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Least Squares Optimization: Linear Regression

• Regression Analysis

– Set of statistical processes for estimating the relationships between a dependent 

variable (often called the 'outcome' or 'response’ or ‘ target ’) and one or more 

independent variables (often called 'predictors', 'covariates’, 'explanatory variables'

or ‘features’)

• Linear regression

– Simplest method to build a relationship between input and output while many 

relationships are nonlinear in science and engineering

– Fundamental to understanding more advanced regression methods

– Adrien-Marie Legendre(1805), Johann Carl Friedrich Gauss(1809)

• Orbits of celestial bodies

– Term “regression”: Francis Galton (1800’s)

• Genetics of sweet peas: weights of planted and harvested peas

https://en.wikipedia.org/wiki/Regression_analysis

https://en.wikipedia.org/wiki/Regression_analysis

https://en.wikipedia.org/wiki/Regression_analysis
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Linear Regression Model
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Sum of Squares (SS)

• sum of squares total (SST) or the total sum of squares (TSS)

– differences between the observed dependent variables and the overall mean

– similar to the variance in descriptive statistics

– total variability of a dataset, commonly used in regression analysis and ANOVA

• sum of squares due to regression (SSR) or explained sum of squares (ESS)

– differences between the predicted value and the mean of the dependent variable

– how well our line fits the data

• sum of squares error (SSE) or residual sum of squares (RSS, where 

residual means remaining or unexplained)

– difference between the observed and predicted values
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Coefficient of Determination (R-squared)

• Proportion of the variance in the dependent variable that is explained by 

the independent variable(s): (explained variation)/(total variation)

• How well a model explains and predicts future outcomes: goodness of fit

• How much smaller SSE is than SST
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Correlation Coefficient (r)

• Covariance

– whether both variables vary in same direction (+) or opposite direction (-)

– no significance of covariance numerical value only sign is useful

• (Pearson) Correlation Coefficient

– 공분산을 각각의 변수의 표준 편차로 나누어 준 값

– how closely the points in a scatter plot follow a straight line
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Relationship Analysis: R vs. r

• R: how well a model explains the variability in the dependent variable

• r: strength and direction of a linear relationship between two variables
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Adjusted R-squared (Coefficient of Determination)

– R-squared value always increases or remains the same when more predictors are 

added to the model, even if those predictors do not significantly improve the 

model's explanatory power: misleading impression of the model's effectiveness

• Interpreting Adjusted R-Squared in Practice

– Model 1 has an r-squared of 0.9 and an adjusted r-squared of 0.75

– Model 2 has an r-squared of 0.85 and an adjusted R-squared of 0.8
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Evaluation of Regression Analysis (1)

Metric Full Name Interpretation and Use Cases
Robust to 

outlier?

MAE Mean Absolute Error
Simple, interpretable measure of average error magnitude. 

Less sensitive to outliers. Useful for typical error assessment.
Yes

MAPE
Mean Absolute 

Percentage Error

Intuitive for relative errors. Ideal for varying scales or when 

relative errors are more relevant.
Yes

MSE Mean Squared Error
Penalizes larger errors heavily. Useful for optimizing models by 

minimizing large errors.
No

RMSE
Root Mean Squared 

Error

Interpretable measure of average error distance in original 

units. Retains sensitivity to larger errors like MSE.
No
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Evaluation of Regression Analysis (2)

https://www.dataquest.io/blog/understanding-regression-error-metrics/

https://www.dataquest.io/blog/understanding-regression-error-metrics/

https://www.dataquest.io/blog/understanding-regression-error-metrics/
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Assumptions of Linear Regression

https://www.superdatascience.com/blogs/assumptions-of-linear-regression

https://www.superdatascience.com/blogs/assumptions-of-linear-regression

https://www.superdatascience.com/blogs/assumptions-of-linear-regression
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Background: Optimization (1)

• Process of finding the minimum (or maximum) value of a set of data or 

a function, generally performed mathematically

• Example

– Let’s say I’m an engineer at an automobile company tasked to design a new part.  

The part must satisfy a pre-determined list of requirements: strength, fatigue life 

weight manufacturability, etc. The part must also be economical to produce to 

keep profit margins up. As such we want minimize the cost. 

– We’ve decided to go with Carbon Fiber Reinforced Polymer (CFRP) as our 

material. Yet, we need to determine several factors: volume fraction, fiber 

orientation, fiber radius, etc. while satisfying the pre-determined list of 

requirements. As such our cost function will be of high-dimensionality.
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Background: Optimization (2)

• What is a cost function?

• Maximum and minimum of a cost function: local vs. global

• First, second, and higher order derivatives in multiple dimensions: gradients

• Gradient descents: a key concept behind optimization
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Optimization: c vs. w
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Optimization: c vs. (w0, w1,…, wS)

• Multidimensional Derivatives

• Gradient: slope or rate of change in a particular direction

– find the minimum of high dimensionality functions
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Gradient Descent

( )

( )

1

step
size

search 
direction

1

0

0

1

1. Start at an arbitrary point 

2. Find the derivative of  at 

3. Descend to the next point through 

the gradient descent equation: 

k

k k

k k k

dc w
w w

dw

c

w

c w

w





+

+


 = −



 = − 

w w w

( )

( )

0

0

1

2 14. Repeat the process: 

dc w
w

dw

dc w
w w

dw





= −

= −



Mechanistic Data Science Optimization and Regression - 17

Gradient Descent: Example
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Example: Moneyball (1)
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Example: Moneyball (2)

Can we get a better R-squared value if 

we include both OBP and SLG in a 

single regression?
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Example: Moneyball (3)

• correlation between W and any of these statistics? not good

– do not account for pitching and defense, which are other important parts of 

winning baseball games
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Multivariate Linear Regression Model
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Example: Moneyball
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Python Code: Fig.3.24 (1)

import pandas as pd

import numpy as np

from scipy import stats

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# Load team data

df = pd.read_csv('baseball.csv',sep=',').fillna(0)

df['OPS'] = df.OBP + df.SLG

df2002 = df.loc[df.Year < 2002]

# Linear regression for Runs scored

slBA, intBA, r_valBA, p_valBA, ste_errBA = stats.linregress(df2002.BA,df2002.RS)

rsqBA = r_valBA**2

slOBP, intOBP, r_valOBP, p_valOBP, ste_errOBP = stats.linregress(df2002.OBP,df2002.RS)

rsqOBP = r_valOBP**2

slSLG, intSLG, r_valSLG, p_valSLG, ste_errSLG = stats.linregress(df2002.SLG,df2002.RS)

rsqSLG = r_valSLG**2

slOPS, intOPS, r_valOPS, p_valOPS, ste_errOPS = stats.linregress(df2002.OPS,df2002.RS)

rsqOPS = r_valOPS**2

plt.plot(df2002.BA,df2002.RS,'.',label='BA ($r^2$=%.3f)' %rsqBA)

plt.plot(df2002.OBP,df2002.RS,'o',label='OBP ($r^2$=%.3f)' %rsqOBP)

plt.plot(df2002.SLG,df2002.RS,'.',label='SLG ($r^2$=%.3f)' %rsqSLG)

plt.plot(df2002.OPS,df2002.RS,'*',label='OPS ($r^2$=%.3f)' %rsqOPS)

plt.xlabel('Statistic')

plt.ylabel('Runs scored')

plt.legend(loc='lower right')

plt.grid()

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.linregress.html
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Python Code: Fig.3.24 (2)

yBA = slBA*df2002.BA + intBA

plt.plot(df2002.BA,yBA,'k-')

yOBP = slOBP*df2002.OBP + intOBP

plt.plot(df2002.OBP,yOBP, 'k-')

ySLG = slSLG*df2002.SLG + intSLG

plt.plot(df2002.SLG,ySLG, 'k-')

yOPS = slOPS*df2002.OPS + intOPS

plt.plot(df2002.OPS,yOPS, 'k-')

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.scatter(df2002.OBP,df2002.SLG,df2002.RS,marker='*',color='r')

ax.set_xlabel('On base percentage (OBP)')

ax.set_ylabel('Slugging percentage (SLG)')

ax.set_zlabel('Runs scored (RS)’)

x = df2002.OBP

y = df2002.SLG

x,y = np.meshgrid(x,y)

z = -803 + 2729*x + 1587*y

# Linear regression for Wins

slWBA, intWBA, r_valWBA, p_valWBA, ste_errWBA = stats.linregress(df2002.BA,df2002.W)
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Matlab Code: regression_multivariate.m

%Gradient Descent
clear all
close all
%num of iterations, learning rate, initial guess
ite = 50000;
alpha = .0005;
wa = [-1000; 1000; 1000];
%imported data, 3 columns: RS, OBP, SLG
A = readtable ('baseball.csv');
%size(A)
%a1 is OBP, a2 is SLG, a3 is RS
a1 = A.OBP;
a2 = A.SLG;
a3 = A.RS;
%length of data
spac = length(a1);
%group OBP and SLG in a matrix
Af = [a1, a2];

%define symbolic variables
syms w0 w1 w2
whold = [w1; w2];
%cost function for first point
g(w0,w1,w2) = (w0+Af(1,:)*whold - a3(1))^2;
%cost function for the rest of points (wo+x.T *w y)^2
for i=2:spac
g = g + (w0+Af(1,:)*whold - a3(i))^2;
end
%take the grad of g
gradd(w0,w1,w2) = gradient(g,[w0,w1,w2]);
%loop through iterations
for i=1:ite
%value of gradient at wa
bloop1 = double(gradd(wa(1),wa(2),wa(3)));
%gradient descent, new value of w
wnew = wa - alpha*bloop1;
%update wa
wa = wnew;
end
wnew
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Matlab: Statistics and Machine Learning Toolbox

• regress

• lasso
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Example: Indentation for Material Hardness and Strength

• Stress-strain curve

• Vickers Hardness (HV)

Why stress instead of force?
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Example: Indentation for Material Hardness and Strength

– Previous linear empirical equations in literature have been found to accurately 

relate Vickers Hardness (HV) and yield strength (𝜎) for some materials

– Why there should be a relationship between HV and 𝜎?

Zhang, P. et al. (2011). General relationship between strength and hardness. Materials Science and Engineering: A, 529, 62-73.

2 0.93R→ =2 0.93R→ =

Metallic glass

Deformation Crack

Fragment

https://www.sciencedirect.com/science/article/pii/S0921509311009555
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Empirical relationship between hardness and strength

• Hv∼3σy ⇔ Hardness∼3x(Yield Strength)

• Is this relationship supported by all materials?

The relationship between strength and hardness in: (a) Cu and Cu–Zn alloys with 

different pretreatment; (b) metallic glasses; (c) ceramics.
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Nonlinear Regression: Piecewise Linear Regression

• Subdividing a set of nonlinear data into a series of segments that are 

approximately linear
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Nonlinear Regression: Piecewise Linear Regression

• How can we choose the split point?

– Use residual sum of squares (RSS) as a cost function
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Polynomial Nonlinear Features

– We can increase our feature space by taking increasingly higher 

degrees of polynomials

– Feature space: The n dimensions where the variables exist

– Pitfall: For an increasingly higher d degree, you can start overfitting

– Overfitting: A model that fits the training data too well and therefore 

lacks generality.
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Higher Order Interpolation May Lead to Overfitting

– Suppose you have a set N data points (x(i),y(i)) in the plane where no two x(i) are 

the same. Then there exists a polynomial P of degree N−1 or less which perfectly 

interpolates the data points. That is, P(x(i))=y(i) for all I

– According to the theorem, for two points there exists a line and for three points 

there exists a quadratic polynomial that perfectly fits the data points.

– But if we have a large number of data say 30,000, should we use a very high 

degree polynomial to fit it? The answer is NO.
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Avoid High Order Polynomials

– By increasing the order of regression model, we can have more accurate 

regression result (regression curve corresponds too closely to data).

– This causes “Overfitting” and "Runge's Phenomenon oscillation".
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Use Regularization To Avoid Overfitting 

• Find a good balance between model complexity and accuracy

– complicated, higher order regression models to achieve accuracy → may lose 

generality for the regression models

• Regularized loss function

– By tuning 𝝀 a model can be pushed to converge to the actual function

– Larger 𝝀: more simplicity, smaller 𝝀: more accuracy

– How to choose λ?
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Regularization Can Avoid Overfitting

– We consider the green curve to be smoother an “easier" path to traverse in 

comparison to the blue curve. Smaller weights will get us better or smoother 

results. By tuning 𝝀 a model can be pushed to converge at the green curve.

– Think of regularization in two ways

• You are penalizing high weights by adding a positive term to the cost function. The 

higher the magnitude of 𝒘 the higher the cost will be.

• By adjusting 𝜆, you can modify the cost function to achieve convergence to a minimum.
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Lp-Norm

– L1-norm can be used to relieve overfitting: eliminate some high order terms in the 

regression model (may omit the intricate details)

– L2-norm uses the concept of “sum of squares”, and thus has useful properties 

such as convexity, smoothness and differentiability (capture those details)
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Regularization: Geometric Interpretation

Regularization Term Method

L1 norm LASSO

L2 norm Ridge regression

L1 + L2 norm Elastic net
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Example: Regularized Regression
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Comparison

• Lasso (L1 norm) regression

– Better performance in feature selection

• Ridge (L2 norm) regression

– Can preserve details and detect sophisticated patterns in data
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Example: Comparison of Regularization
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Nonlinear Regression: Moving Average

• Good method to smooth out data and mute the 

effects of spikes in the data

– analyzing trends with stock prices in order to smooth 

out the effects of day to day movement of the stock 

price (volatile or downturn)

– 200-day can also act as a “floor” or lower limit—

buying opportunities exist when the price drops down 

to that level or below

• Simple Moving Average (SMA)

– sum of the stock price for the previous k amount of 

days divided by k

• Appearance of being off of the original data

– at the average of the independent variable instead of 

at the extent
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Python code: Fig.3.20

#!pip install yfinance

import yfinance as yf

#import pandas_datareader.data as web

start = '2016-01-01'

#df2 = web.DataReader('^GSPC', 'yahoo',start)

df2 = yf.download('^GSPC', start=start)

df2.to_csv('gspc.csv')

df2['Close'].plot()

df2['Close'].rolling(50).mean().plot()

df2['Close'].rolling(200).mean().plot()

plt.legend(['Daily close','50-day moving average','200-

day moving average'])

plt.ylabel('Price ($)')

plt.grid()

plt.show()
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Nonlinear Regression: Moving Least Squares

• So far, we have considered all our data of equal importance. However, 

we might want to place more weight on certain data points for a variety 

of reasons including:

– Emphasize data points closer to our point of interest

– Minimize fitting towards outliers

• Weight function results in a localized point-by-point least square fit 

instead of a global least squares fit

– Weighting functions move so that the regression is always being done with a few 

of the data points
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Example: Apple Stock

– Original 252 data points

– MLS: only 45 evenly spaced points

– Cubic spline with a coverage radius of 3
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Moving Least Squares (MLS) Approximation
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Moving Least Squares: Weighting Function Effect

Constant

Weight

function

Piecewise Linear Moving Least Squares

Regression

Linear

Step Gaussian
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K-fold Cross Validation (1)

• Rotation estimation or out-of-sample testing

– Assess how the results of a statistical analysis will generalize to an independent data set

• Can remove bias in choosing training and test set and improve model confidence

– Step 1: Divide the original data set into equal K folds (parts)

– Step 2: Use one part as the test set and the rest as the training sets

– Step 3: Train model and calculate mean square error (MSE) on test set

– Step 4: Repeat steps 2 and 3 K times each time using a different section as the test set

– Step 5: The average accuracy is taken as the final model accuracy
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K-fold Cross Validation (2)

• For each regularization parameter 𝜆, K-fold cross-validation can be 

used to find MSE of data.

• By comparing result of K-fold cross-validation, appropriate 𝜆 can be 

found.
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Matlab Code: Fig.3.30 (1)

%% L1 and L2 norm regression example
%% Generation of data
clc
clear
x0 = -2:0.05:2; % 81 linearly spaced x coordinates are spaced between interval [-2,2]
n = length(x0); % The total number of data points (81)
x1 = x0+randn(1,n)*0.05; % x+epsilon1
x2 = x0+randn(1,n)*0.05; % x+epsilon2
x3 = x0+randn(1,n)*0.05; % x+epsilon3
x = [x1.^5;x0.^4;x0.^3;x2.^2;x3;ones(1,n)]';
weights = [1;0;0;-4;-5;0]; % Weights
y = x*weights; % Simulated data y = x^5 - 4*x^2 - 5*x

%% Regressions
[b_lasso,fitinfo] = lasso(x, y,'CV',10); % L1 norm regularized regression
lam = fitinfo.Index1SE; % Index of appropriate Lambda
b_lasso_opt = b_lasso(:,lam) % Weights for L1 norm regularized regression
lambda = 1; % Set lambda equals to 1 for L2 norm regularized regression (You can also find an appropriate Lambda yourself)
b_ridge = (x'*x+lambda*eye(size(x,2)))^-1*x'*y % Weights for L2 norm regularized regression (Has analytical solution)

b_ols = polyfit (x1',y,5) % Weights for non regularized regression (Ordinary Least Squares)
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Matlab Code: Fig.3.30 (2)

xplot = [x0.^5;x0.^4;x0.^3;x0.^2;x0;ones(1,n)]';
y_lasso = xplot*b_lasso_opt ; % L1 norm regression result
y_ols = xplot*b_ols'; % Non regularized regression result
y_ridge = xplot*b_ridge ; % L2 norm regression result

%% Plots
plot(x0,y,'bo') % Plot of origin data
hold on
plot(x0,y_lasso,'LineWidth',1) % Plot of L1 norm regression
hold on
plot(x0,y_ridge,'LineWidth',1) % Plot of L2 norm regression
hold on
plot(x0,y_ols,'LineWidth',1) % Plot of non regularized regression
ylabel('Y','fontsize',20)
xlabel('X','fontsize',20)
legendset = legend('Original data','L1 norm regression','L2 norm regression','No regularization','location','southeast')
set(gca,'FontSize',20);
lassoPlot(b_lasso,fitinfo,'PlotType','CV'); % Cross validated MSE
legend('show') % Show legend
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Homework #2: Regression

• (1) Perform Multivariate Linear Regression on baseball data

– (OBP, SLG) vs. RS

– Compare the results from Python and Matlab

• (2) Perform non-linear regression without any regularization, and with 

L1 and L2 regularization. 

– Generate your training data with Gaussian noise and compare the performance 

with true data. 

– Show how changing the penalty parameter can affect your prediction.
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