scipy.stats.linregress

slope, intercept, r, p, se = linregress(x, y)

linregress(x, y=None, alternative='two-sided’) [source]

Calculate a linear least-squares regression for two sets of measurements.

Parameters:
X, y : array like
Two sets of measurements. Both arrays should have the same length N. If only x is
given (and y=None ), then it must be a two-dimensional array where one dimension has
length 2. The two sets of measurements are then found by splitting the array along the
length-2 dimension. In the case where y=None and x is a 2xN array, linregress(x) is

equivalent to linregress(x[8], x[1]) .

(1 ] Deprecated since version 1.14.0: Inference of the two sets of measurements from
a single argument x is deprecated will result in an error in SciPy 1.16.0; the sets must

be specified separately as x and y.

alternative : {'two-sided’, 'less’, ‘greater’}, optional
Defines the alternative hypothesis. Default is ‘two-sided’. The following options are
available:
* ‘two-sided" the slope of the regression line is nonzero

e ‘less’ the slope of the regression line is less than zero

* ‘greater’: the slope of the regression line is greater than zero

© Added in version 1.7.0.
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result = linregress(x, y)
print(result.intercept, result.intercept_stderr)

result : LinregressResult instance

The return value is an object with the following attributes:

slope : float

Slope of the regression line.

intercept : float

Intercept of the regression line.

rvalue : float

The Pearson correlation coefficient. The square of rvalue is equal to the

coefficient of determination.

pvalue : float

The p-value for a hypothesis test whose null hypothesis is that the slope is zero,
using Wald Test with t-distribution of the test statistic. See alternative above for

alternative hypotheses.

stderr : float

Standard error of the estimated slope (gradient), under the assumption of residual

normality.

intercept_stderr : float

Standard error of the estimated intercept, under the assumption of residual

normality.
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« Outliers(0| & Z))
— values that are located far outside of the expected distribution
— cause the distributions of the features to be less well-behaved
— can be found both in the features and the target variable

 Many possible approaches to dealing with outliers
— removing them from the observations
— treating them (for example, capping the extreme observations at a reasonable value)
— using algorithms that are well-suited for dealing with such values on their own

 Huber regression
« RANSAC regression
* Theil-Sen regression
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Huber regression

* Robust regression algorithm that assigns less weight to observations
identified as outliers

Mechanistic Data Science

minzn: o+ H m o +aHWH 2
w,o & 2

P o
(o : standard deviation
X. : set of features

1

y; . regression’s target variable

J\

w: vector of the estimated coefficients

|« : regularization parameter

z2 if ‘Z‘ <& _ . .
H,(z)= — Huber loss: identify outliers
2& ‘z‘ —&* otherwise
when the errors follow Normal distribution with o =1,

& =1.35 - 95% efficiency relative to the OLS regression
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Random sample consensus (RANSAC) regression

* Non-deterministic algorithm that tries to separate the training data into
inliers (which may be subject to noise) and outliers. Then, it estimates
the final model only using the inliers

Mechanistic Data Science

Select a random subset from the initial data set.
Fit a model to the selected random subset. (linear or other regression models)

Use the estimated model to calculate the residuals for all the data points in the
initial data set. If (absolute residuals <= (threshold: median absolute deviation
(MAD) of the target values)), then create the so-called consensus set (inliers).

If the current estimated model has the same number of inliers as the current best
one, it is only considered to be better if it has a better score.

iteratively either a maximum number of times or until a special stop criterion is met

MAD =median(‘Xl- —m‘)
{Xz-: dataset - —ex. {11,12,12,14,15,16} > m =13, MAD =1.5

m : median of a dataset
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Thell-Sen regression

« Non-parametric regression method (no assumption about the underlying
data distribution): fitting multiple regression models on subsets of the
training data and then aggregating the coefficients at the last step

— Calculate the least square solutions (slopes and intercepts) on subsets of size p
created from all the observations in the training set X (p 2 n_features+1)

— Final slope of the line (and possibly the intercept) is defined as the (spatial) median
of all the least square solutions

— A lower p value leads to higher robustness to outliers at the cost of lower efficiency,
while a higher p value leads to lower robustness and higher efficiency

— estimator’s robustness decreases quickly with the dimensionality of the problem
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RAMSAC - autliers vs inliers
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Which robust regression algorithm is the best?
As is often the case, the answer is: "it depends."

* |In general, robust fitting in a high-dimensional setting is difficult.

* |In contrast to Theil-Sen and RANSAC, Huber regression is not trying to
completely filter out the outliers. Instead, it lessens their effect on the fit.

* Huber regression should be faster than RANSAC and Theil-Sen, as the
latter ones fit on smaller subsets of the data.

« Theil-Sen and RANSAC are unlikely to be as robust as the Huber
regression using the default hyperparameters.

« RANSAC is faster than Theil-Sen and it scales better with the number
of samples.

« RANSAC should deal better with large outliers in the y-direction, which
IS the most common scenario.
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