

FreeFEM ++ Tutorial for Structural Optimization

- FreeFEM++ C++ 로 개발되었으며 작동 언어 또한 C++ 로 구성
- 1D, 2D, 3D 및 3D 비선형 다중 물리 시스템을 위한 편미분 방정식 Solver
- FREEFEM Heat Transfer Acoustics System of Elasticity System of Fluid

오픈 소스 코드 / 무료 배포 소프트웨어로서의 장점이 있으나 해석 결과에 대한 책임을 지지 않음

HANYANG UNIVERSITY 3

Setup file >> Select Additional Tasks >> Next >> Install

← → ~ ↑ ▲ → ₩F	PC > 로컬 디스크 (C:)		ٽ ~	으로	걸 티스크 (C:) 검색	
구성 ▼ 새 풀더						?
> 🧱 동영상	^ 이클 ^	수정한 날짜	유형	크기		^
> 付 문서	\$WINDOWS.~BT	2020-09-09 오전 8:49	파일 폴더			
> 🔜 바탕 화면	\$WinREAgent	2020-09-07 오후 7:10	파일 풀더			
> 📰 사진	Autodesk	2020-11-03 오후 2:13	파일 폴더			
> 🎝 음악	backup	2020-07-08 오후 8:11	파일 볼더			
> 🏪 로컬 디스크 (C:)	Fonts	2020-09-07 오후 10:14	파일 폴더			
> 👝 로컬 디스크 (D:)	Kings	2020-09-28 모두 6:12	파일 줄너 파이 주다			
> 👝 USB 드라이브 (E:)	MathPage	2020-09-07 오후 10:14 2020-09-07 오후 10:14	파일 폴더			
> USB 트라이브 (F)	MATS	2020-11-03 오후 1:54	파일 폴더			
, 1 000 = 1 1= (c)	MSOCache	2019-11-21 오후 7:23	파일 콜더			
> 🂣 네트워크	Office Support	2020-09-07 오후 10:14	파일 쫄더			
	OneDriveTemn	2020-05-07 9主4:59	파익 폭더			× .
파일 이름(N): FreeFE	M-4.6-win7-64					~
파일 형식(T): Applica	ation					~
▲ 폭터 스키키				저장	(S) 취소	
· 걸니 감기기					(0)	<u> </u>

Program 설치 path에 한글이 포함되지 않도록 주의 Ex . (C:\Users\Documents\<mark>프로그램</mark>\FreeFem++)

C++ Editor (Notepad++)

FreeFEM++의 Input code 편집기로 사용

Notepad++ Download

(https://notepad-plus-plus.org/downloads/v7.9.3/)

₩ Notepad++ v7.9.3 설치	-	-	×				
구성 설	영 요소 선택 치하고자 하는 Notepad++ v7,9,3의 구성 요소를 ·	선택해 주세요	٤.				
설치를 원하시는 구성 요소를 선택하며 주시기 바랍니다. 계속하시려면 '다음' 버튼을 눌러 주세 요.							
설치 형태 선택:	사용자 정의	`					
구성요소 직접 선택:	● ✓ Auto-completion Files ● ✓ Function List Files ● ✓ Plugins ● ✓ Auto-Updater ● ✓ Plugins Admin ● ✓ Localization						
필요한 디스크 공간: 10,7 MB	상세 설명을 보고 싶으신 부분에 마우스를 올려	놓으세요,					
Software is like sex; It's better who	Software is like sex: It's better when it's free						
	< 뒤로 다음 >	취소					

Download 64-bit x64

- Installer | GPG Signature
- Portable (zip) | GPG Signature
- Portable (7z) | GPG Signature
- Mini-portable (7z) | GPG Signature

언어 한글 추가 Localization >> Korean

Notepad++ FreeFem ++ 실행 설정

Notepad ++ 실행 >> 단축키 "enter" + "F5" >> 클릭 "…" >>In FreeFEM++ 경로의 "launch++" 파일 선택 후 "저장" >>FreeFem++를 실행할 단축키 설정 (ex."alt"+"shift"+"R")

*new 1 - Notepad++			
파일(F) 편집(E) 찾기(S) 보기(V) 인코딩(N) 언어((L) 설정(T) 도구(O) 매크로 실행 플러그인 창관리 ?		
🕞 🚽 🗎 🖷 🕞 🕞 🚔 🗶 🖻 🛅 🗩 🗲 #	🛍 🍇 🔍 🔍 🖾 🖾 🎫 🏾 🏋 🖾 🗶 🖄 🖾 🜰 💽 🗉 🕨		
파일(F) 편집(E) 찾기(S) 보기(M) 연료당(M) 연어(• 문 문 문 전 (E) 찾기(S) 보기(M) 연료당(M) 연어(• 마아씨 12) 1 2	(1) 설정(T) 도구(O) 매크로 실행 플러그인 장관리 ? ■ 월 역 역 도 드 드 기 표준 전 원 관 대 이 이) 실행	단축키 × 이름 FreeFem++ □ CTRL + ♥ SHIFT + R ✓ ▲LT 확인 취소 단축키가 겹칩니다!	
Normal text file	length : 2 lines : 2 Ln : 2 Col : 1 Pos : 3		

Notepad++ 창에서 단축키를 이용해 바로 FreeFem++ 실행가능

HANYANG UNIVERSITY 6

Notepad++ FreeFem 형식 설정 추가

형식 설정 : FreeFEM 코드 텍스트를 형식에 따라 색을 부여

설정 >> 형식설정

📔 *new 1 - Notepad++		
파일(E) 편집(E) 찾기(S) 보기(V) 인코딩(N) 언어(L)	설정(T) 도구(O) 매크로 실행 풀	5러그인 창관리 <u>?</u>
🕞 🚽 🔚 🖷 🕞 🕞 🚔 🕹 🛍 🌔 Ə 🧲 🗰 (환경 설정	🔊 🔊 🖿 💿 💿 💀
🔚 new 1 🗵	형식 설정	
1	단축키 설정	
2	가져오기	>
3		-
	팝업 컨텍스트 메뉴 편집	

언어/형식/사용자확장자/사용자정의 키워드(형식 Instruction word, Type word) (<u>http://www3.freefem.org/ff++/color-syntax-win.pdf</u>)에 나와있는 설정 및 키워드 저장 후 닫기

형식 설정			×	C++ : TYPE WORD		
테마 선택	택: Default (stylers.xml)	\checkmark		색상 형식	_ 글꼴 형식 _	
언어:	형식:	C++ : INSTRUCTION WORD				
Global Styles 🔺 ActionScript	DEFAULT INSTRUCTION WO	색상 형식	글꼴 형식	글자색	글꼴이	기름: ~
ADA ASN.1 asp	TYPE WORD NUMBER STRING	글자색	글꼴이름: ~	배경색	[] 굵게 [] 기운(의 크기: 🗸
Assembly autoIt AviSynth BaanC	CHARACTER OPERATOR VERBATIM DEGEV	배경색	☑ 굵게 □ 기울임 크기: ✓		[] 밑쭐	
bash Batch	COMMENT COMMENT LINE					
BlitzBasic	COMMENT DOC	기본 키워드	사용자정의 키워드	기본키워드	^	·용사성의 키워드
C++ C# Caml CMakeFile COBOL ✓	COMMENT DOC KE COMMENT DOC KE PREPROCESSOR C PREPROCESSOR C	alignof and and_eq bitand bitor break case catch compl const_cast continue default delete do dynamic_cast else false for goto if namespace new not not eq nullptr	 P0 P1 P2 P3 P4 P5 P1dc P2dc P3dc P4dc P5dc RT0 RT1 RT2 RT3 RT4 RT5 macro plot int1d int2d solve movemesh adaptmesh trunc 	alignas asm auto bool char char16_t char32_t class clock_t concept const consteval constexpr constinit decltype double enum explicit export extern final float friend inline	+ if	nesh real fespace varf matrix problem string border complex fstream of ₁ stream
기본 확장자:	사용자 확장자:			L		
cpp cxx cc h hh hţ	+ edp	저장 후 닫기	취소 투명도			HANYANG UNIVERSITY

실행 예제

FreeFEM++ 가이드에 다양한 예제 제공 (<u>http://www3.freefem.org/ff++/color-syntax-win.pdf</u>)

In page.23, 2-D PDE: Poisson


```
\int_{T_h} \left( \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} \right) dx dy = \int_{T_h} f v dx dy
```

Notepad++ 에서 새파일 >> 다른이름으로 저장(*.edp)

// Define mesh boundary
border C(t=0, 2*pi) {x=cos(t); y=sin(t);}
// The triangulated domain Th is on the left side of its boundary
mesh Th = buildmesh(C(50));

// The finite element space defined over Th is called here Vh
fespace Vh(Th, P1);
Vh u, v;// Define u and v as piecewise-Pl continuous functions

// Define a function f
func f= x*y;

// Get the clock in second
real cpu=clock();

```
// Define the PDE
solve Poisson(u, v, solver=LU)
= int2d(Th)( // The bilinear part
dx(u)*dx(v)
+ dy(u)*dy(v)
)
= - int2d(Th)( // The right hand side
f*v
```

, + on(C, u=0); // The Dirichlet boundary condition

```
// Plot the result
plot(u);
```

27

28

29

30

31 32

33

// Display the total computational time

```
cout << "CPU time = " << (clock()-cpu) << endl;</pre>
```


FreeFEM++ 실행

Notepad ++새문서 >>파일명.edp 저장 (파일형식 all type) >>input text 붙여넣기 >>FreeFem++ 실행 (실행 단축키)

D:#FreeFem++#optimization#poisson.edp - Notepad++ [Administrator]	Please, select a file X								
파일(E) 편집(E) 찾기(S) 보기(V) 인코딩(N) 언어(L) 설정(T) 도구(O)		← → ◇ ▲ - ◇ ULIDC ◇ 弓걸 티스크 (Dr) ◇ FreeFerman ◇ ontimization → マーパ Ontimiza							0
poisson, edp 🛛	구성 ▼ 새 폴더	구성 ▼ 새 폴더							?
1 // Define mesh boundary	_ mph	^	이름	수정한 날짜	유형		크기		
<pre>2 border C(t=0, 2*pi) {x=cos(t);</pre>	reference		cantilever-With-1-Hole	2021-03-09 오후 9:43	Notepa	d++ Docu	12KB		
3	🔮 문서		Cantilever-With-2-Holes	2021-03-09 오후 9:47	Notepa	d++ Docu	ОКВ		
4 // The triangulated domain Th	🔜 바탕 화면		🔛 exam1	2021-03-09 오후 9:39	Notepa	d++ Docu	4KB		
5 mesh Th = $buildmesh(C(50));$	▶ 사진		📓 Grip Optimization	2021-03-09 오후 10:14	Notepa	d++ Docu	15KB		
6	사진		📔 poisson	2021-03-09 오후 8:55	Notepa	d++ Docu	1KB		
7 // The finite element space de	. 첨부 파일		📓 visualization	2021-03-09 오후 10:43	Notepa	d++ Docu	2KB		
8 fespace Vh(Th, Pl);									
9 Vhu, v;// Define u and v as p									
11 // Define a function f	◆ 나운도느								
12 func $f = x \cdot y;$	물 동영상								
	📓 문서								
14 // Get the clock in second	바탕 화면								
15 real cpu=clock();	▶ 사진								
16	🎝 음악								
17 // Define the PDE	🏪 로컬 디스크 (C:)								
18 solve Poisson(u, v, solver=LU)	🔜 로컬 디스크 (D:)	~							
19) 파일 이름(N)): poisson				freefem	++ Files (*.edp	1	~
20 dx (u) *dx (v)		pensen				0.71			
21 + dy (u) *dy (v)						열기(0) 🔽	쉬오	
23 = -int2d(Th)(7) The right hand	d								
24 I *V									
26 + on(C, u=0); // The Dirichlet									
27									
28 // Plot the result									
29 prot (u);									
30									
C++ source file									

TANYANG UNIVERSITY 9

프로그래밍 중 발생하는 논리적인 오류나 오타로 비정상적 연산이 발생할 때 디버깅 수행

흔히 발견되는 오류 출력 유형

1. 오타로 인한 에러 메시지 출력

D:#FreeFem++#launchff++.exe

2. 논리 오류 등으로 인한 동작 중지 후 "?" 출력

11 : // Define a function f 12 : func f= x*x:

D:\FreeFem++\Launchff++.exe

12 :	tunc t= x*y;
13 · 14 : 15 :	// Get the clock in second real cpu=clock();
16 · 17 · 18 · 19 ·	// Define the PDE solve Poisson(u, v, solver=LU) = int2d(Th)(// The bilinear part dr(u)dr(U)
20 21 22 23	+ dy(u)*dy(v)) - int2d(Th)(// The right hand side
24 : 25 : 26 : 27 :	f*v) + on(C, u=O); // The Dirichlet boundary condition
28 29 30	// Plot the result plot(u); // Display the total associational time
32 :	cout << "CPU time = " << (clock()'?

문자열 번호 확인 후 해당 코드 열에 대한 디버깅 수행

Plot Option

FreeFEM++ Plot 창에서 "?"(=shift+/) 키를 누르면 plot option을 확인할 수 있음

L : Light on/off

N, Shift +N : Color range

F : Filled Contour

M : Mesh plot

3 : 3D view

Struct Multidisc Optim (2006) 32: 173–181 DOI 10.1007/s00158-006-0017-y

EDUCATIONAL ARTICLE

G. Allaire · O. Pantz

Structural optimization with FreeFem++

Received: 23 June 2005 / Revised manuscript received: 7 September 2005 / Published online: 8 July 2006 © Springer-Verlag 2006

Abstract The aim of this paper is to show that relatively small, simple, and efficient shape optimization routines can be written using the free finite element software FreeFem + +. This is illustrated by the implementation of two classical methods: the boundary variation method and the homogenization one. Even though these routines are simple enough so that their implementation can be assigned (partially or totally) as homework to graduate students, they yield results accurate enough to be useful tools for engineers or researchers.

Keywords Shape and topology optimization · Finite element software

해당 링크에서 FreeFEM++ input code 제공 (<u>http://www.cmap.polytechnique.fr/~optopo/OptFree/</u>)

Index of /~optopo/OptFree

Name	Last modified	Size Description
Parent Directory	<u>(</u>	-
🛅 boundary-variat	ion/ 07-Sep-2005 11:10) -
🛅 homogenization	√ 07-Sep-2005 11:10) -
🝸 <u>readme</u>	07-Sep-2005 15:16	6 460

Computationa

Boundary variation method

<u>Name</u>	Last modified	Size Description
Parent Directory		-
deformed-grip.eps	07-Sep-2005 10:02	184K
grip-geo-prev.msh	07-Sep-2005 10:02	14K
🕈 g <u>rip-geo.msh</u>	07-Sep-2005 10:02	14K
🝸 g <u>rip-new.edp</u>	07-Sep-2005 10:02	14K
🝸 g <u>rip-prev.msh</u>	07-Sep-2005 10:02	53K
🝸 g <u>rip.edp</u>	07-Sep-2005 10:02	14K
🝸 g <u>rip.msh</u>	07-Sep-2005 10:02	211K
🖹 g <u>rip.txt</u>	07-Sep-2005 10:02	57K
d g <u>rip0.eps</u>	07-Sep-2005 10:02	44K
d grip1.eps	07-Sep-2005 10:02	255K
grip2.eps	07-Sep-2005 10:02	75K
reference-grip.eps	07-Sep-2005 10:02	180K
? visualization.edp	07-Sep-2005 10:02	1.5K

```
Notepad ++새문서
>>파일명.edp 저장 (파일형식 all type)
>>input text 붙여넣기
>>FreeFem++ 단축키
>>Input file 실행
```

```
링크 접속
```

>> "boundary-variation"

- >> Compliance 또는 Grip (본 설명은 Grip 예제)
- >> "{예제이름}.edp" 선택 (ex. "grip-new.edp")

>>input text 복사

	이 \ 루컨 티스크 (D·) \ FreeFerm++ \ ont	imization	2	ontimization 건성	
	••••••••••••••••••••••••••••••••••••••		. 0	opanization E	
구성 ▼ 새 폴더					III - (?)
▶ 사진	이름	수정한 날짜	유형	크기	^
사진	Cantilever msh	2021-03-09 오후 9:42	MSH 파일	59KB	
청부 파일	Cantilever	2021-03-09 오후 9:42	텍스트 문서	149KB	
	antilever0	2021-03-09 오후 9:41	캡슐화된 PostScript	216KB	
H PC	antilever1	2021-03-09 오후 9:41	캡슐화된 PostScript	278KB	
🧊 3D 개체	antilever2	2021-03-09 오후 9:42	캡슐화된 PostScript	114KB	
🖊 다운로드	antilever-geo.msh	2021-03-09 오후 9:42	MSH 파일	38KB	
🚪 동영상	cantilever-geo-prev.msh	2021-03-09 오후 9:42	MSH 파일	38KB	
🔮 문서	cantilever-prev.msh	2021-03-09 오후 9:42	MSH 파일	60KB	
바탕 화면	Cantilever-With-1-Hole	2021-03-09 오후 9:43	Notepad++ Docu	12KB	ted
➡ 사진	cantilever-With-1-Hole	2021-03-09 오후 9:14	텍스트 문서	78KB	rev
h = 9	Cantilever-With-2-Holes	2021-03-09 오후 9:47	Notepad++ Docu	OKB	
· 근거 디스크 (C)	🗋 exam1	2021-03-09 오후 9:16	파일	4KB	
도 도 일 데 그 크 (C.)	📔 exam1	2021-03-09 오후 9:39	Notepad++ Docu	4KB	Vol
도걸 니스크 (D:)	exam1.exp	2021-03-09 오후 9:17	EXP 파일	4KB	
· · · · · · · · · · · · · · · · · · ·	* 🖻 avam1	2021 02 00 0 8 0-/1	테스트 모셔	AUND	¥
파일 이름(N): cantilev	ver-With-1-Hole.edp				~
파일 형식(T): All type	25				~

Implementation (Grip)

FreeFEM++ 동작 예시

al sectors	
PRO 1	1 100 1004 004 004 004 004 004 001 1
G 🖓 🗄	· · · · · · · · · · · · · · · · · · ·
N i contine	
1.1	///////////////////////////////////////
2	// drip Optimization //
. 3	// by the boundary variation method //
1.4	// Copyright 0.Pasts, G. Allaire (2005) //
5	///////////////////////////////////////
1.6	
7.1	// Optimization Parameters
	ist siter#03 //Wumber of iterations
- 91	real errelas=1.005; //Error for the resolution of the variational problems
10	real metricmsh#10.; //Metric used for the coarse mesh: Bigger=finer mesh
11	real initialstep=1.: //Initial step
12	real maxstep=1.; //Maximum step (<0 => no limit)
13	real lagrangestep=1.; //Opdating step of the Lagrange multiplier associated to the Volume's constraint
14	bool tocostinue=false; //false-start a new computation, true-costinue a previous computation
1.5	otring backsphame*"grip"; //Mame under which the results are stored
16	1st msave=1/ //Numper of iterations to be saved
17	prei volume/mei.s //~0 Constant Volume during the iterations, >0 Target Volume, <0 No Volume's constraint
1.0	real pervolume=0.00) //volume penalization
1.7	ERRE CHCADTONE THOUGHT
200	of events we have a first state of the second
22.2	// construction of the initial menn
10.0	Constant any any any any any any and the second sec
2.0	int armiting with the definition in the ball
10.0	(developments) in the second start of the seco
24	Information the state of the second state of t
32.5	
20	border a(tw).+))(xw);vwtrlabel*free;); //Left Boundary (Otimized Boundary)
29	border bilter, i) (wet/yee-b/labeleneumans)) //low Boundary (with Segmen of Free Conditions)
30	border clite(.)}(x=)*(*tryw=)*2.5*trlabel@free;};
- 34	border ddi(t=0.1) [s=t;y=-3.5;label=teeth;); //Teeth of the grip
32	border e(tw-1.5,0.1) (x=5;y=t;label=free;);
3.3	border dd2(t=3.42fs=t;y=0.5rlabel=teeth;);
34	border c2(t=1,0)(x=1+5*t;y=3+2.5*t;label=free;); //Upper Boundary (with Neumann of Free Conditions)
35	border b2(t=1,0)(s=try=3rlabel=neumann2)r
3.6	//A Hole with Dirichlet conditions (not Optimized)
37	border GammaD(tw0,2*pi)(crees(t)*2.2*3;ywsin(t)*3.2;label=dirichlet;);
30	//Optimized Boles
39	border Holel(t=0,2*pi)(s=0ee(t)*0.5*2.sy=ein(t)*0.5*2.sylabel=frees);
40	border Hole2(t=0,2*pi)[x*cos(t)*0.5*2.sy*sim(t)*0.5=1.5;label*free;);

Output data

프로그래밍에 따른 Mesh와 Variable 파일 출력

Grip 폴더>> Visualization.edp로 최적 모델의 변형을 도식화

🚰 Striftwalfem Hoptimization H-tualization .edg - Technologiad - + (Administrator)	- 0)	
The store will be used the off off will be a store and the store of the store and the		3
LOOP ALL AND SCIENCES IN THE REPORT OF A DESCRIPTION OF A DESCRIPANTO OF A DESCRIPTION OF A DESCRIPTION OF A		
H multiplin, edg D		
<pre>Window Window Wind</pre>	I	Next : Enter Previous : P
		1
Fea source like	levels 1.6% low O is O rel 1 les 1.610 alledes PEIR 1.01.6 RC	

Cantilever optimization results

5 holes (boundary variation)

6 holes (boundary variation)

8 holes (boundary variation) (Homogenization)

No hole

Thank you for your attention

