II.1 Numerical Linear Algebra

* Gram-Schmidt
— Standard way
— Column pivoting (when really close to the same direction)
— Krylov-Arnoldi (any matrix), Krylov-Lanczos (symmetric matrix)
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a - (aZqu )‘11
A, =4: pick biggest _ Az
2 =Y >4y =
; A
a, - (an q )ql
A large sparse
1. |not good basis —20emlie_y Gram-Schmidt
b, Ab, A(Ab),..., A’"'b
Ax=b — maybe nearly dependent

combinations give Krylov space K

X ; : best/closest solution/vector in Krylov space
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Computing Eigenvalues and Singular Values

A, =QR, —?>ROQ0 = A, : eigenvalues do not change!

. . -1, . . .
A, =R,Q, =RyA,R, " : similar matrices — same eigenvalues

closeto A's
AO = —> Al = — e An — %k
i smaller &, *
(cos6 sind cos® —sin@1[1 sin@cosd cos9(1+sin2 0) _sin 0
Ag=]| . =QokRo =] . .2 —> A =RQ =
| sind 0 sinfd cos@ ||0 —sin“@ _sin’ 0 —sin2 O cos O

improve shift in every eigenvalues

———> better, faster idea: introduce shifts (Ao —> A - sI) — O
no change in eigenvectors

Hessenberg matrix (zeros stay zeros in QR)

— P2 5 J upper triangular matrix + one extra diagonal Ag =

how to get? Arnoldi iteration (Krylov - Gram-Schmidt)

eig(A) in Matlab: (1) reduce A to Hessenberg (2) QR with shifts
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_hn Iy, |
A q dr [=| W 4y din »
L hk+1,k_

AQ; = Qk+1Hk+1,k - QkTAQk = QkTQkHHkH,k =H, (k = size OfA)
H,=Q,"AQ, > H=Q 'AQ — similar to A

if the matrix is symmetric, A =S — H, = Q,”SQ, is also symmetric — H is tridiagonal T,

Arnoldi - Lanczos, Arnoldi iteration needs only one orthogonalization step

SQ, = Qi Ty 2 T = QkTSQk

A=Uzy' ERE,0,4Q," =Q,(UEV')Q," =(QU)2(Q,V)'

find Q;, Q, so that Q,AQ,” is bidiagonal where (QU)™ = U™'Q™' =U’Q" = (QU)’
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Cn

for bigger matrix (A : million) — Krylov subspace (k : hundred)

v=cb+c,Ab+ c3A2b et ckAk_lb (+error)
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1.1 Low Rank Change in A and its Inverse

« Sherman-Morrison-Woodbury formula
— How small changes in a matrix affect its inverse
— If Ais changed by a rank-one matrix, so is its inverse
— New data in least squares will produce these changes

-1 -1
-1
perturbations of identity: (I —uv’ J , [I -uv’ J , (A -uv’ )

rank 1 rank k

T
uv

-1
(I —uv’ ) =1+ — if a matrix is changed by rank 1, its inverse is changed by rank 1
(I —uv’ )uvT

1-viu

1-viu

check : (I—UVT){I+LZ]=I—UVT+ =I<—|:(I—IIVT)UVT ZUVT—H(VTII)VT =(1—VTU)11VT:|

1-viu

-1
-1
(nxn) matrix to invert; (In - v’ J =1,+U(1,-V'U) v’
(mxk )(kxn) D N
(kxk)
1 -1
check : (I, —UVT)(I,, +U(1,-V'U) VTJ =1,-UV"+ (1,-0V")U (1,-V'U) V7
%/—J
U-uv'U=U(1-v'U)
-1 -1
(A-uv") =A"+ATU(1, -V ATU) VAT
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Use 1: suppose Aw =b is solved for w — now, solve (A —uv’ )x =b quickly
Aw =Db T'w

Az =u

}—)Dzl—sz—>x:w+ Z

Use 2: new measuremnet/data comes in, changes things but leaves a big part unchanged and you finf that new x

(old) Ax =b—temaleqution , AT A3 = ATh

(new) {:‘;}({bb } o savtion [ 7 V}I:;:|ﬁnew a7 V]Lb }

new new

ATA+w | =(ATA) -c(aTA] W (aTA)
1
ATA+ _‘jVT x=A"b+ vb . : recursuve least squares — ¢ C = —~
ramk 1 1—V(ATA) VT
change S
—>(ATA)y:vT

) the data is not correlated
(1) standard: covariance =1 < . .
it all has the same varaince

) weighted least squares
least squares — < (2) covariance # I — how errors are correlated
correlated least squares

— state equations (dynamic part) in control theory: position of satellite

Kalman filter for dynamic least squares: significantly improved version of recursive least squares including the covariance matrix
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111
M=I-[1 1 1|>M"'=?
I 11
1 r . I 11
M=I-uv’ whereu=v=|1|->M"' =1+ uvT =1+ 1 11
I-v'u 1-3
1 111
0 1 1 1 0 .
T 0 11 -1 A -l T
M=1-{0 0 1|=I-UV'=I-[0 1| = = |>M :I3+U(12—V U) Vi=Lsul oV
0 00 0 0
Kalman Filter: x(t) —> AX=VAt > X,
original| A 0 b prediction X, ,, < state equation
Xold _ instead of solving | & 2 2N
state update | -1 I Lnew}— VAt | — equations > | Xnew —Xsmte+K(bm 1 —rxsmte)
measurement update| 0 r b, K : gain matrix from A,r,V,,,.,V,

state/measurement equations have their own covariance matrices.

variance or covariance V measures their different reliabilities

ATAx=ATp 5 ATV 'Ax=ATVp
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