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Part V: Probability and Statistics

• V.1 Mean, Variance, and Probability

• V.2 Probability Distributions

• V.3 Moments, Cumulants, and Inequalities of Statistics

• V.4 Covariance Matrices and Joint Probabilities

• V.5 Multivariate Gaussian and Weighted Least Squares

• V.6 Markov Chains
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V.1 Mean, Variance, Probability

• Mean

– Sample mean: done an experiment, got some output

– Expected mean: known probabilities, but have not used 

them yet

– Flip coins 0 or 1: sample mean → expected mean (approach 

with probability 1)

– Law of large numbers: sample mean does approach ½  with 

probability 1 as the number of samples gets larger

• Variance

– Sample variance: distance from the sample mean

– Variance: expectation, not trial runs
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– Mean is the average value or expected value

– Variance measures the average squared distance from the mean

– Probabilities of n different outcomes are positive numbers p1, …, 

pn adding to 1

– Law of large numbers

• with probability 1, the sample mean will converge to its expected 

value E[x] as the sample size N increases (e.g., flip coins)
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Variance (around the mean)

– Variance σ2 measures expected distance (squared) from the 

expected mean E[x]

– Sample variance S2 measures actual distance (squared) 

from the actual sample mean

– Square root is the standard deviation σ or S
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Continuous Probability Distributions

• Age: year(17, 18, 19: n=3) → days(17 ≤ x ≤ 20: 

continuous range), probability distribution p(x)

• Uniform distribution

– All ages between those numbers are “equally likely”

– Chance F(x) that a random freshmen has age less than x
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• Normal/Gaussian distribution: Bell-shaped Curve

• Central Limit Theorem

– The average of N samples of “any” probability distribution 

approaches a normal distribution as N → ∞
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N coin flips and N → ∞
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• Accepting uncertainty in the inputs(b) and estimating 

the variance in the outputs(x)

– How to estimate the variance?

– Often probability distributions p(x) are not known

– Try different input → compute the outputs → take an average

– Monte Carlo approximates an expected value E[x] by a 

sample average: error ~ O(1/√N), slow improvement
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V.2 Probability Distributions

• Binomial: tossing a coin n times

• Poisson: rare events

• Exponential: forgetting the past

• Gaussian=Normal: averages of many tries

• Log-normal: logarithm has normal distribution

• Chi-squared: distance squared in n dimensions

• Multivariable Gaussian: probabilities for a vector
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V.3 Two Great Inequalities in Statistics

• Markov’s inequality (only) applies when all Xi≥0
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• Chebyshev inequality (no assumption Xi≥0)
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V.4 Covariance Matrix

• Linear algebra: M different experiments at once

– Measure age, height, weight (a, h, w: M=3) of N people

– M mean values and (separate) variances (→matrix)

– Connection between the M parallel experiments?

– pij: probability that experiment 1 produces xi and experiment 

2 produces yj

• Example

– flip two coins separately vs. glue the coins together
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