
Struct Multidisc Optim (2006) 32: 173–181
DOI 10.1007/s00158-006-0017-y

EDUCATIONAL ARTICLE

G. Allaire · O. Pantz

Structural optimization with FreeFem+ +

Received: 23 June 2005 / Revised manuscript received: 7 September 2005 / Published online: 8 July 2006
© Springer-Verlag 2006

Abstract The aim of this paper is to show that rela-
tively small, simple, and efficient shape optimization rou-
tines can be written using the free finite element software
FreeFem+ +. This is illustrated by the implementation of
two classical methods: the boundary variation method and the
homogenization one. Even though these routines are simple
enough so that their implementation can be assigned (par-
tially or totally) as homework to graduate students, they yield
results accurate enough to be useful tools for engineers or
researchers.

Keywords Shape and topology optimization · Finite
element software

1 Introduction

It is worthless to emphasize that a course on structural opti-
mization must be illustrated by several examples of the meth-
ods introduced. It is better to let the students use structural
optimization softwares or (even better) to let them write their
own. Nevertheless, it is not realistic to ask a student to imple-
ment all parts of such algorithms as mesh generation or the
finite elements method (for unstructured mesh). On the other
hand, using a well-established finite element software, the
difficulty is usually moved to the optimization loop (includ-
ing the adjoint analysis). The goal of this paper is to exhibit
(at least) one good compromise between easy optimization
and easy finite element analysis, which makes it possible for
graduate students to develop their own structural optimization
programs. Indeed, as shown in the following, relatively small
(about 300 lines) and simple structural optimization routines
can be written using FreeFem+ +, a free and user friendly
2-d finite element software (Hecht et al. 2005). Depending
on the available time, it is possible to give the students most
of the script and to let them complete some missing parts, as
the variational formulations associated to the state and ad-

G. Allaire (B) · O. Pantz
CMAP, Ecole Polytechnique, 91128 Palaiseau, France
e-mail: allaire@cmapx.polytechnique.fr

joint equations. Our experience is based on a graduate course
taught at Ecole Polytechnique (Allaire 2006).

We have implemented two classical structural opti-
mization methods: Hadamard method for geometric opti-
mization (Pironneau 1984; Sokołowski and Zolesio 1992)
and the homogenization method for topology optimization
(Allaire 2001; Bendsoe and Sigmund 2003). The paper is
divided in two independent parts, each one being devoted to
one method. For each part, after recalling the principles of the
method (we refer to the above quoted textbooks for a more
complete presentation), we describe briefly its implementa-
tion in FreeFem+ +. The free software FreeFem+ +

requires as input a script that describes the geometry of
the mesh, the variational formulation of the problem, and
the optimization loop. These ingredients have to be pro-
vided by the user, all other aspects of finite elements being
automatically managed by FreeFem+ +, including mesh
generation, adaptation and deformation, assembling the ri-
gidity matrix, solving the linear system, displaying the re-
sult, etc. This is different in spirit from other softwares like
Matlab (see Sigmund 2001 for an application in structural
optimization). Our routines (i.e., FreeFem+ + scripts,
tested with the 1.47 version) are freely available on the
web page http://www.cmap.polytechnique.fr/~optopo so that
anybody can reproduce our illustrative numerical examples
(and get the inspiration to create new ones).

2 Boundary variations or geometric optimization

2.1 The gradient method

The gradient method is probably the simplest tool of opti-
mization but it may become tricky when applied to shapes,
so we indulge ourselves in giving some details. Let F be a
map from a Hilbert space X into R. The gradient method
amounts to build a sequence of elements (xn)n≥0 ∈ X by

xn+1 = xn − hndn,

where hn ∈ R+ is a small positive step and dn is the descent
direction defined by

(dn, y)X =< F ′(xn), y >X∗,X for any y ∈ X.

http://www.cmap.polytechnique.fr/~optopo

174 G. Allaire, O. Pantz

Usually, the identification between X and its dual X∗

under the scalar product (., .)X is understood. If we do
so, dn is nothing more but the gradient of F , F ′(xn). If
F ′(xn) is not equal to zero, then for hn to be small enough,
F(xn+1) < F(xn). The algorithm is initialized with any el-
ement x0 ∈ X , and if F is strongly convex, xn converges
toward the optimal solution x∗ of the problem

F(x∗) = min
x∈X

F(x).

In structural optimization, the search set X is no more a
Hilbert space but a subset of the open sets of RN (where
usually, N = 2 or 3) and has neither straightforward dif-
ferentiable nor Hilbert structure. Nevertheless, the gradient
method can successfully be applied. To this end, we need to
define variations of open sets and endow the set of variations
with a Hilbert (or at least Banach) structure.

2.2 Variations of an open set

Let J (�̃) be a real valued function defined for any open set
�̃ of RN . Let � be a regular open set of RN . Given a map θ
from � into RN , we set

�(θ) = (Id +θ)(�) ≡ {x + θ(x) s.t. x ∈ �}.

For small vector field θ , the open set �(θ) are one-to-
one perturbations of the initial set �. If the map F� : θ 7→

J (�(θ)) is differentiable, we define the shape derivative

< J ′(�), θ >=< F ′

�, θ > .

By the Hadamard structure theorem, it is known that the
shape derivative is carried only on the boundary of the shape,
i.e.,

< J ′(�), θ >=

∫
∂�

j (�) θ · n ds. (1)

2.3 The boundary variation algorithm

To apply the gradient method to shape optimization, it re-
mains to associate to a given shape derivative J ′(�) a di-
rection of slope d. To this end, it suffices to endow the
space of vector fields from � into RN with an Hilbert struc-
ture, for instance H 1(�)N . In this case, the descent direc-
tion is the unique element d ∈ H 1(�)N such that for every
θ ∈ H 1(�)N ,∫

�

(∇d · ∇θ + d · θ) dx =< J ′(�), θ > . (2)

Computing d as the solution of (2) can also be interpreted
as a regularization of the gradient.

Remark 1 The choice of H 1(�)N as space of variations is
more dictated by technical considerations [it is easy to solve
(2) with FreeFem+ +] rather than theoretical ones. Many
choices could be made and it is not obvious to find the one

that provides the better rate of convergence. Moreover, it is
possible to use a more general framework and to define the
direction d as the minimizer (in some Banach space) of a
functional of the form 1

2 I (d)− < J ′(�), θ >, where I is
a positive functional. The present case corresponds to the
choice I (d) = ‖d‖

2
H 1(�)

.

Remark 2 The Hadamard structure theorem tells us that the
directional derivative of J depends only on the value of the
normal component θ · n on ∂� [see formula (1)]. Thus, one
can replace the space H 1(�)N in (2) by H 1(∂�)N with the
corresponding change of scalar product and the new descent
direction is the solution of∫

∂�

d ′
· θ ′

+ d · θds =< J ′(�), θ >, for every θ ∈ H 1(∂�)N ,

where ′ denotes the surface gradient. Nevertheless, it is more
convenient to use (2) because it is simpler to solve, and it
yields a natural extension of the mesh deformation on the
whole domain �.

The resulting algorithm can be summarized as follows:

1. Choose an initial shape �0.
2. Iteration until convergence for n ≥ 0,

(a) Compute dn solution of the problem (2) with � = �n .
(b) Set �n+1 = (Id −hndn)(�n), where hn is a small, pos-

itive real.

2.4 Algorithmic details of the method

In the following, several algorithmic details are discussed,
which make the method truly efficient and effective.

2.4.1 Regularization of the mesh

It is well-known that numerical shape optimization may
yield optimal designs with oscillating boundaries (i.e., hav-
ing peaks and wells of length scale of the order of the mesh
size). To avoid this problem, one can add a perimeter pe-
nalization to the cost function J , but the resulting solution
will depend on the weight of the penalization. We prefer to
use a regularization procedure that explicitly smoothes the
shape at each iteration. To this end, we introduce two differ-
ent meshes of �. At each iteration, a fine mesh Sh is used to
perform the finite element analysis and compute the descent
direction d. We extract a coarser mesh Th from Sh , the nodes
of which are moved in the direction −d defined by (2). Fi-
nally, a new fine mesh Sh is deduced from the displaced Th

by mesh adaptation.

2.4.2 Regularization of the shape gradient

The displacement usually presents singularities at the corners
of the shape or at the changes of boundary conditions type.
In such cases, the formula (5) is not correct anymore, as the

Structural optimization with FreeFem+ + 175

right member of the formula is not well-defined. From the
numerical point of view, this leads to strong oscillations of
the shape near its corners and can produce unresolved mesh-
ing errors. To bypass this problem, we arbitrarily set the shape
gradient to zero near the corners of the shape.

2.4.3 Volume constraint

Many structural optimization problems feature a volume
constraint on the admissible open sets. This constraint is im-
posed by introducing a Lagrange multiplier ` in the formula-
tion. More precisely, the descent direction is now computed
from the shape derivative of the Lagrangian J ′(�) + `V ′(�),
where V (�) = |�| denotes the volume of the shape �. The
value of the Lagrange multiplier is refreshed at each itera-
tion so the shape satisfies the volume constraint when the
algorithm converges. Since moving the mesh is relatively
costly, we do not enforce exactly the volume constraint be-
fore convergence. Instead, we increase the Lagrange multi-
plier if the current volume of the shape is greater than the
target volume and we decrease it otherwise. Nevertheless,
this could lead to oscillations of the shape’s volume. Thus,
we relax it with the value of the Lagrange multiplier com-
puted by assuming that the optimality condition is satisfied,
namely J ′(�) + `V ′(�) = 0, at least in the average sense on
the boundary ∂�, i.e., ` = −

∫
∂�

j (�) ds/
∫
∂�

ds with the
notations of (1). More precisely, the Lagrange multiplier is
updated at each iteration by

`n+1
= (`n

+ `)/2 + ε`(V − V0),

where ε` is a small enough positive real number.

2.4.4 Stepping algorithm

The choice of the descent step hn is not an easy task. When
too big, the algorithm is unstable; when too small, the rate
of convergence is insignificant. To refresh hn , we compare
at each iteration the current descent direction dn with the
previous one dn−1. If the scalar product (dn, dn−1)H 1(�)N is
negative, we suspect that the algorithm is becoming unsta-
ble. In this case, we reduce the step and go backward: the
next iteration is initialized with the previous shape �n−1. On
the other hand, if dn and dn−1 are very close, the step hn is
increased. The step hn is also decreased if reversed triangles
are detected when the mesh is updated (see Section 2.6.3).

2.4.5 Stopping criterion

A typical convergence criterion for stopping the optimiza-
tion loop would be to check that the shape derivative J ′(�)
is small enough in some appropriate norm. However, since we
use continuous gradients (and not discrete ones), it is hope-
less to expect very small gradient norm because of numerical
discretization errors. There is a more serious obstacle to using
a strict convergence criterion, which is linked to the inability
of changing the topology. Indeed, it happens quite frequently
that two different parts of the shape boundary tend to merge.

In such a case, the descent step is decreased to avoid reversed
triangles after moving the mesh (see Section 2.6.3). It can be-
come almost zero even if the shape derivative J ′(�) is large
and the optimal shape is not reached. Consequently, we do
not use any convergence criterion to stop the algorithm. In-
stead, we fix the number of iterations at the beginning of the
algorithm. If it is too small, we can always restart it with the
previous final shape as initial guess.

2.5 Numerical applications for the boundary variation
method

The above algorithm was successfully tested in N = 2 space
dimensions for different kinds of structural optimization
problems, particularly on the classical cantilever and grip
optimization.

2.5.1 Compliance optimization

Let � be the reference configuration of a linear isotropic
elastic body. We assume that � is fixed on 0D , submitted
to surface forces g on 0N and free on 0opt , where ∂� =

0D ∪ 0N ∪ 0opt . The displacement of the structure u(�) is
the solution of the linear elasticity system

div(Ae(u(�))) = 0 in �,
(Ae(u(�))n = g on 0N ,
(Ae(u(�))n = 0 on 0opt ,
u(�) = 0 on 0D,

(3)

where e(u) = (∇u + ∇uT)/2 is the strain tensor, and n is
the outward normal to the boundary, A is the Hooke’s law or
elasticity tensor defined by

Aξ = 2µξ + λ(Tr ξ) Id (4)

with Lamé moduli λ and µ. The variational formulation of
(3), which has to be implemented in the FreeFem+ + soft-
ware (see Section 2.6.2), is∫

�

(2µe(u(�)) · e(q) + λ div u(�) div q) dx

=

∫
0N

g · q ds

for every q ∈ H 1(�)2 such that q = 0 on 0D . We consider
the compliance minimization problem

min
�

c(�) =

∫
0N

g · u(�) ds,

over all open sets � such that 0N ∪ 0D ⊂ ∂�, with pre-
scribed volume V0. The functional c admits a shape derivative
(see, e.g., Allaire et al. 2004)

< c′(�), θ >=−

∫
0opt

(2µ|e(u(�))|2+λ(div u(�))2)(θ ·n)ds.

(5)

176 G. Allaire, O. Pantz

Fig. 1 Initial shape

2.5.2 A numerical example: the cantilever

To illustrate the performance of our FreeFem+ + script,
we consider the compliance minimization of the following
cantilever.

The algorithm is initialized with the shape shown on
Fig. 1, to which several holes were added. The resulting op-
timal designs are displayed on Figs. 2, 3, 4, 5, 6, and 7. As
expected, the compliance decreases as the number of holes
grows. Nevertheless, the benefit becomes very weak starting
from three holes.

Initial
shape

No
hole

1
hole

2
holes

3
holes

5
holes

6
holes

Compliance 40.5 23.3 19.6 18.3 17.57 17.51 17.47

2.5.3 Grip optimization

We consider the optimization of a gripping mechanism made
of a linear elastic material. We use the same notations as

Fig. 2 Optimal design with no hole

Fig. 3 Optimal design with one hole

Fig. 4 Optimal design with two holes

Fig. 5 Optimal design with three holes

those of Section 2.5.1. Nevertheless, we assume that the
boundary ∂� of the structure splits into four parts. The grip is
fixed on 0D , submitted to surface loads on 0N , free on 0opt ,
and in bilateral contact on 0c where the piece to grip lies (see
Fig. 8). The displacement u(�) of the grip is the solution of
the following variational formulation

Find u(�) ∈ W (�) := {q ∈ H 1 (�)2
: q = 0 on 0D,

and q · n = 0 on 0c},

Fig. 6 Optimal design with five holes

Fig. 7 Optimal design with six holes

Structural optimization with FreeFem+ + 177

Fig. 8 Initial grip’s shape

such that for every test function v ∈ W (�),∫
�

2µe(u(�)) · e(v) + λ div u(�) div vdx =

∫
0N

g · vds.

Remark 3 We assume that the contact between the grip and
the body is bilateral. It would be more realistic to consider
a unilateral contact instead, but it would lead to a nonlinear,
and thus much more difficult, problem.

We want to maximize the pressure P(�)

P(�) = −

∫
0c

(σ (�)n) · n ds,

of the grip on the piece, where σ(�) is the stress tensor,

σ(�) = 2µe(u(�)) + λ div(u(�)) Id .

The pressure P(�) can be rewritten as

P(�) = −

∫
�

2µe(u(�)) · e(uc) + λ div u(�) div uc dx,

where uc is a vector field in H 1(R2) such that uc = 0 on 0D

and uc = n on 0c. The maximization of P(�) usually leads
to disconnected structures. To avoid this problem, we instead
minimize the functional

G(�) = −P(�)/c(�) + `|�|.

For a given positive pressure P(�) of the grip on the
piece, it is advantageous to minimize the compliance c(�)
to minimize the functional G(�). Thus, we hope that dis-
connected structures (for which the compliance is typically
very high) are not reasonable minimizers of G. Moreover, we
add a penalization of the volume in the objective function G
(` is a positive real). Hence, the minimizers of G are not ex-
cessively fat. The shape derivative of P (and thus of G) is
easy to compute (see, e.g., Allaire et al. 2004)

< P ′(�), θ > =

∫
0opt

(
2µe(p(�) − uc) · e(u(�))

+λ div(p(�) − uc) div u(�)
)
(θ · n)dx,

Fig. 9 Optimal design of a grip

where θ = 0 on ∂� \ 0opt . The expression of P ′(�) relies
on an adjoint state p(�) ∈ W (�) defined as the solution of∫

�

(2µe(p(�)) · e(q) + λ div p(�) div q) dx =∫
�

(2µe(uc) · e(q) + λ div uc div q) dx

for every q ∈ W (�).

2.5.4 Numerical example of the optimization of a grip

To illustrate the performance of our algorithm, we consider
the optimization of the grip shown on Fig. 8, where the white
square is the piece to be gripped by the jaws of the elas-
tic structure �. The next figures display the optimal shape
(Fig. 9) and the deformation of the grip when the piece be-
tween the jaws is removed (Fig. 10).

Fig. 10 Deformation of the optimal grip

178 G. Allaire, O. Pantz

2.6 Practical implementation

The boundary variation algorithm is easy to implement in
N = 2 space dimensions with FreeFem+ +. In this sec-
tion, we present the main parts of a FreeFem+ + script
for the compliance minimization example (see Section
2.5.1). For the sake of simplicity, the details presented
in Section 2.4 were not included. In any case, our com-
plete FreeFem+ + scripts are available on the web page
http://www.cmap.polytechnique.fr/~optopo. More informa-
tion on the script syntax of FreeFem+ + can be found in
Hecht et al. 2005.

2.6.1 Initialization

The initial shape �0 is explicitly built, after having defined its
boundaries. Each boundary is tagged by a label, according to
the type of supported boundary conditions and to its mobility
(fixed or not) during the optimization process. Each boundary
is parametrized and oriented by a real t . As usual with mesh
generators, the user must take care of a proper junction and
orientation of the different parts of the boundary. The shape
is meshed by triangles: the resulting mesh is denoted by Sh
in the following code lines.

mesh Sh;

//Definition of the boundary labels

int neumann=1; int dirichlet=2; int free=3;

//right boundary (neumann condition)

border a(t=−1,1) {x=20; y=t; label=neumann;};

//left boundary (free or dirichlet condition)

border c1(t=4,2) {x=0; y=t; label=dirichlet;};

border c2(t=2,−2) {x=0; y=t; label=free;};

border c3(t=−2,−4){x=0; y=t; label=dirichlet;};

//upper and lower boundary (free condition)

border b(t=1,0)

{x=20.∗t; y=4.−3.∗t; label=free;};

border d(t=0,1)

{x=20.∗t; y=−4.+3.∗t; label=free;};

//a circular hole

border Hole1(t=0,2∗pi)

{x=0.2∗cos(t)+8; y=0.2∗sin(t); label=free;};

Sh=buildmesh (b(30)+c3(10)+c2(10)

+c1(10)+d(30)+a(20)+Hole1(−11));

2.6.2 Definition of the state equation

In the case of compliance optimization, the state or displace-
ment u is the solution of the linear elasticity equation (3). We
use P2 × P2 Lagrange finite elements to compute u. The
elasticity problem is described by its variational formulation

//Material parameters

real E=15; //Young Modulus

real nu=0.35; //Poisson ratio

//Lame Moduli

real lambda=E∗nu/((1.+nu)∗(1.−2.∗nu));

real mu=E/(2.∗(1.+nu));

//Applied Loads

func g1=0.; func g2=−1.;

//Finite elements space on the finer mesh Sh

fespace WSh(Sh, [P2, P2]);

//Displacement and test functions

WSh [u1, u2], [v1, v2];

////////////////////////////////////

// Elasticity problem //

// (variational formulation) //

///////////////////////////////////

problem elasticity([u1, u2], [v1, v2])=int2d(Sh)

(

2.∗mu∗(dx(u1)∗dx(v1)+dy(u2)∗dy(v2)

+((dx(u2)+dy(u1))∗(dx(v2)+dy(v1)))/2.)

+lambda∗(dx(u1)+dy(u2))∗(dx(v1)+dy(v2))

)

−int1d(Sh, neumann)(g1∗v1+g2∗v2)

+on(dirichlet, u1=0, u2=0);

The adjoint problem (if any) and the extension problem
(2) [which gives the descent direction d = (d1, d2)] are de-
fined in a similar way. The following code lines define the
extension problem.

///

// Expression of the shape gradient //

//

macro gradientexp()

−2.∗mu∗(dx(u1)ˆ2+dy(u2)ˆ2

+((dx(u2)+dy(u1))ˆ2)/2.)

−lambda∗(dx(u1)+dy(u2))ˆ2

//extension field

WSh [d1, d2];

//test functions for the extension field

WSh [theta1, theta2];

//Lagrange multiplier real lagrange;

///////////////////////////

// Extension problem //

//////////////////////////

// H1 scalar product between

// vector−valued functions

macro prodscal(t1, t2, p1, p2)

dx(t1)∗dx(p1)+dy(t1)∗dy(p1)

+dx(t2)∗dx(p2)+dy(t2)∗dy(p2)+t1∗p1+t2∗p2

//

problem extension([d1, d2], [theta1, theta2])=

int2d(Sh)(prodscal(d1,d2,theta1,theta2))

+int1d(Sh,free)((theta1∗N.x+theta2∗N.y)

∗(gradientexp+lagrange))

+on(dirichlet,neumann,d1=0,d2=0);

2.6.3 The optimization loop

The optimization loop consists in three main steps: resolution
of the state equation, computation of the descent direction in
terms of the shape derivative, and shape updating.

http://www.cmap.polytechnique.fr/~optopo

Structural optimization with FreeFem+ + 179

int niter=100; //Number of iterations

real step=0.1; //Initial step

//Target volume

real volume0=95.;

//Refreshing step of the Lagrange multiplier

real lagrangestep=3;

//Initialization of the Lagrange multiplier

real volume, perimeter; elasticity;

volume=int1d(Sh)(x∗N.x+y∗N.y)/2;

perimeter=int1d(Sh,free)(1.);

lagrange=

int1d(Sh,free)(gradientexp)/perimeter;

int iter;

///////////////////////////

// Optimization Loop //

//////////////////////////

for (iter=0;iter< niter;iter=iter+1){

//Solving the state equation elasticity;

//Update of the Lagrange multiplier

volume=int1d(Sh)(x∗N.x+y∗N.y)/2;

perimeter=int1d(Sh, free)(1.);

lagrange=0.5∗lagrange

−0.5∗int1d(Sh, free)(gradientexp)/perimeter

+lagrangestep∗(volume−volume0)/volume0;

//Computation of the descent direction extension;

//Update of the shape

Sh=movemesh (Sh,[x+step∗d1,y+step∗d2]);

plot(Sh);

};

///// END OF THE OPTIMIZATION LOOP /////

plot(Sh, wait=1); //Display the final shape

An additional subroutine of FreeFem+ +, check
movemesh, allows to detect any occurrence of reversed tri-
angles and, thus, makes sure that the mesh is always conform-
ing. Another subroutine, adaptmesh, is dedicated to mesh
adaptation (i.e., the mesh is automatically refined where large
errors are detected), which greatly improves the efficiency of
the computation. Mesh adaptation is actually necessary to
prevent mesh degeneracy. Thus, for an effective algorithm, it
is recommended to insert the following code line at the end
of the optimization loop, just before the update of the shape
movemesh command)

Sh = adaptmesh(Sh, [u1, u2]);

Merging together the above script parts yields a 106-
line optimization routine (including comments) that already
works nicely. Of course, for a truly efficient routine, one needs
to add all the refinements given in Section 2.4 or to download
the scripts on our web page.

3 Topology optimization using homogenization

One limitation of the previous method is its incapacity to
change the topology of the structure. Moreover, even for a
given topology, the final result depends heavily on the initial

shape. In particular, if holes are too close in the initial shape,
they tend to merge, and the procedure is more or less stuck,
as the thin layer between the holes cannot be removed. Over-
all, the previous method usually yields local minima, which
may be far from global ones. The homogenization method is
aimed at optimizing the topology and getting global minima.
It relies on the introduction of composite materials, which
can be shown to yield optimal shapes in a relaxed or gener-
alized sense. Numerically, a composite optimal shape is first
computed and then projected on the set of “real” shapes by
a penalization procedure, which removes the “gray” areas of
intermediate densities. In the following discussion, we focus
on the minimization of weighted sum of the compliance and
the weight of the structure. Furthermore, we assume that the
structure is made of a linear elastic isotropic material and
included in a fixed working domain �.

3.1 Setting of the initial problem

Let � be a fixed bounded working domain in RN . Let 00, 0N

and 0D be a partition of the boundary of �. As mentioned
previously, u(ω) denotes the displacement of the structure
ω ⊂ �, which is assumed to be clamped on 0D and submitted
to surface loads g on 0Ndiv σ = 0 in ω, with σ = Ae(u),

σn = g on 0N , and σn = 0 on ∂ω \ (0N ∪ 0D)
u = 0 on 0D,

where e(u) = (∇u + ∇uT)/2 and A is defined by (4). We
consider the following compliance minimization problem

min
ω⊂�

∫
0N

g · u(ω) dx + `|ω|, (6)

where ` > 0 is a Lagrange multiplier for the volume con-
straint. It can be proven that this problem usually admits no
minimizer. The number of holes of minimizing sequences of
(6) increases to infinity, and thus, it does not converge to a
classical shape, but to a composite one. The principle of the
homogenization method is to extend the minimization prob-
lem to such generalized or composite shapes.

3.2 The homogenized problem

The composite shape is described by two variables, the mate-
rial density θ(x) : � → (0, 1) and the homogenized Hooke’s
tensor A∗(x), which represents the underlying microstructure
(the shape of the holes). The displacement of the composite
structure is the solution ofdiv σ = 0 in �, with σ = A∗e(u),

σn = g on 0N , and σn = 0 on 00
u = 0 on 0D.

(7)

The homogenized problem is defined as

min J (θ, A∗) = c(θ, A∗) + `

∫
�

θdx, (8)

180 G. Allaire, O. Pantz

where the minimization takes place over all couples (θ, A∗)
such that A∗ is a homogenized Hooke’s law corresponding
to a material density θ . The compliance of the composite
structure is defined by

c(θ, A∗) =

∫
0N

g · u ds =

∫
�

A∗−1
σ · σ dx .

The minimum is reached by special composites called
sequential laminates, obtained as successive layerings of void
and material in N orthogonal directions and with adequate
proportions. The directions of lamination are given by the
eigenvectors of the stress tensor σ . For example, in dimension
N = 2, the optimal lamination proportions are

m1 =
|σ2|

|σ1| + |σ2|
, m2 =

|σ1|

|σ1| + |σ2|
, (9)

where σ1 and σ2 are the eigenvalues of σ . Then, the homog-
enized Hooke’s law of the optimal composite is

A∗−1
= A−1

+
1 − θ

θ

(
m1 f c

A(e1) + m2 f c
A(e2)

)−1
, (10)

where e1 and e2 are the unitary eigenvectors of σ and f c
A(ei)

are fourth-order tensors defined for any symmetric matrix ξ
by

f c
A(ei)ξ · ξ = Aξ · ξ − µ−1

|Aξ |
2
+

µ + λ

µ(2µ + λ)
((Aξ)ei · ei)

2.

Finally, the optimal density θ is

θopt = min

(
1,

√
λ + 2µ

4µ(λ + µ)`
(|σ1| + |σ2|)

)
. (11)

3.3 Numerical algorithm for the homogenization method

With the use of the principle of minimal complementary en-
ergy for the compliance

c(θ, A∗) = min
divτ=0 in �

τn=g on 0N
τn=0 on 00

∫
�

A∗
−1

τ · τdx,

the minimization of the homogenized formulation (8) can be
seen as an alternate minimization with respect to admissible
stresses τ and design parameters (θ, A∗). Thus, we use the
following “optimality criteria” algorithm

1. Initialization of the shape (θ0, A∗

0).
2. Iteration until convergence for n ≥ 0,

(a) Compute the stress tensor σn by solving (7).
(b) Compute the new design parameters (θn+1, A∗

n+1),
using the optimality conditions (10) and (11).

Fig. 11 Density of the optimal composite shape

Computing σn amounts to solve the linear elasticity sys-
tem (7) in a displacement formulation and evaluate the re-
sulting stress. The stress tensor is just required to update the
design parameters. However, since the above algorithm is
an alternate minimization, the objective function is always
decreasing.

The resulting optimal design being composite, it is then
“projected” on the set of classical shapes by applying again
the previous scheme with the following slight modification:
the density is updated setting θn+1 = θpen , where

θpen =
1 − cos(πθopt)

2
,

instead of θn+1 = θopt . This has the tendency to progressively
force the density to take only the values 0 or 1. The success of
this penalization process can be explained by recalling that
any minimizer of the homogenized problem (8) is attained as
the limit of a minimizing sequence of the initial problem (6).

3.4 Practical implementation

The displacement of the structure is computed using P2
Lagrange finite elements. The stress tensor σ and the den-
sity θ are discretized either by P1 Lagrange finite elements

Fig. 12 Optimal shape obtained after penalization

Structural optimization with FreeFem+ + 181

Fig. 13 Optimal shape obtained by geometric optimization

or discontinuous P1 finite elements. Moreover, the mesh is
adapted at each iteration. The composite optimal design is in-
dependent of the mesh, on the contrary of the penalized clas-
sical optimal design. Therefore, mesh adaptation is crucial
here to be able to capture fine details even if the initial mesh
was coarse. Finally, as A∗ is not coercive, the Hooke’s law A∗

is replaced by A∗
+ εA, with ε = 10−3, to invert the stiffness

matrix. We use the same basic operators ofFreeFem+ + as
in the case of geometric shape optimization, so we do not in-
clude FreeFem+ + scripts here. The interested reader can
find the detailed routine on our web page.

3.5 Numerical results for the homogenization method

We apply the homogenization method to the same cantilever
problem of Section 2.5.2. The composite optimal design is
displayed on Fig. 11; its compliance is 16.17.

The penalization step leads to a classical structure with
compliance equal to 17.04 (see Fig. 12).

To determine the accuracy of the homogenization method,
we apply the boundary variation method to an initial shape
chosen so the final structure has the same topology and al-
most the same geometry than the one obtained by homog-
enization (see Fig. 13). As illustrated by Fig. 14, both can-
tilevers match almost exactly. Moreover, the compliances are
very close: 17.07 for the solution of the boundary variation
method compared to 17.04 for the homogenization.

However, it is not completely fair to compare compliances
for different shapes obtained with different methods because
of numerical errors caused by the possibly different meshes
and by the approximation of void by a soft material of the
order of εA.

Fig. 14 Comparison between the optimal design obtained with each
method

4 Conclusion

We have shown the suitability of FreeFem+ + for shape
optimization in two dimensions. This free and user-friendly
software does not require a heavy investment in programming
and allows users to focus on the practical aspects of structural
optimization. Our experience with graduate students is ex-
tremely positive: numerical homeworks or personal projects
based on FreeFem+ + are both an excellent motivation
and illustration of shape optimization. Eventually, many other
methods can be implemented with FreeFem+ +, includ-
ing SIMP or layout optimization methods like the variable
thickness sheet method.

References

Allaire G (2001) Shape optimization by the homogenization method.
Springer, Berlin Heidelberg New York

Allaire G (2006) Conception optimale de structures. Collection Math-
ematiques et Applications Springer

Allaire G, Jouve F, Toader A-M (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys 194/
1:363–393

Bendsoe M, Sigmund O (2003) Topology optimization. Theory, meth-
ods, and applications. Springer, Berlin Heidelberg New York

Hecht F, Pironneau O, Le Hyaric A, Ohtsuka K (2005) FreeFem++
Manual, downloadable at http://www.freefem.org

Pironneau O (1984) Optimal shape design for elliptic systems. Springer,
Berlin Heidelberg New York

Sigmund O (2001) A 99 line topology optimization code written in
Matlab. Struct Multidisc Optim 21:120–127

Sokołowski J, Zolesio JP (1992) Introduction to shape optimization:
shape sensitivity analysis. Springer series in computational mathe-
matics, vol 10. Springer, Berlin Heidelberg New York

http://www.freefem.org

	Structural optimization with FreeFem++
	Introduction
	Boundary variations or geometric optimization
	The gradient method
	Variations of an open set
	The boundary variation algorithm
	Algorithmic details of the method
	Regularization of the mesh
	Regularization of the shape gradient
	Volume constraint
	Stepping algorithm
	Stopping criterion

	Numerical applications for the boundary variation method
	Compliance optimization
	A numerical example: the cantilever
	Grip optimization
	Numerical example of the optimization of a grip

	Practical implementation
	Initialization
	Definition of the state equation
	The optimization loop

	Topology optimization using homogenization
	Setting of the initial problem
	The homogenized problem
	Numerical algorithm for the homogenization method
	Practical implementation
	Numerical results for the homogenization method

	Conclusion
	References

