Graph (1)

« Consist of a set of nodes and a set of edges between

th ose nOdeS continuous discrete

— Most important model for applied mathematics | function vector

. . derivati diff
* Incidence matrix A (mxn) e

integral sum

(m edges and n nodes) calculus | linear algebra

edge i =row i, node j — k:—1 in column j, +1 in column &

N(A) contains all constant vectors: x =(c,c,...,c)

dimN(A)=1, dimC(A)=dimC(A")=n-1, dimN(A")=m-(n-1)

row space contains all constant vectors X with x, +x, +---+x, =0(x L 1)

(N(A): constant vector 1

C (AT ) :(n—1) rows of A that produce a tree in the graph (a tree has no loop)

bases <
C(A): any (n—1) columns of A

N (AT ) : flows around the (m —n+ 1) small loops in the graph
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Graph (2)

 Example: m=5, n=4 ] edges
, -1 1 0 0] 1
-1 0 1 0| 2
A=l0 -1 1 0| 3
0 -1 0 1| 4
(0 0 -1 1] 5
nodes 1 2 3 4
« Graph Laplacian matrix L=ATA
— Symmetric, positive semidefinite
(2 -1 -1 o] [2 1 [0 1 1 0]
I < T 3 101 1
L=A"A= = — —-D-B
-1 -1 3 -1 3 110 1
0 -1 -1 2] | 2] |01 1 0
degree matrix ) adjacency matrix ’

count edges into node b =1: edge from to k
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Graph (2)

« Complete graph: every pair of nodes is connected by
an edge, D=(n-1)l, B=all-ones minus |

* Tree: there are no loops in the connected graph

i ARG 1
4 TT N
. L

o ;

0 O
-1 0 1 O _ _ _ _
-1 1 0 0 -1 1 0 O
O -1 1 O
A = CA,=|-1 0 1 0/,A,=|-1 01 0
0O -1 0 1
0O -1 0 1 -1 0 0 1
0O 0 -1 1 = =y = >
tree: (n—1)
-1 0 0 1
completc graph: m—n(n-1) — any graph: (n—1)<m < 1 n(n-1)
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Kirchhoff's Current Law: ATy=f

« KCL = balance of currents (forces, money)
— Flow into each node equals flow out from that node
— Key to solving ATy=0 is to look at the small loops in the graph
— (m-n+1) independent solutions
— (number of nodes) — (number of edges) + (number of loops) = 1

-1 1 0 O] A2 -1 0 0
-1 0 1 0 -1 -1 0 0 0 -1] Y, 1 0 -1
0O -1 1 0 . 1 0 -1 -1 0 0|y -1 1 0
A = —> Ax=0,A'y= =0->y, = , ¥, = ,Y; =
0 -1 0 1 W O 1 1 0 -1 0{y 0 -1 0
0 0 -1 1 not interesting! 0 0 0 1 1 1]y 0 1 —1
-1 0 0 1 Ve | 0 ] 0 1]

outer loop=y, +y, +¥;

A'y=0->y=0
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ATCA Framework in Applied Mathematics

« Graphs are perfect examples for three equations in
engineering, science, economics
— Describe a system in steady state equilibrium

— Balance laws: conservation of charge, balance of force, zero
net income in economics, conservation of mass and energy,
continuity of every kind

[voltages x =(x,,x,,x,,x,) at the four nodes
3
currents y = (3, 3,, V3, V4, V5. Vs ) atalong the six edges

Voltage differences across edges e = Ax e, = (voltage at end node 2)—(voltage at end node 1)

3 Ohm's law on each edge y =Ce current y, = ¢, times ¢, = (conductance)(voltage)

Kirchhoff's Law with current sources f= A"y current sources f into nodes balance the internal currents y
— A'CAx=f > Kx=f

K : symmetric, positive semidefinite

boundary condition

- »reduced K : symmetric, invertible, positive definite
-
n—1=3 unknown voltages (3><6)(6><6)(6><3)

energy: X' (A’CAx)=(Ax) C(Ax)>0ifx#0
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ATCA Framework in Applied Mathematics

* Liner regression: least squares applied to Ax=b

(A’A% = A’b: Normal equation for the vector X that best fits the data b

A"CAx = A"Cb: Least squares weighted by the inverse covariance matrix C=V"™'

\min Hb — AxHi : Minumum squared error (b — AX)T C (b — Ax)

N

e Graph Laplacian Matrix
K = A"CA: weighted graph Laplacian, G = A" A : standard Laplacian (C =1)

A" A =(diagonal) + (off-diagonal ) = (degree matrix ) —(adjacency matrix ) =D —B

every row and column of G and K adds to zero because x = (1, e 1) has Ax =0

G = A" A is symmetric because edges go both ways (undirected graph)

-

The diagonal entry (AT A) counts the edges meeting at node i: the degree

i

The off-diagonal entry is (AT A) ~=—1 when an edge connects node i and j

y

|G and K are positive semidefinite but not positive definite (because Ax =0 in 1)
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Clustering

 How to understand a graph with many nodes?
— Separate nodes into two or more clusters
— Human Genome project: cluster genes that show highly correlated

* Break a graph in two pieces: clusters of nodes
— Each cluster should contain roughly half of the nodes
— The number of edges between clusters should be relatively small

« Examples

— For load balancing in high computing, assign equal work to two
pProcessors

— For social networks, identify two distinct groups
— Segment an image

— Reorder rows and columns of a matrix to make off-diagonal blocks
sparse
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Example with Two Clusters

(0,2)
/0———*—0
(~3,0) (0,0) (1,1)  (31)

n =5 nodes, k =2 clusters
centroid * : ¢, =(-1,2/3), ¢, =(2,1) < minimize the sume of squared distances Hc—a sz

Approximate an mxn matrix of A by CR = (mxk) (kxn)

low rank -
only k columns single 1 and

centroids of clusters k-1 zeros

R, =1(or 0) if centroid i is closest (or not) to the point x
01 3 0 -3 -1 2 2 -1 -1

A= ~
01 1 2 0] |23 1 1 23 23

-1 2{1 0 0 1 1
A~CR=
{2/3 IMO 1 1 0 O}
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Four Methods for Clustering

« Spectral clustering (Fiedler vector)
— using the graph Laplacian or the modularity matrix

* Minimum cut
* Weighted k-means
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Four Methods for Clustering

A=0-2=(1,...1)

I. AT"CAz = ADz — z: Fiedler vector o
A, = z,: +/— components indicate two clusters of nodes

ILA"CA—> M =B- deT where d : degrees of the n nodes (number of edges adjacent to the nodes)

modularity m
matrix

choose eigenvector that comes with the largest eigenvalue of M

[II. Find the minimum normalized cut that separates the nodes in two clusters P and Q

weight across cut: Zznks Zw fori in P and j not in P
size of cluster: Size = Z w, foriin P
links(P) links k lmks P
normalized cut weight: N, (P,Q)=— ( )+ . (e >N... (P, )= —= )
Slze(P) Slze(Q) o Size E)
minimize N_, (P, Q) : good partition of the graph — application: segmentation of images

a
IV. nodes in the graph: a,...,a_, clusters P and Q have centers ¢ ( Z ) and ¢,

2
ol

iinP iinQ
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Spectral Clustering (1)

A'CA— e S 1L = D?A"CAD™"? =I-N where n, =———(normalized weights)
Jdd,

triangular graph: n =3 nodes, m =3 edges, c,,c,,c; = W, W3, Wy,

N

A"CA=D-W L=D"A"CAD"?
W, +Ww % —-W 1 —n —n
12 13 12 13 -y 12 13
Wy Wy + Wy, —Wy3 Ny, 1 Ny
—Wy —Ws, Wy + Wy, Ny —Hy, 1

J N

L =1-N i1s like a correlation matrix in statistics

1. L 1s symmetric positive semidefinite: orthogonal eigenvectors, all eigenvalues 4 >0
2. The eigenvectors for A=01isu = (ﬁ,,@) Then Lu=D"?A"CA1=0.
3. The second eigenvector v of L minimizes the Rayleigh quotient on a subspace.

T T
: . xLx vLv
A, =smallest nonzero eigenvalue of L - min =——=4 atx=v

subject to XTX V'V

x u=0

upper bound for 4,, for any x orthogonal to the first eigenvector u = D1
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Spectral Clustering
normalized vs. unnormalized

(A"CAz =Dz with 1"Dz=0
generalized eigenvalue problem
Lv=D"A"CAD "*v = Av nomaliz’;'}_iz;ve — < eigenvector for A =0 is 1
the next eigenvector z is D-orthogonal to 1
A'CAz=Dz
2
min XTLX x=D"%y | min yTATCAy _ ZZWU (y,- _yj) — ) oatv=gz
subject to XTX g subject to TD B Zd 2 -2 Y=
x u=0 17 Dy=0 y y iyi

Ay : incidence matrix A gives the differences ( V= yj)

 Example: 20-node graph has two 10-node clusters P
and Q (to find from z)

— Create edges within P and Q with probability 0.7. Edges
between nodes in P and Q have smaller probability 0.1. All
edges have wrights w;=1. (C=l)
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Code: MATLAB

N=10; W=zeros(2*N,2*N); % Generate 2N nodes in two clusters
rand('state’,100) % rand repeats to give the same graph
fori=1:2*N-1

for j=i+1:2*N

p=0.7-0.6*mod(j-i,2); % p=0.1 when j-i is odd, 0.7 else
W(i,j)=rand<p; % Insert edges with probability p

end % The weights are wi,j=1 (or 0)

end % So far W is strictly upper triangular

W=W+W'; D=diag(sum(W)); % Adjacency matrix W, degress in D
G=D-W; [V,E]=eig(G,D); % Eigenvalues of Gx=(lambda)Dx in E
[a,b]=sort(diag(E)); z=V(:,b(2));% Fiedler eigenvector z for (lambda)2
plot(sort(z),'.-'"); % Show +- groups of Fiedler components

theta=[1:N]*2*pi/N; x=zeros(2*N,1); y=x; % Angles to plot graph
X(1:2:2*N-1)=cos(theta)-1; x(2:2:2*N)=cos(theta)+1;
y(1:2:2*N-1)=sin(theta)-1; x(2:2:2*N)=sin(theta)+1;

print theta,x,y

subplot(2,2,1), gplot(W,[x,y]), title('Graph')

subplot(2,2,2), spy(W), title('Adjacency matrix W')

subplot(2,2,3), plot(z(1:2:2*N-1),'ko'), hold on

plot(z(2:2:2*N),'r*'), hold off, title('Fiedler components')
[c,d]=sort(z); subplot(2,2,4), spy(W(d,d)), title('Reordered Matrix W')
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Minimum Cut

(edge) weight across cut: links(P) =) w, foriinP andj notin P
size of cluster: szze = Z W, for iin P
P
normalized cut weight: Neut (P,Q) = finks (P) ll’?ks ()
szze(P Slze(Q)

)
) K llnks( )
lized K -cut: Ncut(P,..., P,
normalize cut: Ncu ( , k) le o (P,)

[cuts connected to eigenvectors]

mPify =p

perfect indicator of a cut: vector y with all components equal to p or —¢g (two values only) — node i goes { 0if
inQify =

1" Dy will multiply one group of d, by p and the other group by —g.

The first d, add to size(P)=sum of d, (i in P). —1"Dy =0 — psize(P)=gsize(Q)

The second group of d; add to size( 0)

y'A"CAy B ZZWU (y,» -V )2 B (p+q)2 linkS(P,Q) B (p+q)links(P,Q) B linkS(P,Q) N links (P,Q)
y' Dy - Z:a’l.yl.2 - pzsize(P)+q2Size(Q) - pSize(P) - Size(P) Size(Q)

= Ncut(P,Q)
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Clustering by k-means

n points a,,...,a_ in d-dimensional space — partition those points into & clusters
clusters B,...,F, have centroids ¢,,...,c,

sum of a's L 2 .
c = — minimize Z Hc — aH for all a's in cluster P]

/" number of a's
clustering: to find the partition £B,...,F, with minimum total distance D to centroids:

k k
. 2 .
minimize D = E D, = E ch—al.H for a, in cluster P,
j=1 j=1

step 1: find the centroids ¢, of the (old) clustering £,...,5.

step 2: find the (new) clustering that puts a in P, if ¢, is the closest centroid.
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Clustering by k-means:

Weights and Kernel Method

weighted distance: d (x,a,)=w, [x— al.||2 , €, =

distances to centroids only require dot product a, -a (each i in PJ) Hc ;A

Kernel method: weighted kernel matrix K has entries a, - a,

nodes are point X, in input space — a, = ¢(X,-) points in a high-dimensional feature space

2 _ ZWileziz _» ZWiKil +ZKz‘i
(Zwl.) ZWi

(sum over nodes in Pj) Zch - aiH

.. . d OD oRe]
(vision) polynomial K, =(x,-x,+¢) otro
2 %" No

s - % — x| 0©

(statlstlcs) Gaussian K, =exp 3 |
20 Input space
(neural networks) Sigmoid K, = tanh(cxl. - X, +9) °e®o o

o 90o OO

Oo gg)o .

Ooog ? o® e

Kernel function

2
:cj-cj—2cj-al.+al.-al.

# - > . #

Feature space

Non-linear separability === Use of a kernel mapping ¢ === Decision boundary in the original space

for large data sets, k-means and eig(AT CA, D) will be expensive —

Applied Mathematics for Deep Learning

random sampling

multilevel clustering
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Applications of Clustering

— Learning theory, training sets, neural networks, Hidden Markov Models
— Classification, regression, pattern recognition, Support Vector Machines

— Statistical learning, maximum likelihood, Bayesian statistics, spatial
statistics, kriging, time series, ARMA models, stationary processes

— Social networks, organization theory

— Data mining, document indexing, image retrieval, kernel-based learning,
Nystrom method, low rank approximation

— Bioinformatics, microarray data, systems biology
— Cheminformatics, drug design, decision trees

— Information theory, vector quantization, rate distortion theory, Bregman
divergences

— Image segmentation, computer vision, texture, min cut
— Predictive control, feedback samples, robotics, adaptive control, Riccati
equations
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