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I.5 Orthogonal Matrices and Subspaces

• 1. Orthogonal vectors x and y

• 2. Orthogonal basis for a subspace

– Standard basis is orthogonal (even orthonormal) in Rn (i, j, k in R3) 

– Hadamard matrices Hn containing orthogonal bases of Rn

• Are those orthogonal matrices? (square, orthonormal vectors)
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– Every subspace of Rn has an orthogonal basis: Gram-Schmidt idea

• Two independent vectors a and b in the plane: 
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• 3. Orthogonal subspace R (row space) and N (null space)

– Ax=0: The row space of A is orthogonal to the nullspace of A

– ATy=0: The column space of A is orthogonal to the nullspace of AT
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• 4. Tall thin matrices Q with orthonormal columns: QTQ=I

1 2 3

if  multiplies any vector , the length of the vector does not change: 
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• 5. Orthogonal matrices are square with orthonormal 

columns: QT=Q-1

( ) ( )rotate
reflect
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( ) 1 1orthogonal :  

when basis vectors are orthonormal, each coefficient can be found separately!

Householer reflections

Orthogonal basis = orthogonal axes in 

T
n n k k

n

T T

n n c c c




 = + + → =

 = → = =

→

Q v q q q

v

R

v

v Qc Q Q Qc c

( ) ( )

( ) ( )2

3 4

: 2

2
1,1, ,1 ,

2 2 4 4

1 1 1 1
1 2 2

1 1 1 12 1 2 1
2 1 2 ,  

1 1 1 13 3 4 2
2 2 1

1 1 1 1

eigenv

T
n

n
n

n

T
T T T T T T

n n n
n

⊥

= = −

= −
= → = = − ⎯⎯⎯→

= +

= = − − = − + =

− − − 
− −   

− − −   = − = − − = − =
   − − −
 − −   

− − − 

u w

Q H I uu

H u u
u Q H I ones

H w w

H H H I uu I uu I uu uu uu I

H I ones H I ones

alues of  are  1 (once) and 1 ( 1 times)

All reflection matrices have eigenvalues 1 and 1

n n -















 − +


−

H



Applied Mathematics for Deep Learning Highlights of Linear Algebra - 9

Householder Reflections
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Examples

– Rotations

– Reflections

– Hadamard matrices

– Haar wavelets

– Discrete Fourier Transform (DFT)

– Complex inner product
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I.6 Eigenvalues and Eigenvectors

( ) ( ) ( ) 2 1

1

eigenvectors of  don't change direction when you multiply them by 
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( ) ( ) ( )

( )

like real numbers: like complex numbers: 
every  is real every 1

powers of  don't grow or decay
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( ) ( )

( )

( ) 1

1 1

1 1

1   controls a system of linear differential equations:  with 0

0

Re 0 :  grow

Re 0 :  decay

cos sin :  oscillate
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( )

1
1

1 1 1 1 1

2 2 1
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I.8 Singular Value Decomposition (SVD)

best matrices (real symmetric matrices ): real eigenvalues and orthogonal eigenvectors 

other matrices (  is not square, ,  ): complex eigenvalues and not orthogonal eigenvectors
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• Columns of V are orthogonal eigenvectors of ATA

• Av=u gives orthonormal eigenvectors u of AAT

• 2 = eigenvalue of ATA = eigenvalue of AAT ≠ 0

• Why is the SVD so important?

– It separates the matrix into rank one pieces like the other 

factorizations A=LU, A=QR, S=QΛQT

– Those pieces come in order of importance

– First piece σ1u1v1
T is the closest rank one matrix to A

– Sum of the first k pieces is best possible for rank k

1 1 1  is the best rank  approximation to :
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T T
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Proof of SVD
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Example

1 1 1

3 0 25 20 9 12
Find the matrices , ,  for ,

4 5 20 25 12 41

25 20 1 1 25 20 1 1
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20 25 1 1 20 25 1 1
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Questions

• If S=QΛQT is symmetric positive definite, what is its SVD?

• If S=QΛQT has a negative eigenvalue(Sx=-x), what is the 

singular value and what are the vectors v and u?

• If A=Q is an orthogonal matrix, why does every singular value 

equal 1?

• Why are all eigenvalues of a square matrix A less than or equal 

to σ1?

• If A=xyT has rank 1, what are u1, v1, σ1? Check that | λ1 |≤ σ1

• What is the Karhunen-Loève transform and its connection to 

SVD? stochastic (random) form of PCA
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Answers

( )

( ) ( ) ( )

( )

( )

( ) ( ) ( ) ( )
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1 1

1

1 1 1 1 1

1  ,  
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4  
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 begins with a covariance matrix  of a zero-mean random process.

In general  could be an infinite matrix or a covaraiance function. Then the KL expansion will be an infinite series.

The eigenvectors o

V

V

( )

2 2
1 2

1 2

f , in order of 0, are the basis functions  for the KL transform.
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T
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Geometry of SVD

• A = (rotation)(stretching)(rotation) UVT for every A

• If A is m by n and B is n by m, then AB and BA have 

the same nonzero eigenvalues

  
numbers  twoangles,  two:parameters 4
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First singular vector v1

( )

( )

1 1

1 1 1 1 1 1 1

2

2

Maximize the ratio The maximum is  at the vector 

maximizing  is :  the longest axis of the ellipse ,  1
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Polar decomposition

( )( )

polar formcomplex number

2 2

:  orthogonal matrix 

0: positive semideinite matrix 

if  is invertible, then  and  are also invertible

eigenvalues of singul
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I.9 Principal Components and

the Best Low Rank Matrix

• Major tool in understanding a matrix of data

– Schmidt(1907)→ Eckart and Young(1936, ||A||F)→Mirsky(1955, 

any norm ||A||)

• Eckart-Young low rank approximation theorem

– The norm of A−Ak is below the norm of all other A−Bk

( )
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1
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Eckart-Young Theorem:

Best approximation by Ak

22 22

rank 2 matrix

2 2closest to ?

 are only 0.5 on the main dia2, 5
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Eckart-Young Theorem:

Best approximation by Ak

( )

( )
,  not necessarily
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Principal Component Analysis

• Understand n sample points in m-dimensional space

• Data matrix A0: n samples, m variables

– Find the average (the sample mean) along each row of A0

– Subtract that mean from m entries in the row

– Centered matrix A=A0-(mean)

– How will linear algebra find that closest line through (0,0)? It 

is in the direction of the first singular vector u1 of A?
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• Statistics behind PCA

– Variances: diagonal entries of the matrix AAT

• sum of squares of distances from the mean

– Covariances: off- diagonal entries of the matrix AAT

– Sample covariance matrix: S=AAT/(n-1)

• One DOF has already been used for mean=0
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• Geometry behind PCA

– Minimize perpendicular distances: perpendicular least square, 

orthogonal regression

– Sum of squared distances from the data points to the line is a 

minimum

• Linear algebra behind PCA

– Singular values σi and singular vectors ui of A  eigenvalues 

σi
2 and eigenvectors of S=AAT/(n-1)

– Total variance: 2 22 2 2
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1 1 1
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n n n
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