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II.1 Numerical Linear Algebra

• Gram-Schmidt

– Standard way

– Column pivoting (when really close to the same direction)

– Krylov-Arnoldi (any matrix), Krylov-Lanczos (symmetric matrix)
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Computing Eigenvalues and Singular Values
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III.1 Low Rank Change in A and its Inverse

• Sherman-Morrison-Woodbury formula

– How small changes in a matrix affect its inverse

– If A is changed by a rank-one matrix, so is its inverse

– New data in least squares will produce these changes
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( ): suppose  is solved for now, solve  quickly
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