Part V: Probability and Statistics

* V.1 Mean, Variance, and Probability

* V.2 Probability Distributions

* V.3 Moments, Cumulants, and Inequalities of Statistics
* V.4 Covariance Matrices and Joint Probabilities

« V.5 Multivariate Gaussian and Weighted Least Squares
* V.6 Markov Chains
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V.1 Mean, Variance, Probability

* Mean

Sample mean: done an experiment, got some output

Expected mean: known probabilities, but have not used
them yet

Flip coins O or 1: sample mean - expected mean (approach
with probability 1)

Law of large numbers: sample mean does approach %z with
probability 1 as the number of samples gets larger

 Variance

Sample variance: distance from the sample mean
Variance: expectation, not trial runs
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— Mean is the average value or expected value
— Variance measures the average squared distance from the mean

— Probabilities of n different outcomes are positive numbers p,, ...,
p,, adding to 1
— Law of large numbers

« with probability 1, the sample mean will converge to its expected
value E[x] as the sample size N increases (e.g., flip coins)

-

Applied Mathematics for Deep Learning

1

sample mean: m = u = N(x1 +x, +---+x, ) where N : actual output <— what we got
expected value: m = E[x|= px, + p,x, -+ p,x, =p-X =~ jxp(x)dx < what to expect

n : number of possible different outputs with their probabilties

(sample values: (five random freshmen ages) 18, 17, 18, 19, 17 — sample mean: 17.8
<
| probabilities: (ages in a freshmen class) 17(20%), 18(50%), 19(30%) — expected age: 18.1
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Variance (around the mean)

— Variance g2 measures expected distance (squared) from the
expected mean E[X]

— Sample variance S? measures actual distance (squared)
from the actual sample mean

— Square root is the standard deviation o or S

sample variance: S° = ﬁ[(xl —m)2 o (xy _m)zJ

(N — 1)? one degree of freedom is already accounted for in the sample mean

Z(xl. —m)2 = Z(xl.z —2mx, +m2) = le.z —Zmle. + Nm® = le.z — Nm’

variance: o = E[(x—m)z} =p,(x,—m) +-+p,(x,—m)

J= 5[] 2me[x) o = £ ] ([ = Zo’ (Lo

N

E[(x—m)z}zE[x2 —2mx+m’

1 —
sample ages: m=17.8, §° = —
9 5—1L

probabilities of ages: m =18.1, o =(0.2)(~1.1)" +(0.5)(=0.1)" +(0.3)(0.9)" = 0.49
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Continuous Probability Distributions

« Age:year(17, 18, 19: n=3) - days(17 < x < 20:
continuous range), probability distribution p(x)

 Uniform distribution

— All ages between those numbers are “equally likely”
— Chance F(x) that a random freshmen has age less than x

cumulative F'(z) = A
probability that a
sample is below x sample is near

F(z) = i(z —17) dF

<+ dk plx) =
) dx
F=1 P=3
1l 1

g ) > — —
17 '.:‘t ] ST 20 e

“pdf” p(2) =
probability that a

=]

Figure V.1: F(xr) is the cumulative distribution and its derivative plx) = dF/dx is the
probability density function (pdf). For this uniform distribution. plr) 1s constant
between 17 and 20. The total area under the graph of p(x) is the total probability F = 1,
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p (x) dx : probability of a sample falling in between x and dx

p(x)dx=F(x+dx)—F(x)—>p(x)=cji—1;, (probability of a Sbe)zij(x)dsz(b)—F(a)
m =E[x] =I xp(x)dx{= J‘jonx(%)dle&S}
o’ zE[(x—m)z]zj p(x)(x—m)2 dx[z .fjjné(x—l&S)z dxz%}

density: p(x) = l, cumulative: F(x) = X
a a

uniform distribution for 0 < x < g — 4

2 2
a : , ral a a
mean:mzz , variance: o =I —|x—=| dx=—
0
a
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* Normal/Gaussian distribution: Bell-shaped Curve

 (Central Limit Theorem

— The average of N samples of “any” probability distribution
approaches a normal distribution as N —

54 r

I{fl f p'[ r) il

M0

i
)2

27

Figure V.2: The standard normal distribution p () has mean m = ) and o
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1 2
e—x /2

standard normal distribution: symmetricx=0 > m=0, o’=1— p (x) =

- N27

N(0,1)

-

total probability: J._w p(x)dx Py =1

1 o
[
Jmean: m = E[x]= Jixp(x)dx:ﬁji

kvariance: o’ = E[x2] = J‘:p(x)(x—O)z dx = ﬁ
F(o)-F(-0)=2/3
N(0,0)—> {F(ZG)_F(_QG) ~0.95

xe"‘z/ *dx =0

.f_i x2e ™ Pdx =1

N01) [ 58 e T )= ()= e
o)
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N coin flips and N — <o

Suppose x is 1 or -1 with equal probabilities p, = p_, =1/2 —>{

law of large numbers

>m =0
X+ X
average 4, = —— ) & &
N ety 52 = — et
N’ N’

Change outputs from 1 or -1tox=1orx=0. Keep p, = p,
m=1/2

m=1/2
=>4, =>4y =9
o =1/4 o =1/4N

=1/2

o1
N N

Linearity: x,

=am,, +b

N {mnew
2
o new

2
=a o ,u

(-1/1)—=2—(0/1)

b=1/2

N=3: HHH , HHT/HTH/THH, TTH/THT/HTT TTT
ofheads 3 # of heads=2 # of heads= # ofheads 0
(% %) :% g %-i-é =1, average number of heads in 3 flips: m = %(3)+—(2)+—(1)+—(O) =1.
5’ 1 2 3 2 3 > 1 > 9+43+349 3
=—(3-1.5 —(2-1.5 —(1-1.5 —(0-1.5) =———=—
S(G-15) +2(2-15) + 2 (1-1.5) +2(0-15) 2
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4 1

2 2

T
4
N4(1 lszii

t—+—+—+—=1
16 16 16 16 16

6
For any NV, m:E and o’ %

subtracting m is "centering" or "detrending'

g Xom _x_z_) (mean of X)=0
dividing by o is "normalizing" or "standardizing" o JN (Variance of X ) =1

2
.} : Pﬁ',-"'.! =Y, Efﬂi"lh':, ‘\
plr / A\
uniform

\
.f.’ hinomial

, approaches \ M heads
/ Gaussian \ N flips
area = | I I ’ \
— i e -
M gt (11 owinde 2:‘_,,":" ¥ e stdatis W0, T
= 0 ; M=0 N2 N

Figure V.3: The probabilities p = (1,4,6,4,1)/16 for lhc number of heads in 4 flips
These p; approach a Gaussian distribution with variance 0® = N/4 centered at m = N/2.
For X, the Central Limit Theorem gives convergence to the normal distribution N(0, 1).
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« Accepting uncertainty in the inputs(b) and estimating
the variance in the outputs(x)
— How to estimate the variance?
— Often probability distributions p(x) are not known
— Try different input - compute the outputs - take an average

— Monte Carlo approximates an expected value E[x] by a
sample average: error ~ O(1/AN), slow improvement

samples X to X m =

sum of outputs Xx; R 5
m= X o = Ax. —m
times probabilities p, Zp o ZP i (x;—m)

integral of outputs x

with probability density
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V.2 Probability Distributions

* Binomial: tossing a coin n times

* Poisson: rare events

« Exponential: forgetting the past

« (Gaussian=Normal: averages of many tries

* Log-normal: logarithm has normal distribution

« Chi-squared: distance squared in n dimensions
« Multivariable Gaussian: probabilities for a vector

Applied Mathematics for Deep Learning Highlights of Linear Algebra - 12




V.3 Two Great Inequalities in Statistics

« Markov’s inequality (only) applies when all X20

Prob[Xza]gizmeaan[X]

X=E[X|{> X (s) ti Probability of X
. ; e [X]5= Z (s) tlmes( robability o (s))

> Z a times (Probability of X (S))
L X(S)Za

a=3, E[X]zl, X; =1, ShOWPI‘Ob[XZ?)]S%

0pg +1p, +2p, +3p3s +4p, +5ps+---=1>0py +1p, +2p, +3(p3s+ py+ ps+++)+ Py +2ps +---=1

<1

when 3(p; +py+ps+-)=12 py=py = py=ps=--=0- p; =1/3, py =2/3
. . . E[X] e
if there is equality and Prob [X > a] = , then all probabilities are actually zero except
a
ElX ElX
Prob[ X =a]= [¥] and Prob[ X =0]=1- [¥]
a a

Applied Mathematics for Deep Learning Highlights of Linear Algebra - 13




» Chebyshev inequality (no assumption X.20)

apply Markov inequality to ¥; = (X ;= m)2 with same probability p;
?zZpiYi =Zpi(Xi—m)2 =o? —)|Xl-—m|2a—>(Xi—m)2 > g*

2
Y mean o

:Prob[YZaz}Sa =
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V.4 Covariance Matrix

« Linear algebra: M different experiments at once
— Measure age, height, weight (a, h, w: M=3) of N people
— M mean values and (separate) variances (> matrix)
— Connection between the M parallel experiments?
— p;: probability that experiment 1 produces x; and experiment
2 produces y; covariance: o1, = 3" py (3= m, ) (3, —ms )
« Example allij
— flip two coins separately vs. glue the coins together
for independent experiments, p; = probability of (i, /) =(p,)(p,), V' : covariance matrix

x=0orl
coin1: | 1 H T H T o =0 o =1/4
Wlthp = 5 1 | | 12 02 .
3 —>\H - —|v.|H — 0> 0'12 0 ||vs.|V=|"" 2
y=0orl 4 4 2 V= 0 o2 o0, O
coin 2: ) 1 11 l 72 2 2 2
with p = > r 4 2 r o ) 0] 05 2 (612) — |012| < 0,0,

Applied Mathematics for Deep Learning O = ZZ(pl )(pj )(xi -m )(yj _m2) = IVZ(pi)(xi —m )‘HVZ(pJ )(yi _m2) Highlights of Linear Algebra - 15




_ X, - X)X, —X) Xy - X)Xy -X
sample mean: X = Xyt Xy — sample covariance matrix: S = ( : )( : ) N 1( N )< N )
probability matrix : P = {pn P2 }, total probability (all pairs) is 1: Z Z py =1

P P2 alli
n
row sum p,; of P: Z p;; = probability p; of x; in experiment 1
j=1
—m ) (x=m) (- m)
covariance matrix: V = ZZ Pij { }[x -my Y- m2] ZZ PU " BN 5 2
alli j ,ooalli g x _ml)(yz mz) (yi_m2)

UU”: sum of rank 1 matrices

( 2
Py (xl- — ml) >0
612 012 T o . . . 2
= S |7 V’ — at least positive semidefinite < Dy ( Vi — mz) >0—>
det(V, ) =0

O1pp O3
covariance matrix: 'V = E[(X—X)<X—X)T} = Zpij (X_X)(X_ X)T
MxM

V is positive definite unless the j

experiments are dependent
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mean of ¢/ X: E|:CTX:|=CTE[X]=CT}_(

variance of ¢/ X: E[(CTX—CTX)(CTX—CTX)T} = cTE[(X—)_()(X—X)T}c =c¢/Ve>0

— link between probability and linear algebra: V = QAQ”
diagonalizing the covariance matrix V means finding M independent experiments

as combimations of the original M experiments

[mean and variance of z = x + y]
N

N N
mean of sum = sum of mean : %Zl:(x +yl) %;xiJr%Zyi

E[x+y]:ZZpij(xl.+yj) ZZpyxl+ZZpyyj +E[y]

ZZPU ,=Z (P ++ P ) % _sz ;= E[x]
. =Zzpy(xi+yj—mx—my)2=ZZPU-(>@-—mx)2+ZZPa-(yj—my)z+2ZZPﬁ(xf—mx)(yf—my)

_ 2 2
=0, +0,” +20,

..
Il
—_
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Y
Mx1

Xz{x},A:[l 1] Z = AX

KxM

2
o oy |[1
c’=0 +0'y2 +20,, = [1 1] Y { }: AVA'
21

w9y
V,=A Vi A’
MxM
[correlation p]

rescaling or standardizing the random variables x and y (like LJ

M
>X="andy=-" with o3 = oy =1
o, o,

0,0 o o

o
correlation of x and y ( Pry = =, -1< Py S IJ is the covariance of X (z i} and Y {: L]
x2y y
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