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6.3 A First Look at Convolution Neural Network (1)

• Image a simple world

• Train computer the alphabet



Mechanistic Data Science Deep Learning - 47

A First Look at Convolution Neural Network (2)

• How the data store in the computer

• How can we define a right operation? (addition?)
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A First Look at Convolution Neural Network (3)

• Convolution is a formal mathematical operation, just as multiplication 

and addition/integration.

• Convolution is a way to pass a filter over the image to find key features.
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Kernels to be tested

• We have a chance to check all the possible filters only if we assume the 

values in a filter are either 1 or +1.

– Select good filters by checking all the possibilities

• If we consider a filter with real numbers, a more efficient approach is required.

• That is why CNN get into the picture!
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Mini CNN is used to figure out a good filter
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Python code for Mini-CNN



Mechanistic Data Science Deep Learning - 52

Using gradient descent to update filter
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Building Blocks in CNN

• Image classification problem: logistic regression and support vector machine

– Pixel values as features: 36 x 36 image → 1296 features

– Lost a lot of spatial interactions between pixels, very time-consuming

– Highly depends on the knowledge and experience of the domain experts

• CNN (1990’s)

– Use information from adjacent pixels to down-sample the image into features by 

convolution and pooling

– Use prediction layers (e.g., a FFNN) to predict the target values

– Building blocks of input, convolution, padding, stride, pooling, FFNN, and output

• Input layer such as a signals (1D) or an image (2D)

• Padded input can be obtained by adding zeros around the margin of the signal or image

• Multiple convolution operations will be done using several moving kernels to extract features 

from the padded input

• Dimensions of the convolved features can be reduced using pooling layers

• Those reduced features then are used as input for a FFNN to calculate the output of the CNN
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An illustrative structure of CNN including 

several building blocks and concepts
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Terminology used in CNN

Convolution A mathematical operation that does the integral of the product of functions(signals), 

with one of the signals slides. It can extract features from the input signals

Kernel (filter) A function used to extract important features

Padding A technique to simply add zeros around the margin of the signal or image to increase 

its dimension. Padding allows to emphasize the border values and in order lose less 

information

Stride The steps of sliding the kernel during convolution. The kernel move by different stride 

values is designed to extract different kinds of features. The amount of stride chosen 

affects the size of the feature extracted

Pooling An operation that takes maximum or average of the region from the input overlapped 

by a sliding kernel. The pooling layer helps reduce the spatial size of the convolved 

features by providing an abstracted representation of them

Fully 

connected 

layers

A FFNN in which layer nodes are connected to every node in the next layer. The fully 

connected layers help learn non-linear combinations of the features outputted by the 

convolutional layers
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Convolution
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Add padding to make dimensions consistent
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An example showing max and average pooling layers

• Reduce the spatial size of the convolved features

• Reduce overfitting by providing low-dimensional representations

– Max pooling helps reduce noise by ignoring noisy small values in the input data
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Illustration of one-dimensional CNN

A dropout layer is normally used between two 

consecutive fully connective layers to reduce overfitting
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General Notations
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2D Definition of Convolution

• 2D digitalized convolution are widely used in the convolutional neural 

network.
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Application: COVID-19 detection from 

chest x-ray images of patients

– Coronavirus 2019 (COVID-19) became a pandemic caused a disastrous impact on the world.

– It is very important to accurately detect the positive cases at early stage to treat patients and 

prevent the further spread of the pandemic.

– Chest X-ray imaging has critical roles in early diagnosis and treatment of COVID19.

– Automated toolkits for COVID-19 diagnosis based on radiology imaging techniques such as 

X-ray imaging can overcome the issue of a lack of physician in remote villages and other 

underdeveloped regions.

https://news.uchicago.edu/story/researchers-develop-ai-help-diagnose-understand-covid-19-lung-images

https://news.uchicago.edu/story/researchers-develop-ai-help-diagnose-understand-covid-19-lung-images
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Classification Example

• It is a classification problem where the outputs are discrete (e.g., yes or 

no) instead of continuous values.

• Whether a patient has been infected with COVID-19 based on their 

chest X-ray image?
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Chest x ray images of a 50-year-old COVID-19 patient 

over a week

• AI-assisted automatic diagnosis can automatically extract important 

features (such as alveolar consolidations) from images to accurate 

diagnosis for clinicians.

https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1

Acute Respiratory Distress Syndrome

https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1
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Data Collection

• X-ray database

– COVID-19 X-ray image database was generated and collected by Cohen JP [22]

• https://github.com/ieee8023/COVID-chestxray-dataset

– Another chest X-ray image database was provided by Wang et al. [23]

• https://nihcc.app.box.com/v/ChestXray-NIHCC
• https://paperswithcode.com/dataset/chestx-ray8

• Images

– 125 X-ray images of COVID-19 patients (43 female, 82 male, average age of 

approximately 55 years)

– 500 X-ray images pneumonia patients

– 500 X-ray images of patients with no-findings

• Training (900), Validation (225: 28 COVID-19 cases, 88 pneumonia 

cases, and 109 no-finding cases)

• Five-fold cross-validation is used to evaluate the model performance

https://github.com/ieee8023/COVID-chestxray-dataset
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://paperswithcode.com/dataset/chestx-ray8
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Automated detection of COVID-19 cases using 

deep neural networks with X ray images
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Architecture of the CNN model (1)

• Darknet-19 model [25]

• Leaky rectified linear unit (leaky ReLU)

• 17 convolutional layers and 5 max pooling layers with different filter 

numbers, sizes, and stride values

– Padding: 256 x 256 resolution → 258 x 258

– Eight 3 x 3 filters with stride 1 → eight 256 x 256 feature maps

• Allows different features from the input image to be extracted

• The values in the filters will be obtained during the data training process

– Eight 2 x 2 max pooling operators with stride 2 --> size of feature maps can be 

reduced to 128 x 128

• 1,164,434 parameters, Adam optimizer, learning rate: 3x10-3
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Architecture of the CNN model (2)
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Error matrix allows visualization of the performance of 

the deep neural networks

• In total 225 images in test set are used to 

present the performance of the model

• Classification accuracy for COVID-19 is 

24/28= 85.7%

• Classification accuracy for Normal is 

102/109= 94.6%

• Classification accuracy for Pneumonia is 

75/88= 85.2%

• The patients can seek a second opinion by 

the deep learning system, which significantly 

reduces waiting time and alleviates clinicians’ 

workload.
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Confusion Matrix(오차행렬)

– Accuracy(정확도)

– Precision(정밀도)

– Recall(재현도), 

Sensitivity Rate, 

True Positive Rate

– F1 Score
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6.4 Musical Instrument Sound Conversion

• Use mechanistic data science to convert piano sounds to guitar sounds

• Dataset: eight pairs of notes (notes A4, A5, B5, C5, C6, D5, E5, G5) 

performed by a piano and by a guitar (apronus.com)

– Recorded duration: (piano) 2.8 s (guitar) 1.6 s

– Dimension: (piano) 120,000 (44.1 kHz x 2.8 s), (guitar) 72,000 (44.1 kHz x 1.6 s)

Same pitch (fundamental frequency)

Sampling rate: 44,100 Hz

https://www.apronus.com/
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Nyquist-Shannon Theorem

– If a system uniformly samples an analog signal at a rate that exceeds the signal’s 

highest frequency by at least a factor of two, the original analog signal can be 

perfectly recovered from the discrete values produced by sampling.

– The human hearing range is 20~20,000 Hz. Therefore, a sufficient sampling rate 

for sound file should be 40,000 Hz

• A common sampling time interval in music is 44,100Hz. It is higher than 40,000Hz
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Three Solutions

(3) PCA + NN → Ch.7
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Pure CNN Analysis

• Input and output are high-dimensional time-amplitude curves

• Drawback of this strategy is the high number of trainable parameters 

involved in the CNN and FFNN structures

• For some applications where the amount of data is small or the quality 

of data is low, the performance of the CNN is limited
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Mechanistic Data Science Analysis

• Instead of extracting deep features by CNN, mechanistic data science 

extracts mechanistic features based on the underlying scientific principles

• Each signal (high-dimensional sound curve) can be simplified to a set of 

sine functions, where the mechanistic features are the frequencies, 

damping coefficients, amplitudes, and phase angles

– set of mechanistic features with a physical meaning

• Short Time Fourier Transform (STFT) and a regression to fit a 

mechanistic model, such as a spring-mass-damper model

• Hyperparameters involved in the model can be significantly decreased 

from thousands to dozens in this manner, which reduces the amount of 

training data required
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CNN vs. MDS

– The loss function of the CNN is volatile and does not converged to zero

– Training a CNN model requires the number of data points to be larger than the 

dimension of input signal or image

• In this case, the dimension of input is a million
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FFNN structure with reduced mechanistic features

– Dataset: 4(features) x 8(sets) = 32 for one note

– Activation function: tanh

– Loss function: MSE
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Results of reconstructing a single guitar key A4 

from a piano key as input
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Use PyTorch to fit spring-mass data (1)
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Use PyTorch to fit spring-mass data (2)
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Use PyTorch to fit spring-mass data (2)
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Use PyTorch to fit spring-mass data (3)
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Use PyTorch to fit spring-mass data (4)
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Use PyTorch to fit spring-mass data (5)
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Limitations of NN

• Good at interpolation, not extrapolation

• May be overfit if there are not enough data
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Automatic Differentiation

• A trained NN model is differentiable

• PyTorch for automatic differentiation
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Customized loss function by adding governing equation

( ) 
 

( ) ( )

 

2

1

data: , 1, 2, ,

Neural Network

1
Loss function :  Mean Squared Error MSE

Physics-Informed Neural Network

governing equation of spring-mass system: 0 0.1 1.1 0

Loss fun

i i

n

pi i

i

D t z i n

z z
n

c k
z z z z z z
m m

=

= =

= −

+ + = → + + =



( ) ( )
12 2

1 11

MSE equation error

1

1 1
ction 0.1 1.1

:  number of data points

:  number of sampling points for derivative calculation

nn

pi i pi pi pi

i i

z z z z z
n n

n

n

= =

= − + + + 



Mechanistic Data Science Deep Learning - 92

Loss Function for PINN: Code
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PINN vs. NN
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• Derivative/Gradient accuracy is critical in many engineering applications

• Data-driven airfoil design

• Pressure-structure linkage in additive manufacturing
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Small Dataset: PINN vs. NN (1)
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Small Dataset: PINN vs. NN (2)



Mechanistic Data Science Deep Learning - 97

Summary

• Adding prior governing equation into NN loss function

– Can improve prediction accuracy, especially for derivatives

– Can avoid (to some extent) overfit

– Works well for small data sets

– Might improve extrapolation capability

• Physics informed neural networks (PINN)
– M. Raissi, P. Perdikaris and G.E. Karniadakis . "Physics informed deep learning (Part I ): Data driven solutions of nonlinear partial 

differential equations." arXiv preprint arXiv:1711.10561 (2017)

• Physics guided neural networks (PGNN)
– A. Karpatne, et al. "Physics guided neural networks (PGNN): An application in lake temperature modeling." arXiv preprint 

arXiv:1710.11431 2 (2017)

• Physics Aware Neural Networks (PANN)
– A.S. Zamzam and N.D. Sidiropoulos, IEEE Transactions on Power Systems 35.6 (2020): 4347 4356.

• Mechanistic neural networks (MNN): Embed prior physical knowledge 

into machine learning
– S.L Brunton, "Applying Machine Learning to Study Fluid Mechanics.“ arXiv preprint arXiv:2110.02083 (2021)
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