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Graph (1)

• Consist of a set of nodes and a set of edges between 

those nodes

– Most important model for applied mathematics

• Incidence matrix A (mxn)
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Graph (2)

• Example: m=5, n=4

• Graph Laplacian matrix L=ATA

– Symmetric, positive semidefinite
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Graph (2)

• Complete graph: every pair of nodes is connected by 

an edge, D=(n-1)I, B=all-ones minus I

• Tree: there are no loops in the connected graph
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Kirchhoff’s Current Law: ATy=f

• KCL = balance of currents (forces, money)

– Flow into each node equals flow out from that node

– Key to solving ATy=0 is to look at the small loops in the graph

– (m-n+1) independent solutions

– (number of nodes) – (number of edges) + (number of loops) = 1
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ATCA Framework in Applied Mathematics

• Graphs are perfect examples for three equations in 

engineering, science, economics

– Describe a system in steady state equilibrium

– Balance laws: conservation of charge, balance of force, zero 

net income in economics, conservation of mass and energy, 

continuity of every kind
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ATCA Framework in Applied Mathematics

• Liner regression: least squares applied to Ax=b

• Graph Laplacian Matrix
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Clustering

• How to understand a graph with many nodes? 

– Separate nodes into two or more clusters

– Human Genome project: cluster genes that show highly correlated

• Break a graph in two pieces: clusters of nodes

– Each cluster should contain roughly half of the nodes

– The number of edges between clusters should be relatively small

• Examples 

– For load balancing in high computing, assign equal work to two 

processors

– For social networks, identify two distinct groups

– Segment an image

– Reorder rows and columns of a matrix to make off-diagonal blocks 

sparse
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Example with Two Clusters
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Four Methods for Clustering

• Spectral clustering (Fiedler vector)

– using the graph Laplacian or the modularity matrix

• Minimum cut

• Weighted k-means
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Four Methods for Clustering
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Spectral Clustering (1)

( ) normalize 1 2 1 2

the Laplacian
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Spectral Clustering

normalized vs. unnormalized

• Example: 20-node graph has two 10-node clusters P 

and Q (to find from z)

– Create edges within P and Q with probability 0.7. Edges 

between nodes in P and Q have smaller probability 0.1. All 

edges have wrights wij=1. (C=I)
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Code: MATLAB

N=10; W=zeros(2*N,2*N); % Generate 2N nodes in two clusters
rand('state',100) % rand repeats to give the same graph
for i=1:2*N-1
for j=i+1:2*N
p=0.7-0.6*mod(j-i,2); % p=0.1 when j-i is odd, 0.7 else
W(i,j)=rand<p; % Insert edges with probability p
end % The weights are wi,j=1 (or 0)
end % So far W is strictly upper triangular
W=W+W'; D=diag(sum(W)); % Adjacency matrix W, degress in D
G=D-W; [V,E]=eig(G,D); % Eigenvalues of Gx=(lambda)Dx in E
[a,b]=sort(diag(E)); z=V(:,b(2));% Fiedler eigenvector z for (lambda)2
plot(sort(z),'.-'); % Show +- groups of Fiedler components

theta=[1:N]*2*pi/N; x=zeros(2*N,1); y=x; % Angles to plot graph
x(1:2:2*N-1)=cos(theta)-1; x(2:2:2*N)=cos(theta)+1;
y(1:2:2*N-1)=sin(theta)-1; x(2:2:2*N)=sin(theta)+1;
print theta,x,y
subplot(2,2,1), gplot(W,[x,y]), title('Graph')
subplot(2,2,2), spy(W), title('Adjacency matrix W')
subplot(2,2,3), plot(z(1:2:2*N-1),'ko'), hold on
plot(z(2:2:2*N),'r*'), hold off, title('Fiedler components')
[c,d]=sort(z); subplot(2,2,4), spy(W(d,d)), title('Reordered Matrix W')
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Minimum Cut
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Clustering by k-means
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Clustering by k-means:

Weights and Kernel Method
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Applications of Clustering

– Learning theory, training sets, neural networks, Hidden Markov Models

– Classification, regression, pattern recognition, Support Vector Machines

– Statistical learning, maximum likelihood, Bayesian statistics, spatial 

statistics, kriging, time series, ARMA models, stationary processes

– Social networks, organization theory

– Data mining, document indexing, image retrieval, kernel-based learning, 

Nystrom method, low rank approximation

– Bioinformatics, microarray data, systems biology

– Cheminformatics, drug design, decision trees

– Information theory, vector quantization, rate distortion theory, Bregman 

divergences

– Image segmentation, computer vision, texture, min cut

– Predictive control, feedback samples, robotics, adaptive control, Riccati

equations
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