Graph (1)

- Consist of a set of nodes and a set of edges between
 those nodes
 - Most important model for applied mathematics
- Incidence matrix A (mxn)

(m edges and n nodes)

 $(\mathbf{x}_{\tau}(\mathbf{x}))$

edge i = row i, node $j \rightarrow k : -1$ in column j, +1 in column k

 $N(\mathbf{A})$ contains all constant vectors: $\mathbf{x} = (c, c, ..., c)$

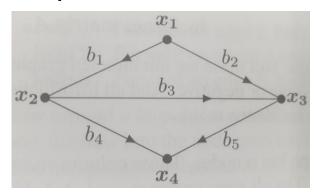
dim $N(\mathbf{A}) = 1$, dim $C(\mathbf{A}) = \dim C(\mathbf{A}^T) = n-1$, dim $N(\mathbf{A}^T) = m-(n-1)$

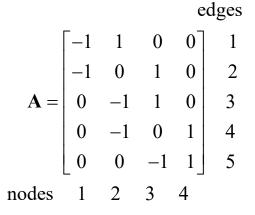
row space contains all constant vectors **x** with $x_1 + x_2 + \cdots + x_n = 0(\mathbf{x} \perp \mathbf{1})$

continuous	discrete
function	vector
derivative	difference
integral	sum
calculus	linear algebra

Graph (2)

• Example: m=5, n=4

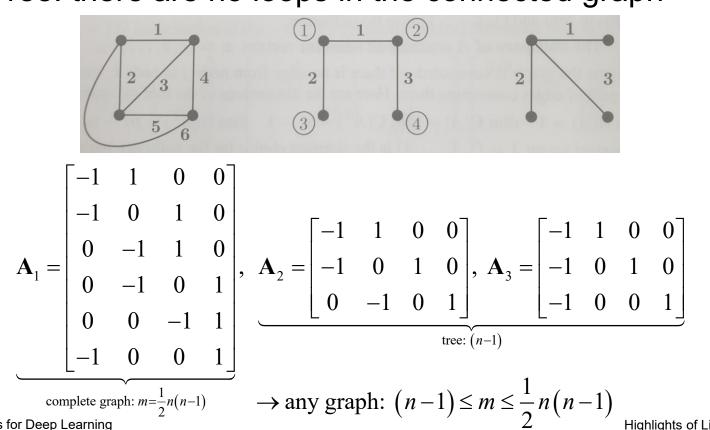




- Graph Laplacian matrix L=A^TA
 - Symmetric, positive semidefinite

Graph (2)

- Complete graph: every pair of nodes is connected by an edge, D=(n-1)I, B=all-ones minus I
- Tree: there are no loops in the connected graph



Applied Mathematics for Deep Learning

Kirchhoff's Current Law: A^Ty=f

- KCL = balance of currents (forces, money)
 - Flow into each node equals flow out from that node
 - Key to solving $A^Ty=0$ is to look at the small loops in the graph
 - (m-n+1) independent solutions
 - (number of nodes) (number of edges) + (number of loops) = 1

$$\mathbf{A}_{1} = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ -1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \underbrace{\mathbf{A}_{1}\mathbf{x} = \mathbf{0}}_{\mathbf{x}=(1,1,1,1)}, \mathbf{A}_{1}^{T}\mathbf{y} = \begin{bmatrix} -1 & -1 & 0 & 0 & 0 & -1 \\ 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5} \\ y_{6} \end{bmatrix} = \mathbf{0} \rightarrow \mathbf{y}_{1} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{y}_{2} = \begin{bmatrix} 0 \\ -1 \\ 1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \mathbf{y}_{3} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 1 \end{bmatrix}$$
outer loop = $\mathbf{y}_{1} + \mathbf{y}_{2} + \mathbf{y}_{3}$

$$\mathbf{A}_2^T \mathbf{y} = \mathbf{0} \to \mathbf{y} = \mathbf{0}$$

A^TCA Framework in Applied Mathematics

- Graphs are perfect examples for three equations in engineering, science, economics
 - Describe a system in steady state equilibrium
 - Balance laws: conservation of charge, balance of force, zero net income in economics, conservation of mass and energy, continuity of every kind

voltages $\mathbf{x} = (x_1, x_2, x_3, x_4)$ at the four nodes

currents $\mathbf{y} = (y_1, y_2, y_3, y_4, y_5, y_6)$ atalong the six edges

Voltage differences across edges $\mathbf{e} = \mathbf{A}\mathbf{x}$ $e_1 = (\text{voltage at end node } 2) - (\text{voltage at end node } 1)$ Ohm's law on each edge $\mathbf{y} = \mathbf{C}\mathbf{e}$ current $y_1 = c_1$ times $e_1 = (\text{conductance})(\text{voltage})$ Kirchhoff's Law with current sources $\mathbf{f} = \mathbf{A}^T \mathbf{y}$ current sources \mathbf{f} into nodes balance the internal currents \mathbf{y}

$$\rightarrow \mathbf{A}^T \mathbf{C} \mathbf{A} \mathbf{x} = \mathbf{f} \rightarrow \mathbf{K} \mathbf{x} = \mathbf{f}$$

K: symmetric, positive semidefinite $\xrightarrow[n-1=3]{k_4=0}$ reduced **K** : symmetric, invertible, positive definite $\xrightarrow[(3\times6)(6\times6)(6\times3)]{(3\times6)(6\times3)}$:

energy:
$$\mathbf{x}^{T} (\mathbf{A}^{T} \mathbf{C} \mathbf{A} \mathbf{x}) = (\mathbf{A} \mathbf{x})^{T} \mathbf{C} (\mathbf{A} \mathbf{x}) > 0$$
 if $\mathbf{x} \neq \mathbf{0}$

Applied Mathematics for Deep Learning

A^TCA Framework in Applied Mathematics

Liner regression: least squares applied to Ax=b

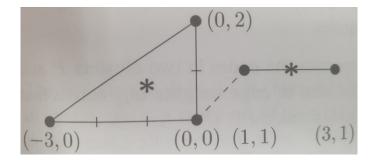
 $\begin{cases} \mathbf{A}^{T} \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^{T} \mathbf{b} : \text{ Normal equation for the vector } \hat{\mathbf{x}} \text{ that best fits the data } \mathbf{b} \\ \mathbf{A}^{T} \mathbf{C} \mathbf{A} \hat{\mathbf{x}} = \mathbf{A}^{T} \mathbf{C} \mathbf{b} : \text{ Least squares weighted by the inverse covariance matrix } \mathbf{C} = \mathbf{V}^{-1} \\ \min \|\mathbf{b} - \mathbf{A} \mathbf{x}\|_{\mathbf{C}}^{2} : \text{ Minumum squared error } (\mathbf{b} - \mathbf{A} \mathbf{x})^{T} \mathbf{C} (\mathbf{b} - \mathbf{A} \mathbf{x}) \end{cases}$

• Graph Laplacian Matrix $\mathbf{K} = \mathbf{A}^T \mathbf{C} \mathbf{A}$: weighted graph Laplacian, $\mathbf{G} = \mathbf{A}^T \mathbf{A}$: standard Laplacian ($\mathbf{C} = \mathbf{I}$) $\mathbf{A}^T \mathbf{A} = (\text{diagonal}) + (\text{off-diagonal}) = (\text{degree matrix}) - (\text{adjacency matrix}) = \mathbf{D} - \mathbf{B}$ every row and column of \mathbf{G} and \mathbf{K} adds to zero because $\mathbf{x} = (1, ..., 1)$ has $\mathbf{A}\mathbf{x} = \mathbf{0}$ $\mathbf{G} = \mathbf{A}^T \mathbf{A}$ is symmetric because edges go both ways (undirected graph) The diagonal entry $(\mathbf{A}^T \mathbf{A})_{ii}$ counts the edges meeting at node *i*: the degree The off-diagonal entry is $(\mathbf{A}^T \mathbf{A})_{ij} = -1$ when an edge connects node *i* and *j* \mathbf{G} and \mathbf{K} are positive semidefinite but not positive definite (because $\mathbf{A}\mathbf{x} = \mathbf{0}$ in 1) Applied Mathematics for Deep Learning

Clustering

- How to understand a graph with many nodes?
 - Separate nodes into two or more clusters
 - Human Genome project: cluster genes that show highly correlated
- Break a graph in two pieces: clusters of nodes
 - Each cluster should contain roughly half of the nodes
 - The number of edges between clusters should be relatively small
- Examples
 - For load balancing in high computing, assign equal work to two processors
 - For social networks, identify two distinct groups
 - Segment an image
 - Reorder rows and columns of a matrix to make off-diagonal blocks sparse

Example with Two Clusters



 $n = 5 \text{ nodes}, \ k = 2 \text{ clusters}$ $\text{centroid}^* : \mathbf{c}_1 = (-1, 2/3), \ \mathbf{c}_2 = (2, 1) \leftarrow \text{minimize the sume of squared distances } \left\| \mathbf{c} - \mathbf{a}_j \right\|^2$ $\text{Approximate an } m \times n \text{ matrix of } \mathbf{A} \text{ by } \mathbf{CR}_{\text{low rank}} = \underbrace{(m \times k)}_{\substack{\text{only } k \text{ columns } \\ \text{centroids of clusters } \\ k-1 \text{ zeros}}} \underbrace{(k \times n)}_{\substack{\text{single 1 and } \\ k-1 \text{ zeros}}}$ $R_{ij} = 1 \text{ (or 0) if centroid } i \text{ is closest (or not) to the point } \mathbf{x}_j$ $\mathbf{A} = \begin{bmatrix} 0 & 1 & 3 & 0 & -3 \\ 0 & 1 & 1 & 2 & 0 \end{bmatrix} \approx \begin{bmatrix} -1 & 2 & 2 & -1 & -1 \\ 2/3 & 1 & 1 & 2/3 & 2/3 \end{bmatrix}$ $\mathbf{A} \approx \mathbf{CR} = \begin{bmatrix} -1 & 2 \\ 2/3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$

Four Methods for Clustering

- Spectral clustering (Fiedler vector)
 - using the graph Laplacian or the modularity matrix
- Minimum cut
- Weighted k-means

Four Methods for Clustering

I. $\mathbf{A}^T \mathbf{C} \mathbf{A} \mathbf{z} = \lambda \mathbf{D} \mathbf{z} \rightarrow \mathbf{z}$: Fiedler vector $\begin{cases} \lambda_1 = 0 \rightarrow \mathbf{z}_1 = (1, \dots, 1) \\ \lambda_2 \rightarrow \mathbf{z}_2 : +/- \text{ components indicate two clusters of nodes} \end{cases}$

II. $\mathbf{A}^T \mathbf{C} \mathbf{A} \rightarrow \mathbf{M}_{\text{modularity}} = \mathbf{B} - \frac{1}{2m} \mathbf{d} \mathbf{d}^T$ where \mathbf{d} : degrees of the *n* nodes (number of edges adjacent to the nodes)

choose eigenvector that comes with the largest eigenvalue of M

III. Find the minimum normalized cut that separates the nodes in two clusters P and Q weight across cut: $links(P) = \sum w_{ij}$ for *i* in *P* and *j* not in *P* size of cluster: $size(P) = \sum w_{ij}$ for *i* in *P*

normalized cut weight: $N_{cut}(P,Q) = \frac{links(P)}{size(P)} + \frac{links(Q)}{size(Q)} \longrightarrow N_{cut}(P_1,\ldots,P_k) = \sum_{i=1}^k \frac{links(P_i)}{size(P_i)}$

minimize $N_{cut}(P,Q)$: good partition of the graph \rightarrow application: segmentation of images

IV. nodes in the graph: $\mathbf{a}_1, \dots, \mathbf{a}_n$, clusters *P* and *Q* have centers $\mathbf{c}_P \left(= \frac{\sum \mathbf{a}_i}{|P|} \right)$ and \mathbf{c}_Q

minimize the total squred distance from nodes to those centroids: $E = \sum_{i \text{ in } P} \|\mathbf{a}_i - \mathbf{c}_P\|^2 + \sum_{i \text{ in } Q} \|\mathbf{a}_i - \mathbf{c}_Q\|^2$

Applied Mathematics for Deep Learning

Spectral Clustering (1)

$$\mathbf{A}^{T}\mathbf{C}\mathbf{A} \xrightarrow{\mathbf{D} \text{ normalizes}} \mathbf{L} = \mathbf{D}^{-1/2}\mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{N} \text{ where } n_{ij} = \frac{w_{ij}}{\sqrt{d_i d_j}} (\text{normalized weights})$$

triangular graph: n = 3 nodes, m = 3 edges, $c_1, c_2, c_3 = w_{12}, w_{13}, w_{23}$

- $\mathbf{A}^{T}\mathbf{C}\mathbf{A} = \mathbf{D} \mathbf{W}$ $\begin{bmatrix} w_{12} + w_{13} & -w_{12} & -w_{13} \\ -w_{21} & w_{21} + w_{23} & -w_{23} \\ -w_{31} & -w_{32} & w_{31} + w_{32} \end{bmatrix} \rightarrow \begin{cases} \mathbf{L} = \mathbf{D}^{-1/2}\mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{D}^{-1/2} \\ \begin{bmatrix} 1 & -n_{12} & -n_{13} \\ -n_{21} & 1 & -n_{23} \\ -n_{31} & -n_{32} & 1 \end{bmatrix}$
- $\mathbf{L} = \mathbf{I} \mathbf{N}$ is like a correlation matrix in statistics

1. L is symmetric positive semidefinite: orthogonal eigenvectors, all eigenvalues $\lambda \ge 0$

2. The eigenvectors for $\lambda = 0$ is $\mathbf{u} = (\sqrt{d_1}, \dots, \sqrt{d_n})$. Then $\mathbf{L}\mathbf{u} = \mathbf{D}^{-1/2}\mathbf{A}^T\mathbf{C}\mathbf{A}\mathbf{1} = 0$.

3. The second eigenvector \mathbf{v} of \mathbf{L} minimizes the Rayleigh quotient on a subspace.

$$\begin{pmatrix} \lambda_2 = \text{smallest nonzero eigenvalue of } \mathbf{L} \to \min_{\substack{\text{subject to} \\ \mathbf{x}^T \mathbf{u} = 0}} \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} = \frac{\mathbf{v}^T \mathbf{L} \mathbf{v}}{\mathbf{v}^T \mathbf{v}} = \lambda_2 \text{ at } \mathbf{x} = \mathbf{v} \\ \text{upper bound for } \lambda_2, \text{ for any } \mathbf{x} \text{ orthogonal to the first eigenvector } \mathbf{u} = \mathbf{D}^{-1/2} \mathbf{1} \end{pmatrix}$$

Spectral Clustering normalized vs. unnormalized

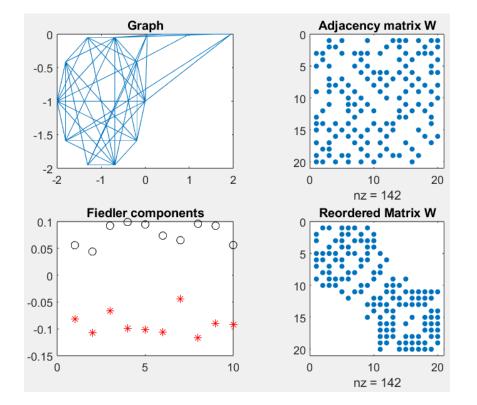
$$\mathbf{L}\mathbf{v} = \mathbf{D}^{-1/2}\mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{D}^{-1/2}\mathbf{v} = \lambda\mathbf{v} \xrightarrow{\mathbf{z}=\mathbf{D}^{-1/2}\mathbf{v}}_{\text{normalized Fiedler vector}} \Rightarrow \begin{cases} \mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{z} = \lambda\mathbf{D}\mathbf{z} \text{ with } \mathbf{1}^{T}\mathbf{D}\mathbf{z} = 0\\ \text{generalized eigenvalue problem}\\ \text{eigenvector for } \lambda = 0 \text{ is } \mathbf{1}\\ \text{the next eigenvector } \mathbf{z} \text{ is } \mathbf{D}\text{-orthogonal to } \mathbf{1}\\ \mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{z} = \lambda_{2}\mathbf{D}\mathbf{z} \end{cases}$$
$$\underset{\mathbf{x}^{T}\mathbf{u}=0}{\min} \frac{\mathbf{x}^{T}\mathbf{L}\mathbf{x}}{\mathbf{x}^{T}\mathbf{x}} \xrightarrow{\mathbf{x}=\mathbf{D}^{1/2}\mathbf{y}}_{\text{subject to }} \min_{\mathbf{1}^{T}\mathbf{D}\mathbf{y}=0} \frac{\mathbf{y}^{T}\mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{y}}{\mathbf{y}^{T}\mathbf{D}\mathbf{y}} = \frac{\sum \sum w_{ij}(y_{i}-y_{j})^{2}}{\sum d_{i}y_{i}^{2}} = \lambda_{2} \text{ at } \mathbf{y} = \mathbf{z}$$
$$\mathbf{A}\mathbf{y}: \text{ incidence matrix } \mathbf{A} \text{ gives the differences } (y_{i}-y_{j})$$

- Example: 20-node graph has two 10-node clusters P and Q (to find from z)
 - Create edges within P and Q with probability 0.7. Edges between nodes in P and Q have smaller probability 0.1. All edges have wrights w_{ii}=1. (C=I)

Code: MATLAB

N=10; W=zeros(2*N,2*N); % Generate 2N nodes in two clusters rand('state',100) % rand repeats to give the same graph for i=1:2*N-1 for j=i+1:2*N p=0.7-0.6*mod(j-i,2); % p=0.1 when j-i is odd, 0.7 else W(i,j)=rand<p; % Insert edges with probability p end % The weights are wi,j=1 (or 0) end % So far W is strictly upper triangular W=W+W'; D=diag(sum(W)); % Adjacency matrix W, degress in D G=D-W; [V,E]=eig(G,D); % Eigenvalues of Gx=(lambda)Dx in E [a,b]=sort(diag(E)); z=V(:,b(2));% Fiedler eigenvector z for (lambda)2 plot(sort(z),'.-'); % Show +- groups of Fiedler components

```
theta=[1:N]*2*pi/N; x=zeros(2*N,1); y=x; % Angles to plot graph
x(1:2:2*N-1)=cos(theta)-1; x(2:2:2*N)=cos(theta)+1;
y(1:2:2*N-1)=sin(theta)-1; x(2:2:2*N)=sin(theta)+1;
print theta,x,y
subplot(2,2,1), gplot(W,[x,y]), title('Graph')
subplot(2,2,2), spy(W), title('Adjacency matrix W')
subplot(2,2,3), plot(z(1:2:2*N-1),'ko'), hold on
plot(z(2:2:2*N),'r*'), hold off, title('Fiedler components')
[c,d]=sort(z); subplot(2,2,4), spy(W(d,d)), title('Reordered Matrix W')
```



Minimum Cut

(edge) weight across cut: $links(P) = \sum w_{ij}$ for *i* in *P* and *j* not in *P* size of cluster: $size(P) = \sum w_{ij}$ for *i* in *P* normalized cut weight: $Ncut(P,Q) = \frac{links(P)}{size(P)} + \frac{links(Q)}{size(O)}$ normalized *K*-cut: $Ncut(P_1, ..., P_k) = \sum_{i=1}^{K} \frac{links(P_i)}{size(P_i)}$

[cuts connected to eigenvectors]

perfect indicator of a cut: vector **y** with all components equal to p or -q (two values only) \rightarrow node i goes $\begin{cases} \ln P \text{ if } y_i = p \\ \ln Q \text{ if } y_i = -q \end{cases}$

1^{*T*} **Dy** will multiply one group of d_i by p and the other group by -q. **1**^{*T*} **Dy** will multiply one group of d_i by p and the other group by -q. **1**^{*T*} **Dy** = 0 \rightarrow psize(P) = sum of d_i (i in P). **1**^{*T*} **Dy** = 0 \rightarrow psize(P) = qsize(Q)

$$\frac{\mathbf{y}^{T}\mathbf{A}^{T}\mathbf{C}\mathbf{A}\mathbf{y}}{\mathbf{y}^{T}\mathbf{D}\mathbf{y}} = \frac{\sum \sum w_{ij} (y_{i} - y_{j})^{2}}{\sum d_{i} y_{i}^{2}} = \frac{(p+q)^{2} links(P,Q)}{p^{2} size(P) + q^{2} size(Q)} = \frac{(p+q) links(P,Q)}{psize(P)} = \frac{links(P,Q)}{size(P)} + \frac{links(P,Q)}{size(Q)} = Ncut(P,Q)$$

Clustering by k-means

n points $\mathbf{a}_1, \dots, \mathbf{a}_n$ in d-dimensional space \rightarrow partition those points into *k* clusters clusters P_1, \dots, P_k have centroids $\mathbf{c}_1, \dots, \mathbf{c}_k$

 $\mathbf{c}_{j} = \frac{\text{sum of } \mathbf{a}'s}{\text{number of } \mathbf{a}'s} \rightarrow \text{minimize } \sum \|\mathbf{c} - \mathbf{a}\|^{2} \text{ for all } \mathbf{a}'s \text{ in cluster } P_{j}$ clustering: to find the partition P_{1}, \dots, P_{k} with minimum total distance D to centroids:

minimize
$$D = \sum_{j=1}^{n} D_j = \sum_{j=1}^{n} \|\mathbf{c}_j - \mathbf{a}_i\|^2$$
 for \mathbf{a}_i in cluster P_j

step 1: find the centroids \mathbf{c}_i of the (old) clustering P_1, \dots, P_k .

step 2: find the (new) clustering that puts **a** in P_i if **c**_i is the closest centroid.

Clustering by k-means: Weights and Kernel Method

weighted distance: $d(\mathbf{x}, \mathbf{a}_i) = w_i \|\mathbf{x} - \mathbf{a}_i\|^2$, $\mathbf{c}_j = \frac{\sum w_i \mathbf{a}_i}{\sum w_i} (\mathbf{a}_i \text{ in } P_j)$

distances to centroids only require dot product $\mathbf{a}_i \cdot \mathbf{a}_j$: (each *i* in P_j) $\|\mathbf{c}_j - \mathbf{a}_i\|^2 = \mathbf{c}_j \cdot \mathbf{c}_j - 2\mathbf{c}_j \cdot \mathbf{a}_i + \mathbf{a}_i \cdot \mathbf{a}_i$ Kernel method: weighted kernel matrix **K** has entries $\mathbf{a}_i \cdot \mathbf{a}_l$

nodes are point \mathbf{x}_i in input space $\rightarrow \mathbf{a}_i = \phi(\mathbf{x}_i)$ points in a high-dimensional feature space

$$(\text{sum over nodes in } P_j) \sum \|\mathbf{c}_j - \mathbf{a}_i\|^2 = \frac{\sum w_i w_l \mathbf{K}_{il}}{(\sum w_i)^2} - 2 \frac{\sum w_i \mathbf{K}_{il}}{\sum w_i} + \sum \mathbf{K}_{ii}$$

$$(\text{vision}) \quad \text{polynomial} \quad \mathbf{K}_{il} = (\mathbf{x}_i \cdot \mathbf{x}_l + c)^d$$

$$(\text{statistics}) \quad \text{Gaussian} \quad \mathbf{K}_{il} = \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_l\|^2}{2\sigma^2}\right)$$

$$(\text{neural networks}) \quad \text{Sigmoid} \quad \mathbf{K}_{il} = \tanh\left(c\mathbf{x}_i \cdot \mathbf{x}_l + \theta\right)$$

Non-linear separability \implies Use of a kernel mapping ϕ \implies Decision boundary in the original space

for large data sets, k-means and $eig(\mathbf{A}^T \mathbf{C} \mathbf{A}, \mathbf{D})$ will be expensive $\rightarrow \begin{cases} random sampling \\ multilevel clustering \end{cases}$

Applications of Clustering

- Learning theory, training sets, neural networks, Hidden Markov Models
- Classification, regression, pattern recognition, Support Vector Machines
- Statistical learning, maximum likelihood, Bayesian statistics, spatial statistics, kriging, time series, ARMA models, stationary processes
- Social networks, organization theory
- Data mining, document indexing, image retrieval, kernel-based learning, Nystrom method, low rank approximation
- Bioinformatics, microarray data, systems biology
- Cheminformatics, drug design, decision trees
- Information theory, vector quantization, rate distortion theory, Bregman divergences
- Image segmentation, computer vision, texture, min cut
- Predictive control, feedback samples, robotics, adaptive control, Riccati equations