: How can we identify a high quality diamond
at a reasonable price?

1. The Pink Star 2. Oppenheimer Blue Diamond 3. Graff Vivid Pink Diamond

Image Source: Cosmopolitan Italia Image Source: Christie’s Image Source: Diamondhistorygirl
Price: $71 million Price: $57.5 million Price: $46 million

Sold: April 2017 at Sotheby’s Auction Sold: May 2016 Sold: November 2010
Carat Weight: 59.6 carats Carat Weight: 14.62 carats Carat Weight: 24.78 carats
Color: Pink Color: Blue Color: Pink

5. The Orange 6. The Largest Diamond Ever Sold

Image Source: DailyMail.co.uk Image Source: NY Post Image Source: CNBC

Price: $39.3 million Price: $35.54 million Price: $30.6 million

Sold: April 2013 Sold: November 2013 Sold: Christie’s in 2013
Carat Weight: 36.45 carats Carat Weight: 14.82 carats Carat Weight: 118.28 carat

Color: Colorless

Mechanistic Data Science  Color: Pink Color: Orange Data Generation and Collection - 14




Mohs Scale of Hardness

Earth’s GEM SELEC]

:‘ardes Mohs Hardness Scale
mathri Name Scale Number Common Object
d |§;‘£§ . Diamond 10

Corundum 9
Masonry Drill Bit / 8.5

AR E—
g Topaz 8
€A
!'E;

 Orthoclase 6

Knife / 5.5
= W T

O =

Apatite 5 N

o Fluorite 4 Penny (Copper) / 3.5

]
@ Calcite 3

“}& Gypsum 2 \ Fingernail / 2.5

\‘n__

V Talc 1

https://www.gemselect.com/gem-info/gem-hardness-info.php
Mechanistic Data Science

German mineralogist Frederick

Mohs (1773-1839)

How to Perform the MOHS Test?

Scratch it!
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https://geology.com/minerals/mohs-hardness-scale.shtml

Features used to Characterize Diamonds

1. SHAPE "One carat” (100 points) equals

2. SIZE (carats) the weight of 1/5 of a gram

3. CLARITY Rouno _ OVAL MARQUISE PEAR

4. COLOR = 1..45 . .

5. CUT @ !l A B B B B
. BRIGHTNE

o SRHINESS D W N1
7. FIRE (dispersion) Total internal

8. SPARKLE reflection %4 %+,

9. POLISH

10. SYMMETRY
11. FLUORESCENCE

12. DURABILITY
13. LUSTER Data Science focuses on quantifiable features

Mechanistic Data Science Data Generation and Collection - 16



https://perrywinkles.com/blogs/education/introduction-to-diamonds

Different features can represent the same problem

4Cs of Diamond Quality

THE 4Cs

OF DIAMOND QUALITY

The universal method for assessing the quality of any diamond,
anywhere in the world.

Mechanistic Data Science

? 4C Standard
! P 1- -i.“ . Ii}\ '

Pl . = Vi ----..\ ! \\‘
COLOR - E:.h - -..__,-.;j !‘i-..._.}

D H N [
CLARITY
‘.WS; s, '.s'|2.' 7. , i

cuTt Excellent, Very good, Good, Fair, Poor
CARAT "One carat” (100 points) equals the
WEIGHT weight of 1/5 of a gram

Gemological Institute of America (GIA)

Data Generation and Collection - 17



Example: Diamond Data for Feature-based Pricing

Price: ($326--$18,823)

Cut: (Fair, Good, Very Good, Premium, Ideal)

Color: (J (worst) to D (best))

Clarity: (11 (worst), S12, SI1, VS2, VS1, VVS2, VVS1, IF (best))
Size in x direction in mm (0--10.74)

Size in y direction in mm (0--58.9)

Size in z direction in mm (0--31.8)

Depth: z/mean(x,y)=2%z/(x +vy) (43--79) (%)

Table: width of top of diamond relative to widest point (43--93) (%)

Color (D,E,F,G,H,1,J)> (1,2,3,4,5,6,7)
D: colorless ~ Z: light yellow or brown

« Kaggle (Datasets/Diamonds)
Carat: (0.2--5.01)
— 53,940 diamonds with 10 features
carat cut color clarity depth table price X y z

1 0.23 Ideal E SI2 61.5 55 326 395 398 243

2 0.21 Premium E SIn 59.8 61 326 389 384 231

3 0.23 Good E VS1 56.9 65 327 405 407 231

4 0.29 Premium I VS2 624 58 334 4.2 423 263

5 0.31 Good J SI2 63.3 58 335 434 435 275

6 0.24 Very Good J VWS2 628 57 336 394 396 248

7 0.24 Very Good I VVS1 623 57 336 395 398 247

8 0.26  Very Good H SIn 61.9 55 337 407 411 2.53

9 0.22 Fair E VS2 651 61 337 387 378 249

10 0.23 Very Good H VS1 594 61 338 4 405 239
Cut Rating | Numerical value  Clarity Rating Numerical value
Premium 1 [F—Internally Flawless 1
Ideal 2 VVS1,2—Very, Very Slightly Included 1,2| 2
Very Good | 3 VS1,2—Very Slightly Included 1,2 3
Good 4 SI1,2—Slightly Included 1,2 4
Fair 5 [1—Included 1 5

Mechanistic Data Science
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About the data (Description of attributes)

[This classic dataset contains the prices and other attributes of almost 54,000 diamonds. There are 10 attributes included in jg

the dataset including the target ie. price.

carat (0.2-5.01): The carat is the diamond's physical weight measured in metric carats. One carat equals 0.20
gram and is subdivided into 100 points.

cut (Fair, Good, Very Good, Premium, Ideal): The quality of the cut. The more precise the diamond is cut, the
more captivating the diamond is to the eye thus of high grade.

color (from J (worst) to D (best)): The colour of gem-quality diamonds occurs in many hues. In the range from
colourless to light yellow or light brown. Colourless diamonds are the rarest. Other natural colours (blue, red,
pink for example) are known as "fancy,” and their colour grading is different than from white colorless diamonds.
clarity (11 (worst), SI2, SI1, VS2, VS1, VVS2, VVS1, IF (best)): Diamonds can have internal characteristics known
as inclusions or external characteristics known as blemishes. Diamonds without inclusions or blemishes are rare;
however, most characteristics can only be seen with magnification.

depth (43-79): It is the total depth percentage which equals to z / mean(x, y) = 2 * z / (x + y). The depth of the
diamond is its height (in millimetres) measured from the culet (bottom tip) to the table (flat, top surface) as
referred in the labelled diagram above.

table (43-95): It is the width of the top of the diamond relative to widest point. It gives diamond stunning fire
and brilliance by reflecting lights to all directions which when seen by an observer, seems lustrous.

price ($$326 - $18826): It is the price of the diamond in US dollars. It is our very target column in the

dataset.

x (0 - 10.74): Length of the diamond (in mm)
y (0 - 58.9): Width of the diamond (in mm)

z (0 - 31.8): Depth of the diamond (in mm)

Data Generation and Collection - 19



Example: Moneyball

« Kaggle (Datasets/Moneyball)

— MLB statistics 1962-2012

— Billy Beane and Paul DePodesta, Oakland Athletics, 2002

— 1,232 data with 15 features
» Player: Batting average (BA, EI&), runs batted in (RBI, Ef)
« Win 95 games to make the playoffs, score 133 more runs than opponents
« On-base percentage (OBP, =5+ &)
» Slugging percentage(& El=&) (SLG)=(1B+2B*2+3B*3+HR*4)/AB(At Bat, E &)
« On-base plus slugging (OPS)=0BP+SLG

Team League Year RS RA W OBP SLG BA Playoffs RankSeason RankPlayoffs G OOBP OSLG
ARI NL 2012 734 688 81 0.328 0.418 0.259 0 162 0.317 0.415
ATL NL 2012 700 600 94 0.32 0.389 0.247 1 5 162 0.306 0.378
BAL AL 2012 712 705 93 0.311 0.417 0.247 1 5 4 162 0.315 0.403
BOS AL 2012 734 806 69 0.315 0.415 0.26 0 162 0.331 0.428
CHC NL 2012 613 759 61 0.302 0.378 0.24 0 162 0.335 0.424
CHW AL 2012 748 676 85 0.318 0.422 0.255 0 162 0.319 0.405

Mechanistic Data Science Data Generation and Collection - 20



Example: Data Collection from Indentation Testing

Mechanistic Data Science I How to analyze

Applications: Materials Engineering material properties?

* Indentation testing: material testing for hardness

* Hardness: resistance to penetration of a hard indenter (related to
material strength)

« Significance
— Testing is simple, fast, relatively inexpensive, and not destructive

— Hardness is closely related to critical mechanical properties: strength, ductility,
and fatigue resistance

— More plausible at small scales than tensile test

Mechanistic Data Science Data Generation and Collection - 21




Example: Data Collection from Indentation Testing

Load (P) (b] s

| Sarmplie A& Sample B - Sample
' i ..H-'
\ / lmprumm

> Measurement of impression diagonals

ni
mi

Parameter  Berkovich Cube-corner Cone Spherical Vickers

" AA@O A

C-f angle 65.35° 35.264° Sample A Saemple B Samiple G
Projected (HV), > (HV), > (HV)
Contact area 24.5600d*>  2.5981d> ma? ma®  24.50444d° '
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https://www.astm.org/Standards/E140.htm
https://en.wikipedia.org/wiki/Indentation_hardness

Indentation Tests: Vary by Sample Size and Shape

Macroindentation Microindentation Nanoindentation

Load Application
Device

]‘ Springs

Displacement
— SENSOr

Springs
«——Probe Tip
Sample
Load Frame
Brinell macrohardness test Vicker microhardness test Nanoindentation test
= Applied load > 1kgf = Applied load = 1~1000 gf = Also known as instrumented
= Example: Vickers, Brinell, = Example: Vicker, Knoop, indentation
Knoop, Janka, Meyer, microhardness test = Applied load < 1gf
Rockwell, Shore hardness test = Material testing at micro

and nanoscale
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846235/
https://link.springer.com/article/10.1007/s11249-016-0805-5

Calculating Hardness from Load-Displacement Data

— What data we collect from indentation test? Py b
— Hardness is calculated with the maximum applied dp
load and the indenter contact area ~ loading >=n
-C% curve
P = applied load 9 unloading
h = indentation depth : curve
S = slope of unloading curve
C = curvature of load-displacement curve R
P,, = maximum load h h
h,, = maximum indentation depth h (Depth) "
h. = critical indentation depth (difficult to Key Equations ‘
measure and must be calculated)
A = contact area (depends on indenter shape) * h,=h-— Elm
H = hardness (GPa) « A= f(h,) S: 24.56h%
E = elastic modulus (GPa) . g Pm
€ = constant (depends on indenter geometry) A
We= Elastic work done . Er=- "_ (B = 1.034 for Berkovich indenter)
W),= Plastic work done 2hf ~ 24-56
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https://www.nanoscience.com/techniques/nanoindentation

Indentation Data from Different Sources

« Data modality: data from different sources (modes)

« Data sources
— Experiment: Instrumented indentation
— Imaging: Scanning Electron Microscope (SEM)

— Sensors: Load and displacement sensing using Linear variable differential
transformer (LVDT)

— Modeling and simulation: Finite element, Atomistic simulation

(a) ~——. (b)
J'll."-.i; ZiJm\\_J’“aq/;imwn

i Indentation surface imagin : : . ' : .
Mechanistic - ... ... EXPerimental set up &ing Sensing using LVDT sensor Simulation of indentation . .5

FET element

g} = | &

Depth

'/l,vur (d) A -.

—t

1
i Indenter
.

TiN

w
3
£

if
%
T
bbbl il illoie
gEapusEassie
S2555EEEREEER




Indentation Data from Different Sources

« Load-displacement data can be found through physical experiments
and computer simulations

— Both experiment and simulations produce the same indentation
— Deviations in modality require data calibration

Nanoindentation Experiment and Imaging Finite Element Method / Computer Simulation

Z-axis precision linear guide
Piezoelectric stack
Flexure hinge
Force sensor
Dlsplaccmcnt sensor
Diamond indenter

% Specimen

X-Y axis precision positioning stage

10.0

Stand column Foundatlon
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https://www.nature.com/articles/srep15072

Indentation Data at Different Scales

« Data Fidelity: Resolution of data
— High fidelity data is more accurate, but expensive

— Machine learning improves the accuracy of low fidelity data, translating it to high
fidelity with less cost

— High and low fidelity are relative

Low-fidelity = Large Scale: High-fidelity = Small Scale:
l|_ Microindentation AFM Nanoindentation Nano Resolution

. - - . 175
Z-axis precision linear guide nm

Piezoelectric stack
Flexure hinge

Force sensor
i Displacement sensor

Diamond indenter
Specimen

0nm

X-Y axis precision positioning stage e

Impression shows indenter shape

s ; , | z Surface imprint after nanoindentation,
Vickers microindentation test Micron Resolution Stand column Foundation xé Y Scanning electron microscope (SEM) image
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https://www.nature.com/articles/srep17164
https://downloads.hindawi.com/archive/2016/6508597.pdf

Indentation Database

Data Modality: Experimental and

Nanoindentation database summary: simulation data collected for each material

Material Experiment Computation
Al-6061 alloy 7 experiment 2D FEM (Axisymmetric) : 100 simulations

each for conical indenter half angle of e
Al-7075 alloy 7 experiment 50,60,70,80° » Data Fidelity:

3D FEM: 15 simulations for Berkovich indenter 2D (low fidelity) and
3D printed Ti-6Al-4V 144 experiments  Not available 3D (high fidelity)
alloys (six samples) for each sample simulations

*Load-displacement curves are available for each experiment and simulation.

Input data
Load-displacement curvature
Indentation depth

Output data
Hardness

Elastic modulus
Yield strength

Indenter shape and size
Maximum load
Unloading curve slope

Database source:
Mechanistic Data Science Data Generation and Collection - 28



https://www.pnas.org/doi/epdf/10.1073/pnas.1922210117
https://github.com/lululxvi/deep-learning-for-indentation

Working with Noisy Data and Outliers

* Noise in the data is very common
 Source of noise: human error in measurement, sensor fluctuation and so on

« Outliers are data coming from same source but vary significantly from other
measurement

20000 -

Pl = Regression model can give idea
on the data trend and help identify
outliers or noise from the data.

= Type of regression:

» | east square method
= Lasso regression
| = Ridge regression
mieage = Elastic net regression, etc.

outliers

price

How do we know if this outlier to ignore or not?
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Challenges: Data

- Data on demand
— Do not have enough data to run an ML model
— Produce the data by using physics-based simulations
— Issue: extensible or adaptive sampling is critical

e Data in hand
— Use of the historical data, stored in different places and formats created by
different software versions

— Issue: reliability, need to be converted to metadata
* Non-standard formats without proper access (op2, d3plot, bdf, ...)
* Non-uniform data (shell, solid, mesh, time series, text, ...)
* Inconsistent data (1d, 2d and 3d mixed)
« Highly dirty data (oscillations, instability, ...)

« Data in flight

— Internet of Things (loT) sensors: large amounts of fast data from operation
— Issue: volume and quality of data

Mechanistic Data Science Data Generation and Collection - 30



ANSYS .cdb, .rst, .rth, .rfl
ABAQUS .inp, fil, .odb
CFD General Notation System .cgns

CFX .res

Ensight .case, .encas
ESI PAM CRASH .ERFHS5 files
Fe-Safe feror.csv
femfat .dma

Fluent .msh, .cas, .dat
LS-DYNA .key, .d3plot
MSC.MARC .t16, .t19
NASTRAN .OP2, .BDF
nCode .unv, .csv
OpenFoam .ControlDict
OptiStruct .0P2

Pro/Mechanica

design study files

Mechanistic Data Science

Vendor/Product File Format

Vendor/Product File Format

SDRC universal files
StarCCM+ .ccm

Tecplot binary files

Neutral format STL

Catia V4 *.model

Catia V5 *.CATPart, *.CATProduct
Catia V6 *.3D XML

CGR *.cgr

Creo - Pro/E * prt, *.asm

IGES * igs

Inventor *.iam, *.ipt

T Jjt

Siemens /NX * prt

Solid Edge * par, *.asm, *.psm
SolidWorks *.sldprt, *.sldasm
STEP *.stp, *.step
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From Model-centric to Data-centric Al

Al System = Code + Data
Model-Centric Al Data-Centric Al

How can you change How can you
the model (code) to ‘systematically change

improve performance?  the data (inputs x or
labels y) to improve

performance?

%

Making it systematic: MLOps il

Model-centric view Data-centric view

Collect what data you can, The consistency of the data is

and develop a model good paramount. Use tools to

enough to deal with the noise improve the data quality; this

in the data. will allow multiple models to
do well.

Hold the data fixed and Hold the code fixed and
iteratively improve the iteratively improve the
code/model. data.
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https://www.youtube.com/watch?v=06-AZXmwHjo

Homework #1: Data Visualization (1)

 Diamond
— Fig.1.12 price vs. (a) carat, (b) separated by cut

15000 B
8 10000
o g O
CT. °
5000
0 2.;2_5 3.0
0 1 2 3 4 5 ° T T s 10 et

IR O
Cfaf‘lty 0

Carat

Figure 12 Diamond price vs carat (a) parameters combined (b) separated by clarity.
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* Moneyball

Homework #1: Data Visualization (2)

— Fig.3.10 (a) RS vs. BA, OBP, SLG, OPS, (b) W vs. BA, OBP, SLG, OPS
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