
Mechanistic Data Science Deep Learning - 46

6.3 A First Look at Convolution Neural Network (1)

• Image a simple world

• Train computer the alphabet

Mechanistic Data Science Deep Learning - 47

A First Look at Convolution Neural Network (2)

• How the data store in the computer

• How can we define a right operation? (addition?)

Mechanistic Data Science Deep Learning - 48

A First Look at Convolution Neural Network (3)

• Convolution is a formal mathematical operation, just as multiplication

and addition/integration.

• Convolution is a way to pass a filter over the image to find key features.

Mechanistic Data Science Deep Learning - 49

Kernels to be tested

• We have a chance to check all the possible filters only if we assume the

values in a filter are either 1 or +1.

– Select good filters by checking all the possibilities

• If we consider a filter with real numbers, a more efficient approach is required.

• That is why CNN get into the picture!

Mechanistic Data Science Deep Learning - 50

Mini CNN is used to figure out a good filter

Mechanistic Data Science Deep Learning - 51

Python code for Mini-CNN

Mechanistic Data Science Deep Learning - 52

Using gradient descent to update filter

Mechanistic Data Science Deep Learning - 53

Building Blocks in CNN

• Image classification problem: logistic regression and support vector machine

– Pixel values as features: 36 x 36 image → 1296 features

– Lost a lot of spatial interactions between pixels, very time-consuming

– Highly depends on the knowledge and experience of the domain experts

• CNN (1990’s)

– Use information from adjacent pixels to down-sample the image into features by

convolution and pooling

– Use prediction layers (e.g., a FFNN) to predict the target values

– Building blocks of input, convolution, padding, stride, pooling, FFNN, and output

• Input layer such as a signals (1D) or an image (2D)

• Padded input can be obtained by adding zeros around the margin of the signal or image

• Multiple convolution operations will be done using several moving kernels to extract features

from the padded input

• Dimensions of the convolved features can be reduced using pooling layers

• Those reduced features then are used as input for a FFNN to calculate the output of the CNN

Mechanistic Data Science Deep Learning - 54

An illustrative structure of CNN including

several building blocks and concepts

Mechanistic Data Science Deep Learning - 55

Terminology used in CNN

Convolution A mathematical operation that does the integral of the product of functions(signals),

with one of the signals slides. It can extract features from the input signals

Kernel (filter) A function used to extract important features

Padding A technique to simply add zeros around the margin of the signal or image to increase

its dimension. Padding allows to emphasize the border values and in order lose less

information

Stride The steps of sliding the kernel during convolution. The kernel move by different stride

values is designed to extract different kinds of features. The amount of stride chosen

affects the size of the feature extracted

Pooling An operation that takes maximum or average of the region from the input overlapped

by a sliding kernel. The pooling layer helps reduce the spatial size of the convolved

features by providing an abstracted representation of them

Fully

connected

layers

A FFNN in which layer nodes are connected to every node in the next layer. The fully

connected layers help learn non-linear combinations of the features outputted by the

convolutional layers

Mechanistic Data Science Deep Learning - 56

Convolution

Mechanistic Data Science Deep Learning - 57

Stride

()
() ()signl size filter size

c

2

st

1

ri
i

d

e
onvolution s ze 1

2 3
1 10

1 3
1 4

1

3

−
= +

−
+ =


− + =



Mechanistic Data Science Deep Learning - 58

Add padding to make dimensions consistent

()
() () ()2 padding

2

signl size filter size
convolution

d

size
 size 1

stri e

12 3
1 1

1

2

+ −
= +

+ −
+ =

Mechanistic Data Science Deep Learning - 59

An example showing max and average pooling layers

• Reduce the spatial size of the convolved features

• Reduce overfitting by providing low-dimensional representations

– Max pooling helps reduce noise by ignoring noisy small values in the input data

Mechanistic Data Science Deep Learning - 60

Illustration of one-dimensional CNN

A dropout layer is normally used between two

consecutive fully connective layers to reduce overfitting

Mechanistic Data Science Deep Learning - 61

General Notations

()

()1 2

, , , ,

1 2

,

,

,

discrete convolution operator

: padded input

: counting index for a location within the kernel

: -th kernel function

: bias for co

conv

conv

L

padded

x x

L

padded

x

f f b

f

x

b

      

 






 



 



 

−

+

=− −

+

= + 

()

()(), , ,

nvolution process 1, ,

: size of the kernel function

ˆ max , 1 1, output value after the max pooling

: counting index for location within output af

conv

P

pooling pooling

N

L

f f L L   

 



  










=



 =  − +  

()ter pooling 1, ,

: size of the output after pooling for a loop iteration

: length of the pooling window

pooling

pooling

pooling

N

N

L









 =





()
2

*

1

*

1
MSE

: number of data points in the training set

: CNN output of the -th data point

: labeled output of the -th data point

N
i i

i

i

i

N

N

i

i

=

= +







 ε ε

ε

ε

Mechanistic Data Science Deep Learning - 62

2D Definition of Convolution

• 2D digitalized convolution are widely used in the convolutional neural

network.

Mechanistic Data Science Deep Learning - 63

Application: COVID-19 detection from

chest x-ray images of patients

– Coronavirus 2019 (COVID-19) became a pandemic caused a disastrous impact on the world.

– It is very important to accurately detect the positive cases at early stage to treat patients and

prevent the further spread of the pandemic.

– Chest X-ray imaging has critical roles in early diagnosis and treatment of COVID19.

– Automated toolkits for COVID-19 diagnosis based on radiology imaging techniques such as

X-ray imaging can overcome the issue of a lack of physician in remote villages and other

underdeveloped regions.

https://news.uchicago.edu/story/researchers-develop-ai-help-diagnose-understand-covid-19-lung-images

https://news.uchicago.edu/story/researchers-develop-ai-help-diagnose-understand-covid-19-lung-images

Mechanistic Data Science Deep Learning - 64

Classification Example

• It is a classification problem where the outputs are discrete (e.g., yes or

no) instead of continuous values.

• Whether a patient has been infected with COVID-19 based on their

chest X-ray image?

Mechanistic Data Science Deep Learning - 65

Chest x ray images of a 50-year-old COVID-19 patient

over a week

• AI-assisted automatic diagnosis can automatically extract important

features (such as alveolar consolidations) from images to accurate

diagnosis for clinicians.

https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1

Acute Respiratory Distress Syndrome

https://radiopaedia.org/cases/covid-19-pneumonia-evolution-over-a-week-1

Mechanistic Data Science Deep Learning - 66

Data Collection

• X-ray database

– COVID-19 X-ray image database was generated and collected by Cohen JP [22]

• https://github.com/ieee8023/COVID-chestxray-dataset

– Another chest X-ray image database was provided by Wang et al. [23]

• https://nihcc.app.box.com/v/ChestXray-NIHCC
• https://paperswithcode.com/dataset/chestx-ray8

• Images

– 125 X-ray images of COVID-19 patients (43 female, 82 male, average age of

approximately 55 years)

– 500 X-ray images pneumonia patients

– 500 X-ray images of patients with no-findings

• Training (900), Validation (225: 28 COVID-19 cases, 88 pneumonia

cases, and 109 no-finding cases)

• Five-fold cross-validation is used to evaluate the model performance

https://github.com/ieee8023/COVID-chestxray-dataset
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://paperswithcode.com/dataset/chestx-ray8

Mechanistic Data Science Deep Learning - 67

Automated detection of COVID-19 cases using

deep neural networks with X ray images

Mechanistic Data Science Deep Learning - 68

Architecture of the CNN model (1)

• Darknet-19 model [25]

• Leaky rectified linear unit (leaky ReLU)

• 17 convolutional layers and 5 max pooling layers with different filter

numbers, sizes, and stride values

– Padding: 256 x 256 resolution → 258 x 258

– Eight 3 x 3 filters with stride 1 → eight 256 x 256 feature maps

• Allows different features from the input image to be extracted

• The values in the filters will be obtained during the data training process

– Eight 2 x 2 max pooling operators with stride 2 --> size of feature maps can be

reduced to 128 x 128

• 1,164,434 parameters, Adam optimizer, learning rate: 3x10-3

Mechanistic Data Science Deep Learning - 69

Architecture of the CNN model (2)

Mechanistic Data Science Deep Learning - 70

Error matrix allows visualization of the performance of

the deep neural networks

• In total 225 images in test set are used to

present the performance of the model

• Classification accuracy for COVID-19 is

24/28= 85.7%

• Classification accuracy for Normal is

102/109= 94.6%

• Classification accuracy for Pneumonia is

75/88= 85.2%

• The patients can seek a second opinion by

the deep learning system, which significantly

reduces waiting time and alleviates clinicians’

workload.

Mechanistic Data Science Deep Learning - 71

Confusion Matrix(오차행렬)

– Accuracy(정확도)

– Precision(정밀도)

– Recall(재현도),

Sensitivity Rate,

True Positive Rate

– F1 Score

Mechanistic Data Science Deep Learning - 72

6.4 Musical Instrument Sound Conversion

• Use mechanistic data science to convert piano sounds to guitar sounds

• Dataset: eight pairs of notes (notes A4, A5, B5, C5, C6, D5, E5, G5)

performed by a piano and by a guitar (apronus.com)

– Recorded duration: (piano) 2.8 s (guitar) 1.6 s

– Dimension: (piano) 120,000 (44.1 kHz x 2.8 s), (guitar) 72,000 (44.1 kHz x 1.6 s)

Same pitch (fundamental frequency)

Sampling rate: 44,100 Hz

https://www.apronus.com/

Mechanistic Data Science Deep Learning - 73

Nyquist-Shannon Theorem

– If a system uniformly samples an analog signal at a rate that exceeds the signal’s

highest frequency by at least a factor of two, the original analog signal can be

perfectly recovered from the discrete values produced by sampling.

– The human hearing range is 20~20,000 Hz. Therefore, a sufficient sampling rate

for sound file should be 40,000 Hz

• A common sampling time interval in music is 44,100Hz. It is higher than 40,000Hz

2
sampling max 1

max

sampling

sampling
max

2

1
2

2

f

f
T

f f

t

t

 









=

=

 ⎯⎯⎯⎯→

 
 → 

 



Mechanistic Data Science Deep Learning - 74

Three Solutions

(3) PCA + NN → Ch.7

Mechanistic Data Science Deep Learning - 75

Pure CNN Analysis

• Input and output are high-dimensional time-amplitude curves

• Drawback of this strategy is the high number of trainable parameters

involved in the CNN and FFNN structures

• For some applications where the amount of data is small or the quality

of data is low, the performance of the CNN is limited

Mechanistic Data Science Deep Learning - 76

Mechanistic Data Science Analysis

• Instead of extracting deep features by CNN, mechanistic data science

extracts mechanistic features based on the underlying scientific principles

• Each signal (high-dimensional sound curve) can be simplified to a set of

sine functions, where the mechanistic features are the frequencies,

damping coefficients, amplitudes, and phase angles

– set of mechanistic features with a physical meaning

• Short Time Fourier Transform (STFT) and a regression to fit a

mechanistic model, such as a spring-mass-damper model

• Hyperparameters involved in the model can be significantly decreased

from thousands to dozens in this manner, which reduces the amount of

training data required

Mechanistic Data Science Deep Learning - 77

Mechanistic Data Science Deep Learning - 78

CNN vs. MDS

– The loss function of the CNN is volatile and does not converged to zero

– Training a CNN model requires the number of data points to be larger than the

dimension of input signal or image

• In this case, the dimension of input is a million

Mechanistic Data Science Deep Learning - 79

FFNN structure with reduced mechanistic features

– Dataset: 4(features) x 8(sets) = 32 for one note

– Activation function: tanh

– Loss function: MSE

Mechanistic Data Science Deep Learning - 80

Results of reconstructing a single guitar key A4

from a piano key as input

Mechanistic Data Science Deep Learning - 81

Use PyTorch to fit spring-mass data (1)

Mechanistic Data Science Deep Learning - 82

Use PyTorch to fit spring-mass data (2)

Mechanistic Data Science Deep Learning - 83

Use PyTorch to fit spring-mass data (2)

Mechanistic Data Science Deep Learning - 84

Use PyTorch to fit spring-mass data (3)

Mechanistic Data Science Deep Learning - 85

Use PyTorch to fit spring-mass data (4)

Mechanistic Data Science Deep Learning - 86

Use PyTorch to fit spring-mass data (5)

Mechanistic Data Science Deep Learning - 87

Limitations of NN

• Good at interpolation, not extrapolation

• May be overfit if there are not enough data

Mechanistic Data Science Deep Learning - 88

Mechanistic Data Science Deep Learning - 89

Automatic Differentiation

• A trained NN model is differentiable

• PyTorch for automatic differentiation

() ()

()()

()() ()

()() ()

()() ()

2 1 1 2

2

2

2 1 1 2 2 1 1 2

2 2

2 1 1 2 2 1 1 1

tanh

tanh tanh

tanh 1 tanh

1 tanh tanh tanh

1 tanh tanh 1 tanh

A

y w w x b b

d
x x

dx

dy d
w w x b b w w x b b

dx dx

w w x b b w w x b w

=

= + +

= −

 = − + + + +   

   = − + + − +  

Mechanistic Data Science Deep Learning - 90

Mechanistic Data Science Deep Learning - 91

Customized loss function by adding governing equation

() 
 

() ()

 

2

1

data: , 1, 2, ,

Neural Network

1
Loss function : Mean Squared Error MSE

Physics-Informed Neural Network

governing equation of spring-mass system: 0 0.1 1.1 0

Loss fun

i i

n

pi i

i

D t z i n

z z
n

c k
z z z z z z
m m

=

= =

= −

+ + = → + + =



() ()
12 2

1 11

MSE equation error

1

1 1
ction 0.1 1.1

: number of data points

: number of sampling points for derivative calculation

nn

pi i pi pi pi

i i

z z z z z
n n

n

n

= =

= − + + + 

Mechanistic Data Science Deep Learning - 92

Loss Function for PINN: Code

Mechanistic Data Science Deep Learning - 93

PINN vs. NN

Mechanistic Data Science Deep Learning - 94

• Derivative/Gradient accuracy is critical in many engineering applications

• Data-driven airfoil design

• Pressure-structure linkage in additive manufacturing

Mechanistic Data Science Deep Learning - 95

Small Dataset: PINN vs. NN (1)

Mechanistic Data Science Deep Learning - 96

Small Dataset: PINN vs. NN (2)

Mechanistic Data Science Deep Learning - 97

Summary

• Adding prior governing equation into NN loss function

– Can improve prediction accuracy, especially for derivatives

– Can avoid (to some extent) overfit

– Works well for small data sets

– Might improve extrapolation capability

• Physics informed neural networks (PINN)
– M. Raissi, P. Perdikaris and G.E. Karniadakis . "Physics informed deep learning (Part I): Data driven solutions of nonlinear partial

differential equations." arXiv preprint arXiv:1711.10561 (2017)

• Physics guided neural networks (PGNN)
– A. Karpatne, et al. "Physics guided neural networks (PGNN): An application in lake temperature modeling." arXiv preprint

arXiv:1710.11431 2 (2017)

• Physics Aware Neural Networks (PANN)
– A.S. Zamzam and N.D. Sidiropoulos, IEEE Transactions on Power Systems 35.6 (2020): 4347 4356.

• Mechanistic neural networks (MNN): Embed prior physical knowledge

into machine learning
– S.L Brunton, "Applying Machine Learning to Study Fluid Mechanics.“ arXiv preprint arXiv:2110.02083 (2021)

	슬라이드 1: Contents
	슬라이드 2: Classification
	슬라이드 3: Supervised Learning
	슬라이드 4: Recall Piecewise Linear Regression
	슬라이드 5: We can solve this problem using Neural Network!
	슬라이드 6: Brief History (1)
	슬라이드 7: Brief History (2)
	슬라이드 8
	슬라이드 9: 6.2 A First Look at Feed Forward Neural Network (1)
	슬라이드 10: A First Look at Feed Forward Neural Network (2)
	슬라이드 11: A First Look at Feed Forward Neural Network (3)
	슬라이드 12: Network Structure: one hidden neuron
	슬라이드 13: Result of Weights: one hidden neuron
	슬라이드 14: Network Structure: one hidden layer, two hidden neurons
	슬라이드 15: Result of Weights: one hidden layer, two hidden neurons
	슬라이드 16: 1 hidden layer, 1 neuron
	슬라이드 17: 1 hidden layer, 2 neuron
	슬라이드 18: 1 hidden layer, 10 neuron
	슬라이드 19: 2 hidden layer, 10 neuron
	슬라이드 20: 3 hidden layer, 10 neuron
	슬라이드 21: 4 hidden layer, 10 neuron
	슬라이드 22: General Notation for FFNN
	슬라이드 23: piecewise linear approximation by FFNN: dataset
	슬라이드 24: piecewise linear approximation by FFNN: code (1)
	슬라이드 25: piecewise linear approximation by FFNN: code (2)
	슬라이드 26: piecewise linear approximation by FFNN: code (3)
	슬라이드 27: A Neural Networks Playground
	슬라이드 28: A Neural Network Playground
	슬라이드 29: A Neural Network Playground
	슬라이드 30: A Neural Network Playground
	슬라이드 31: A Neural Network Playground
	슬라이드 32: A Neural Network Playground
	슬라이드 33: A Neural Network Playground
	슬라이드 34
	슬라이드 35: Application: Diamond Price Regression
	슬라이드 36: Diamond Dataset
	슬라이드 37: Feature Engineering
	슬라이드 38: Dimension Reduction
	슬라이드 39: Reduced Order Model
	슬라이드 40: Linear Regression
	슬라이드 41: Multivariable Linear Regression
	슬라이드 42: Neural Network Architecture
	슬라이드 43: Network Training and Prediction
	슬라이드 44: System & Design: Prediction of Unseen data
	슬라이드 45: System & Design: Limitations of the model
	슬라이드 46: 6.3 A First Look at Convolution Neural Network (1)
	슬라이드 47: A First Look at Convolution Neural Network (2)
	슬라이드 48: A First Look at Convolution Neural Network (3)
	슬라이드 49: Kernels to be tested
	슬라이드 50: Mini CNN is used to figure out a good filter
	슬라이드 51: Python code for Mini-CNN
	슬라이드 52: Using gradient descent to update filter
	슬라이드 53: Building Blocks in CNN
	슬라이드 54: An illustrative structure of CNN including several building blocks and concepts
	슬라이드 55: Terminology used in CNN
	슬라이드 56: Convolution
	슬라이드 57: Stride
	슬라이드 58: Add padding to make dimensions consistent
	슬라이드 59: An example showing max and average pooling layers
	슬라이드 60: Illustration of one-dimensional CNN
	슬라이드 61: General Notations
	슬라이드 62: 2D Definition of Convolution
	슬라이드 63: Application: COVID-19 detection from chest x-ray images of patients
	슬라이드 64: Classification Example
	슬라이드 65: Chest x ray images of a 50-year-old COVID-19 patient over a week
	슬라이드 66: Data Collection
	슬라이드 67: Automated detection of COVID-19 cases using deep neural networks with X ray images
	슬라이드 68: Architecture of the CNN model (1)
	슬라이드 69: Architecture of the CNN model (2)
	슬라이드 70: Error matrix allows visualization of the performance of the deep neural networks
	슬라이드 71: Confusion Matrix(오차행렬)
	슬라이드 72: 6.4 Musical Instrument Sound Conversion
	슬라이드 73: Nyquist-Shannon Theorem
	슬라이드 74: Three Solutions
	슬라이드 75: Pure CNN Analysis
	슬라이드 76: Mechanistic Data Science Analysis
	슬라이드 77
	슬라이드 78: CNN vs. MDS
	슬라이드 79: FFNN structure with reduced mechanistic features
	슬라이드 80: Results of reconstructing a single guitar key A4 from a piano key as input
	슬라이드 81: Use PyTorch to fit spring-mass data (1)
	슬라이드 82: Use PyTorch to fit spring-mass data (2)
	슬라이드 83: Use PyTorch to fit spring-mass data (2)
	슬라이드 84: Use PyTorch to fit spring-mass data (3)
	슬라이드 85: Use PyTorch to fit spring-mass data (4)
	슬라이드 86: Use PyTorch to fit spring-mass data (5)
	슬라이드 87: Limitations of NN
	슬라이드 88
	슬라이드 89: Automatic Differentiation
	슬라이드 90
	슬라이드 91: Customized loss function by adding governing equation
	슬라이드 92: Loss Function for PINN: Code
	슬라이드 93: PINN vs. NN
	슬라이드 94
	슬라이드 95: Small Dataset: PINN vs. NN (1)
	슬라이드 96: Small Dataset: PINN vs. NN (2)
	슬라이드 97: Summary
	슬라이드 98
	슬라이드 99: Library for Deep Learning
	슬라이드 100: Activation Functions
	슬라이드 101
	슬라이드 102: Activation Functions
	슬라이드 103: Non-linear Activation Functions: Sigmoid
	슬라이드 104: Non-linear Activation Functions: Tanh (Hyperbolic Tangent)
	슬라이드 105: Non-linear Activation Functions: ReLU (Rectified Linear Unit)
	슬라이드 106: Non-linear Activation Functions: Leaky ReLU
	슬라이드 107: Non-linear Activation Functions: ELU (Exponential Linear Units)
	슬라이드 108: Non-linear Activation Functions: Softmax
	슬라이드 109: Non-linear Activation Functions: Swish
	슬라이드 110: Important Considerations
	슬라이드 111: Final Takeaways
	슬라이드 112
	슬라이드 113: Computing Gradients
	슬라이드 114: Factoring Paths / Multivariate Chain Rule
	슬라이드 115
	슬라이드 116: Computational Graphs
	슬라이드 117: Factoring Paths / Multivariate Chain Rule
	슬라이드 118
	슬라이드 119: Patterns in Gradient Flow
	슬라이드 120: Example
	슬라이드 121: Vector Derivatives
	슬라이드 122: Back Propagation with Matrices
	슬라이드 123
	슬라이드 124
	슬라이드 125
	슬라이드 126
	슬라이드 127
	슬라이드 128
	슬라이드 129
	슬라이드 130
	슬라이드 131
	슬라이드 132
	슬라이드 133
	슬라이드 134
	슬라이드 135
	슬라이드 136
	슬라이드 137
	슬라이드 138
	슬라이드 139
	슬라이드 140
	슬라이드 141
	슬라이드 142
	슬라이드 143
	슬라이드 144
	슬라이드 145
	슬라이드 146
	슬라이드 147
	슬라이드 148
	슬라이드 149
	슬라이드 150
	슬라이드 151
	슬라이드 152
	슬라이드 153
	슬라이드 154
	슬라이드 155
	슬라이드 156
	슬라이드 157: Training Neural Network
	슬라이드 158: Activation Functions
	슬라이드 159: Activation Functions: In Practice
	슬라이드 160: Data Processing
	슬라이드 161
	슬라이드 162
	슬라이드 163
	슬라이드 164: Batch Normalization
	슬라이드 165
	슬라이드 166
	슬라이드 167
	슬라이드 168
	슬라이드 169: Weight Initialization
	슬라이드 170: Weight Initialization: Activation Statistics
	슬라이드 171
	슬라이드 172: Weight Initialization: Xavier
	슬라이드 173: Weight Initialization: ReLU
	슬라이드 174: Weight Initialization: Kaiming / MSRA
	슬라이드 175: Proper Initialization is an active area of research
	슬라이드 176: Learning Rate
	슬라이드 177: Learning Rate Decay
	슬라이드 178: Learning Rate Decay
	슬라이드 179: Learning Rate Decay
	슬라이드 180: Learning Rate Decay
	슬라이드 181: Learning Rate Decay: Linear Warmup
	슬라이드 182: First-Order Optimization
	슬라이드 183: Second-Order Optimization
	슬라이드 184: Optimizer: In Practice
	슬라이드 185
	슬라이드 186
	슬라이드 187
	슬라이드 188
	슬라이드 189: Regularization: Add Term to Loss
	슬라이드 190: Regularization: Dropout
	슬라이드 191
	슬라이드 192
	슬라이드 193
	슬라이드 194
	슬라이드 195
	슬라이드 196: Regularization: Common Pattern
	슬라이드 197: Regularization: Data Augmentation
	슬라이드 198
	슬라이드 199
	슬라이드 200
	슬라이드 201: Regularization: DropConnect
	슬라이드 202: Regularization: Fractional Pooling
	슬라이드 203: Regularization: Stochastic Depth
	슬라이드 204: Regularization: Cutout
	슬라이드 205: Regularization: Mixup
	슬라이드 206: Regularization: In Practice
	슬라이드 207: Choosing Hyperparameters
	슬라이드 208
	슬라이드 209
	슬라이드 210
	슬라이드 211
	슬라이드 212
	슬라이드 213
	슬라이드 214
	슬라이드 215: Check out Weights & Biases
	슬라이드 216
	슬라이드 217: Transfer Learning
	슬라이드 218
	슬라이드 219
	슬라이드 220: Summary
	슬라이드 221
	슬라이드 222
	슬라이드 223
	슬라이드 224
	슬라이드 225
	슬라이드 226
	슬라이드 227
	슬라이드 228
	슬라이드 229
	슬라이드 230
	슬라이드 231
	슬라이드 232
	슬라이드 233
	슬라이드 234
	슬라이드 235
	슬라이드 236
	슬라이드 237
	슬라이드 238
	슬라이드 239
	슬라이드 240
	슬라이드 241
	슬라이드 242
	슬라이드 243
	슬라이드 244
	슬라이드 245
	슬라이드 246
	슬라이드 247
	슬라이드 248
	슬라이드 249
	슬라이드 250
	슬라이드 251
	슬라이드 252

