
Educational article Struct Multidisc Optim 21, 120–127 Springer-Verlag 2001

A 99 line topology optimization code written in Matlab

O. Sigmund

Abstract The paper presents a compact Matlab im-
plementation of a topology optimization code for com-
pliance minimization of statically loaded structures. The
total number of Matlab input lines is 99 including opti-
mizer and Finite Element subroutine. The 99 lines are
divided into 36 lines for the main program, 12 lines for the
Optimality Criteria based optimizer, 16 lines for a mesh-
independency filter and 35 lines for the finite element
code. In fact, excluding comment lines and lines associ-
ated with output and finite element analysis, it is shown
that only 49 Matlab input lines are required for solving
a well-posed topology optimization problem. By adding
three additional lines, the program can solve problems
with multiple load cases. The code is intended for edu-
cational purposes. The complete Matlab code is given in
the Appendix and can be down-loaded from the web-site
http://www.topopt.dtu.dk.

Key words topology optimization, education, optimal-
ity criteria, world-wide web, Matlab code

1
Introduction

The Matlab code presented in this paper is intended
for engineering education. Students and newcomers to
the field of topology optimization can down-load the
code from the web-page http://www.topopt.dtu.dk.
The code may be used in courses in structural optimiza-
tion where students may be assigned to do extensions
such as multiple load-cases, alternative mesh-independ-
ency schemes, passive areas, etc. Another possibility is to
use the program to develop students’ intuition for optimal
design. Advanced students may be asked to guess the op-
timal topology for given boundary condition and volume

Received October 22, 1999

O. Sigmund

Department of Solid Mechanics, Building 404, Technical Uni-
versity of Denmark, DK-2800 Lyngby, Denmark
e-mail: sigmund@fam.dtu.dk

fraction and then the program shows the correct optimal
topology for comparison.

In the literature, one canfindamultitude of approaches
for the solving of topology optimization problems. In the
original paper Bendsøe and Kikuchi (1988) a so-called
microstructure or homogenization based approach was
used, based on studies of existence of solutions.

The homogenization based approach has been adopted
in many papers but has the disadvantage that the deter-
mination and evaluation of optimal microstructures and
their orientations is cumbersome if not unresolved (for
noncompliance problems) and furthermore, the resulting
structures cannot be built since no definite length-scale
is associated with the microstructures. However, the ho-
mogenization approach to topology optimization is still
important in the sense that it can provide bounds on the
theoretical performance of structures.

An alternative approach to topology optimization is
the so-called “power-law approach” or SIMP approach
(Solid Isotropic Material with Penalization) (Bendsøe
1989; Zhou and Rozvany 1991; Mlejnek 1992). Here, ma-
terial properties are assumed constant within each elem-
ent used to discretize the design domain and the variables
are the element relative densities. The material proper-
ties are modelled as the relative material density raised
to some power times the material properties of solid ma-
terial. This approach has been criticized since it was ar-
gued that no physical material exists with properties de-
scribed by the power-law interpolation. However, a recent
paper by Bendsøe and Sigmund (1999) proved that the
power-law approach is physically permissible as long as
simple conditions on the power are satisfied (e.g. p ≥ 3
for Poisson’s ratio equal to 13). To ensure existence of so-
lutions, the power-law approach must be combined with
a perimeter constraint, a gradient constraint or with fil-
tering techniques (see Sigmund and Petersson 1998, for
an overview). The power-law approach to topology op-
timization has been applied to problems with multiple
constraints, multiple physics and multiple materials.

Whereas the solution of the above mentioned ap-
proaches is based on mathematical programming tech-
niques and continuous design variables, a number of pa-
pers have appeared on solving the topology optimization
problem as an integer problem. Beckers (1999) success-

121

fully solved large-scale compliance minimization prob-
lems using a dual-approach but other approaches based
on genetic algorithms or other semi-random approaches
require thousands of function evaluations even for small
number of elements and must be considered impractical.

Apart from above mentioned approaches, which all
solve well defined problems (e.g. minimization of com-
pliance) a number of heuristic or intuition based ap-
proaches have been shown to decrease compliance or
other objective functions. Among these methods are so-
called evolutionary design methods (see e.g. Xie and
Steven 1997; Baumgartner et al. 1992). Apart from be-
ing very easy to understand and implement (at least
for the compliance minimization case), the main moti-
vation for the evolutionary approaches seems to be that
mathematically based or continuous variable approaches
“involve some complex calculus operations and mathe-
matical programming” (citation from Li et al. 1999) and
they contain “mathematical methods of some complex-
ity” (citation from Zhao et al. 1998) whereas the evo-
lutionary approach “takes advantage of powerful com-
puting technology and intuitive concepts of evolution
processes in nature” (citation from Li et al. 1999). Two
things can be argued against this. First, the evolutionary
approaches become complicated themselves, once more
complex objectives than compliance minimization are
considered and second, as shown in this paper, the “math-
ematically based” approaches for compliance minimiza-
tion are simple to implement as well and are compu-
tationally equally efficient. Furthermore, mathematical
programming based methods can easily be extended to
other non-compliance objectives such as non-self-adjoint
and multiphysics problems and to problems with multiple
constraints (e.g. Sigmund 1999). Extensions of the evolu-
tionary approach to such cases seem more questionable.

The complete Matlab code is given in the Appendix.
The remainder of the paper consists of definition and
discussion of the optimization problem (Sect. 2), com-
ments about the Matlab implementation (Sect. 3) fol-
lowed by a discussion of extensions (Sect. 4) and a conclu-
sion (Sect. 5).

2
The topology optimization problem

A number of simplifications are introduced to simplify the
Matlab code. First, the design domain is assumed to be
rectangular and discretized by square finite elements. In
this way, the numbering of elements and nodes is simple
(column by column starting in the upper left corner) and
the aspect ratio of the structure is given by the ratio of
elements in the horizontal (nelx) and the vertical direc-
tion (nely).1

1 Names in type-writer style refer to Matlab variable names
that differ from the obvious (see the Matlab code in the
Appendix)

A topology optimization problem based on the power-
law approach, where the objective is to minimize compli-
ance can be written as

min
x

: c(x) =UTKU=
N∑
e=1

(xe)
p uTe k0 ue

subject to :
V (x)
V0

= f

: KU= F

: 000< xmin ≤ x≤ 111

,

(1)

where U and F are the global displacement and force
vectors, respectively, K is the global stiffness matrix, ue
and ke are the element displacement vector and stiffness
matrix, respectively, x is the vector of design variables,
xmin is a vector of minimum relative densities (non-zero
to avoid singularity), N (= nelx×nely) is the number
of elements used to discretize the design domain, p is the
penalization power (typically p = 3), V (x) and V0 is the
material volume and design domain volume, respectively
and f (volfrac) is the prescribed volume fraction.

The optimization problem (1) could be solved using
several different approaches such as Optimality Criteria
(OC) methods, Sequential Linear Programming (SLP)
methods or the Method of Moving Asymptotes (MMA by
Svanberg 1987) and others. For simplicity, we will here
use a standard OC-method.

Following Bendsøe (1995) a heuristic updating scheme
for the design variables can be formulated as

xnewe =

max(xmin, xe−m)

if xeB
η
e ≤ max(xmin, xe−m) ,

xeB
η
e

if max(xmin, xe−m)< xeB
η
e <min(1, xe + m) ,

min(1, xe + m)

if min(1, xe + m)≤ xeBηe ,
(2)

where m (move) is a positive move-limit, η (= 1/2) is
a numerical damping coefficient and Be is found from the
optimality condition as

Be =

−
∂c

∂xe

λ
∂V

∂xe

, (3)

where λ is a Lagrangian multiplier that can be found by
a bi-sectioning algorithm.

The sensitivity of the objective function is found as

∂c

∂xe
=−p(xe)

p−1 uTe k0 ue . (4)

122

For more details on the derivation and implementation of
the optimality criteria method, the reader is referred to
the literature (e.g. Bendsøe 1995).

In order to ensure existence of solutions to the top-
ology optimization problem (1), some sort of restriction
on the resulting design must be introduced (see Sigmund
and Petersson 1998, for an overview). Here we use a fil-
tering technique (Sigmund 1994, 1997). It must be em-
phasized that this filter has not yet been proven to en-
sure existence of solutions, but numerous applications
by the author have proven the the filter produces mesh-
independent designs in practice.

The mesh-independency filter works by modifying the
element sensitivities as follows:

∂̂c

∂xe
=

1

xe

N∑
f=1

Ĥf

N∑
f=1

Ĥf xf
∂c

∂xf
. (5)

The convolution operator (weight factor) Ĥf is written as

Ĥf = rmin−dist(e, f) ,

{f ∈N | dist(e, f)≤ rmin}, e= 1, . . . , N , (6)

where the operator dist(e, f) is defined as the distance be-
tween centre of element e and centre of element f . The
convolution operator Ĥf is zero outside the filter area.
The convolution operator decays linearly with the dis-
tance from element f . Instead of the original sensitivities
(4), the modified sensitivities (5) are used in the Optimal-
ity Criteria update (3).

3
Matlab implementation

TheMatlab code (see the Appendix), is built up as a stan-
dard topology optimization code. The main program is
called from the Matlab prompt by the line

top(nelx,nely,volfrac,penal,rmin)

where nelx and nely are the number of elements in the
horizontal and vertical directions, respectively, volfrac
is the volume fraction, penal is the penalization power
and rmin is the filter size (divided by element size). Other
variables as well as boundary conditions are defined in
the Matlab code itself and can be edited if needed. For
each iteration in the topology optimization loop, the code
generates a picture of the current density distribution.
Figure 1 shows the resulting density distribution obtained
by the code given in the Appendix called with the input
line

top(60,20,0.5,3.0,1.5)

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

������

?
���
���
���
��� ���

���
���
���

?

������ ���
���
���
���

Fig. 1 Topology optimization of the MBB-beam. Top: full
design domain, middle: half design domain with symmetry
boundary conditions and bottom: resulting topology opti-
mized beam (both halves)

The default boundary conditions correspond to half of the
“MBB-beam” (Fig. 1). The load is applied vertically in
the upper left corner and there is symmetric boundary
conditions along the left edge and the structure is sup-
ported horizontally in the lower right corner.

Important details of the Matlab code are discussed in
the following subsections.

3.1
Main program (lines 1–36)

The main program (lines 1–36) starts by distributing the
material evenly in the design domain (line 4). After some
other initializations, the main loop starts with a call to
the Finite Element subroutine (line 12) which returns the
displacement vector U. Since the element stiffness matrix
for solid material is the same for all elements, the elem-
ent stiffness matrix subroutine is called only once (line
14). Following this, a loop over all elements (lines 16–
24) determines objective function and sensitivities (4).
The variables n1 and n2 denote upper left and right
element node numbers in global node numbers and are
used to extract the element displacement vector Ue from
the global displacement vector U. The sensitivity analy-
sis is followed by a call to the mesh-independency filter
(line 26) and the Optimality Criteria optimizer (line 28).
The current compliance as well as other parameters are
printed by lines 30–33 and the resulting density distri-
bution is plotted (line 35). The main loop is terminated
if the change in design variables (change determined in
line 30) is less than 1 percent2. Otherwise above steps are
repeated.

2 this is a rather “sloppy” convergence criterion and could
be decreased if needed

123

3.2
Optimality criteria based optimizer (lines 37–48)

The updated design variables are found by the opti-
mizer (lines 37–48). Knowing that the material volume
(sum(sum(xnew))) is a monotonously decreasing func-
tion of the Lagrange multiplier (lag), the value of the
Lagrangianmultiplier that satisfies the volume constraint
can be found by a bi-sectioning algorithm (lines 40-48).
The bi-sectioning algorithm is initialized by guessing
a lower l1 and an upper l2 bound for the Lagrangian
multiplier (line 39). The interval which bounds the La-
grangian multiplier is repeatedly halved until its size is
less than the convergence criteria (line 40).

3.3
Mesh-independency filtering (lines 49–64)

Lines 49–64 represent the Matlab implementation of (5).
Note that not all elements in the design domain are
searched in order to find the elements that lie within
the radius rmin but only those within a square with side
lengths two times round(rmin) around the considered
element. By selecting rmin less than one in the call of the
routine, the filtered sensitivities will be equal to the ori-
ginal sensitivities making the filter inactive.

3.4
Finite element code (lines 65–99)

The finite element code is written in lines 65–99. Note
that the solver makes use of the sparse option in Mat-
lab. The global stiffness matrix is formed by a loop over
all elements (lines 70–77). As was the case in the main
program, variables n1 and n2 denote upper left and right
element node numbers in global node numbers and are
used to insert the element stiffness matrix at the right
places in the global stiffness matrix.

As mentioned before, both nodes and elements are
numbered column wise from left to right. Furthermore,
each node has two degrees of freedom (horizontal and ver-
tical), thus the command F(2,1)=-1. (line 79) applies
a vertical unit force force in the upper left corner.

Supports are implemented by eliminating fixed de-
grees of freedom from the linear equations. Matlab can do
this very elegantly with the line

84 U(freedofs,:) = K(freedofs,freedofs) \

F(freedofs,:);

where freedofs indicate the degrees of freedom which
are unconstrained. Mostly, it is easier to define the de-
grees of freedom that are fixed (fixeddofs) thereafter the
freedofs are found automatically using theMatlab oper-
ator setdiff which finds the free degrees of freedoms as

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

?
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Fig. 2 Topology optimization of a cantilever beam. Left: de-
sign domain and right: topology optimized beam

the difference between all degrees of freedom and the fixed
degrees of freedom (line 82).

The element stiffness matrix is calculated in lines 86–
99. The 8 by 8 matrix for a square bi-linear 4-node elem-
ent was determined analytically using a symbolic manip-
ulation software. The Young’s modulus E and the Pois-
son’s ratio nu can be altered in lines 88 and 89.

4
Extensions

The Matlab code given in the Appendix solves the prob-
lem of optimizing the material distribution in the MBB-
beam (Fig. 1) such that its compliance is minimized.
A number of extensions and changes in the algorithm
can be thought of, a few of which are mentioned in the
following.

4.1
Other boundary conditions

It is very simple to change boundary conditions and sup-
port conditions in order to solve other optimization prob-
lems. In order to solve the short cantilever example shown
in Fig. 2, only lines 79 and 80 must be changed to

79 F(2*(nelx+1)*(nely+1),1) = -1;

80 fixeddofs = [1:2*(nely+1)];

With these changes, the input line for the case shown
in Fig. 2 is

top(32,20,0.4,3.0,1.2)

4.2
Multiple load cases

It is also very simple to extend the algorithm to account
for multiple load cases. In fact, this can be done by adding
only three additional lines and making minor changes to
another 4 lines.

124

In the case of two load cases, force and displacement
vectors must be defined as two-column vectors which
means that line 69 is changed to

69 F = sparse(2*(nely+1)*(nelx+1),2);

U = sparse(2*(nely+1)*(nelx+1),2);

The objective function is now the sum of two compli-
ances, i.e.

c(x) =
2∑
i=1

UTi KUi (7)

thus lines 20–22 are substituted with the lines

19b dc(ely,elx) = 0.;

19c for i = 1:2

20 Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2;

2*n2+1;2*n2+2;2*n1+1;2*n1+2],i);

21 c = c + x(ely,elx)^penal*Ue’*KE*Ue;

22 dc(ely,elx) = dc(ely,elx) -

penal*x(ely,elx)^(penal-1)*Ue’*KE*Ue;

22b end

To solve the two-load problem indicated in Fig. 3, a unit
upward load in the top-right corner is added to line 79,
which then becomes

79 F(2*(nelx+1)*(nely+1),1) = -1.;

F(2*(nelx)*(nely+1)+2,2) = 1.;

The input line for Fig. 3 is

top(30,30,0.4,3.0,1.2).

4.3
Passive elements

In some cases, some of the elements may be required to
take the minimum density value (e.g. a hole for a pipe).

An nely×nelx array passive with zeros at elements
free to change and ones at elements fixed to be zero can
be defined in the main program and transferred to the OC
subroutine (adding passive to the call in lines 28 and 38).
The added line

42b xnew(find(passive)) = 0.001;

in the OC subroutine looks for passive elements and sets
their density equal to the minimum density (0.001).

11

2 2

1

1
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

?
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Fig. 3 Topology optimization of a cantilever beam with two
load-cases. Left: design domain, middle: topology optimized
beam using one load case and right: topology optimized beam
using two load cases

?
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Fig. 4 Topology optimization of a cantilever beam with
a fixed hole. Left: design domain and right: topology opti-
mized beam

Figure 4 shows the resulting structure obtained with
the input

top(45,30,0.5,3.0,1.5),

when the following 10 lines were added to the main
program (after line 4) in order to find passive elem-
ents within a circle with radius nely/3. and center
(nely/2., nelx/3.)

for ely = 1:nely

for elx = 1:nelx

if sqrt((ely-nely/2.)^2+(elx-nelx/3.)^2) <

nely/3.

passive(ely,elx) = 1;

x(ely,elx) = 0.001;

else

passive(ely,elx) = 0;

end

end

end

4.4
Alternative optimizer

Admittedly, the optimality criteria based optimizer im-
plemented here is only good for a single constraint and it
is based on a heuristic fixed point type updating scheme.
In order to install a better optimizer, one can obtain (free

125

of charge for academic purposes) the Matlab version of
the MMA-algorithm (Svanberg 1987) from Krister Svan-
berg, KTH, Sweden. The MMA code is called with the
following input line

mmasub(INPUT-variables, ... ,

OUTPUT-variables)

where the total number of input/output variables is 20,
including objective function, constraints, old and new
densities, etc. Implementing the MMA-optimizer is fairly
simple, but requires the definition of several auxiliary
variables. However, it allows for the solving of more com-
plex design problems with more than one constraint. The
Matlab optimizer will solve the standard topology op-
timization problem using less iterations at the cost of
a slightly increased CPU-time per iteration.

4.5
Other extensions

Extensions to three dimensions should be straight for-
ward whereas more complex problems such as compliant
mechanism design (Sigmund 1997) requires the imple-
mentation of the MMA optimizer and the definition of ex-
tra constraints. The simplicity of the Matlab commands
allow for easy extensions of the graphical output, interac-
tive input etc.

5
Conclusions

This paper has presented a very simple implementation
of a mathematical programming base topology optimiza-
tion algorithm. The code is implemented using only 99
Matlab input lines and includes optimizer, mesh-indepe-
ndency filtering and Finite Element code.

The Matlab code can be down-loaded from the web-
page http://www.topopt.dtu.dkand is intended for ed-
ucational purposes. The code can easily be extended to
include multi load problems and the definition of passive
areas.

Running the code in Matlab is rather slow compared
to a Fortran implementation of the same code which can
be tested at the web-site http://www.topopt.dtu.dk.
However, an add-on package to Matlab (MATLAB Com-
piler) allows for the generation of more efficient C-code
that can be optimized for run-time (this option, how-
ever, has not been tested by the author). It should be
noted that speed can be gained by modifying the Mat-
lab code itself, however the speed is gained on the cost of
simplicity of the program. The modification is suggested
by Andreas Rietz from Linköping University who uses
sparsity options in the assembly of the global stiffness ma-
trix. The reader may down-load his code at the web-page:

http://www.mekanik.ikp.liu.se/andridiv/matlab/

theory.html.
The code was intentionally kept compact in order

to keep the total number of lines below 100. If users
of the code should find ways to further compactify or
simplify the code, the author would be happy to re-
ceive suggested modifications that can be implemented
in the public domain code (the author’s e-mail address is
sigmund@fam.dtu.dk).

Since its first publication on the World Wide Web in
October 1999, the Matlab code has been down-loaded
more than 500 times by different users (as of August
2000). Among other positive feedbacks, several profes-
sors reported that they have used the code in courses on
structural optimization and have let their students imple-
ment alternative boundary conditions and multiple load
cases.

Acknowledgements This work was supported by the Dan-

ish Technical Research Council through the THOR/Talent-

programme: Design of MicroElectroMechanical Systems

(MEMS). The author would also like to thank Thomas Buhl,

Technical University of Denmark, for his inputs to an earlier

version of the code.

References

Baumgartner, A., Harzheim, L.; Mattheck, C. 1992: SKO
(Soft Kill Option): The biological way to find an optimum
structure topology. Int. J. Fatigue 14, 387–393

Beckers, M. 1999: Topology optimization using a dual method
with discrete variables. Struct. Optim. 17, 14–24

Bendsøe, M.P. 1989: Optimal shape design as a material dis-
tribution problem. Struct. Optim. 1, 193–202

Bendsøe, M.P. 1995: Optimization of structural topology,
shape and material . Berlin, Heidelberg, New York: Springer

Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topolo-
gies in optimal design using a homogenization method. Comp.
Meth. Appl. Mech. Engrg. 71, 197–224

Bendsøe, M.P.; Sigmund, O. 1999: Material interpolations in
topology optimization. Arch. Appl. Mech. 69, 635–654

Li, Q.; Steven, G.P.; Xie, Y. M. 1999: On equivalence between
stress criterion and stiffness criterion in evolutionary struc-
tural optimization. Struct. Optim. 18, 67–73

Mlejnek, H.P. 1992: Some aspects of the genesis of structures.
Struct. Optim. 5, 64–69

Sigmund, O. 1994: Design of material structures using top-
ology optimization. Ph.D. Thesis, Department of Solid Me-
chanics, Technical University of Denmark

Sigmund, O. 1997: On the design of compliant mechanisms
using topology optimization. Mech. Struct. Mach. 25, 495–
526

126

Sigmund, O. 1999: Topology optimization of multi-physics,
multi-material structures. Proc. WCSMO-3 (held in Buffalo,
NY)

Sigmund, O.; Petersson, J. 1998: Numerical instabilities in
topology optimization: a survey on procedures dealing with
checkerboards, mesh-dependencies and local minima. Struct.
Optim. 16, 68–75

Svanberg, K. 1987: The method of moving asymptotes – a new
method for structural optimization. Int. J. Numer. Meth. En-
grg. 24, 359–373

Xie, Y.M.; Steven, G.P. 1997: Evolutionary structural opti-
mization. Berlin, Heidelberg, New York: Springer

Zhao, C.; Hornby, P.; Steven, G.P.; Xie, Y.M. 1998: A gener-
alized evolutionary method for numerical topology optimiza-
tion of structures under static loading conditions. Struct. Op-
tim. 15, 251–260

Zhou, M.; Rozvany, G.I.N. 1991: The COC algorithm, part
II: Topological, geometry and generalized shape optimization.
Comp. Meth. Appl. Mech. Engrng. 89, 197–224

6
Appendix – Matlab code

1 %%%% A 99 LINE TOPOLOGY OPTIMIZATION CODE BY OLE

SIGMUND, OCTOBER 1999 %%%

2 function top(nelx,nely,volfrac,penal,rmin);

3 % INITIALIZE

4 x(1:nely,1:nelx) = volfrac;

5 loop = 0;

6 change = 1.;

7 % START ITERATION

8 while change > 0.01

9 loop = loop + 1;

10 xold = x;

11 % FE-ANALYSIS

12 [U]=FE(nelx,nely,x,penal);

13 % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

14 [KE] = lk;

15 c = 0.;

16 for ely = 1:nely

17 for elx = 1:nelx

18 n1 = (nely+1)*(elx-1)+ely;

19 n2 = (nely+1)* elx +ely;

20 Ue = U([2*n1-1;2*n1; 2*n2-1;2*n2; 2*n2+1;

2*n2+2; 2*n1+1;2*n1+2],1);

21 c = c + x(ely,elx)^penal*Ue’*KE*Ue;

22 dc(ely,elx) = -penal*x(ely,elx)^(penal-1)*

Ue’*KE*Ue;

23 end

24 end

25 % FILTERING OF SENSITIVITIES

26 [dc] = check(nelx,nely,rmin,x,dc);

27 % DESIGN UPDATE BY THE OPTIMALITY CRITERIA METHOD

28 [x] = OC(nelx,nely,x,volfrac,dc);

29 % PRINT RESULTS

30 change = max(max(abs(x-xold)));

31 disp([’ It.: ’ sprintf(’%4i’,loop) ’ Obj.: ’

sprintf(’%10.4f’,c) ...

32 ’ Vol.: ’ sprintf(’%6.3f’,sum(sum(x))/

(nelx*nely)) ...

33 ’ ch.: ’ sprintf(’%6.3f’,change)])

34 % PLOT DENSITIES

35 colormap(gray); imagesc(-x); axis equal; axis

tight; axis off;pause(1e-6);

36 end

37 %%%%%%%%%% OPTIMALITY CRITERIA UPDATE %%%%%%%%%

38 function [xnew]=OC(nelx,nely,x,volfrac,dc)

39 l1 = 0; l2 = 100000; move = 0.2;

40 while (l2-l1 > 1e-4)

41 lmid = 0.5*(l2+l1);

42 xnew = max(0.001,max(x-move,min(1.,min(x+move,x.

*sqrt(-dc./lmid)))));

43 if sum(sum(xnew)) - volfrac*nelx*nely > 0;

44 l1 = lmid;

45 else

46 l2 = lmid;

47 end

48 end

49 %%%%%%%%%% MESH-INDEPENDENCY FILTER %%%%%%%%%%%

50 function [dcn]=check(nelx,nely,rmin,x,dc)

51 dcn=zeros(nely,nelx);

52 for i = 1:nelx

53 for j = 1:nely

54 sum=0.0;

55 for k = max(i-round(rmin),1):

min(i+round(rmin),nelx)

56 for l = max(j-round(rmin),1):

min(j+round(rmin), nely)

57 fac = rmin-sqrt((i-k)^2+(j-l)^2);

58 sum = sum+max(0,fac);

59 dcn(j,i) = dcn(j,i) + max(0,fac)*x(l,k)

*dc(l,k);

60 end

61 end

62 dcn(j,i) = dcn(j,i)/(x(j,i)*sum);

63 end

64 end

65 %%%%%%%%%% FE-ANALYSIS %%%%%%%%%%%%

66 function [U]=FE(nelx,nely,x,penal)

67 [KE] = lk;

68 K = sparse(2*(nelx+1)*(nely+1), 2*(nelx+1)*

(nely+1));

69 F = sparse(2*(nely+1)*(nelx+1),1); U =

sparse(2*(nely+1)*(nelx+1),1);

70 for ely = 1:nely

71 for elx = 1:nelx

72 n1 = (nely+1)*(elx-1)+ely;

73 n2 = (nely+1)* elx +ely;

74 edof = [2*n1-1; 2*n1; 2*n2-1; 2*n2; 2*n2+1;

2*n2+2;2*n1+1; 2*n1+2];

75 K(edof,edof) = K(edof,edof) +

x(ely,elx)^penal*KE;

76 end

77 end

78 % DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)

79 F(2,1) = -1;

80 fixeddofs = union([1:2:2*(nely+1)],

[2*(nelx+1)*(nely+1)]);

81 alldofs = [1:2*(nely+1)*(nelx+1)];

82 freedofs = setdiff(alldofs,fixeddofs);

83 % SOLVING

127

84 U(freedofs,:) = K(freedofs,freedofs) \

F(freedofs,:);

85 U(fixeddofs,:)= 0;

86 %%%%%%%%%% ELEMENT STIFFNESS MATRIX %%%%%%%

87 function [KE]=lk

88 E = 1.;

89 nu = 0.3;

90 k=[1/2-nu/6 1/8+nu/8 -1/4-nu/12 -1/8+3*nu/8 ...

91 -1/4+nu/12 -1/8-nu/8 nu/6 1/8-3*nu/8];

92 KE = E/(1-nu^2)*

[k(1) k(2) k(3) k(4) k(5) k(6) k(7) k(8)

93 k(2) k(1) k(8) k(7) k(6) k(5) k(4) k(3)

94 k(3) k(8) k(1) k(6) k(7) k(4) k(5) k(2)

95 k(4) k(7) k(6) k(1) k(8) k(3) k(2) k(5)

96 k(5) k(6) k(7) k(8) k(1) k(2) k(3) k(4)

97 k(6) k(5) k(4) k(3) k(2) k(1) k(8) k(7)

98 k(7) k(4) k(5) k(2) k(3) k(8) k(1) k(6)

99 k(8) k(3) k(2) k(5) k(4) k(7) k(6) k(1)];

