Rubber Cylinder Pressed Between Two Plates

Overview

Reference:	T. Tussman, K.J. Bathe, "A Finite Element Formulation for Nonlinear Incompressible Elastic and Inelastic Analysis", <i>Computers and Structures</i> , Vol. 26 Nos 1/2, 1987, pp. 357-409
Solver(s):	ANSYS Mechanical
Analysis Type(s):	Nonlinear Static Structural Analysis (Large Deformation ON)
Element Type(s):	Solid

Test Case

A rubber cylinder is pressed between two rigid plates using a maximum imposed displacement of δ_{max} . Determine the total deformation.

Figure 54: Schematic

Material Properties	Geometric Properties	Loading
Solid1:	Solid1:	Displacement in Y direction = -0.1 m
$E = 2 \times 10^{11} \text{Pa}$	0.05 m x 0.01 m x 0.4 m	
v = 0.3		
$\rho = 7850 \text{ kg/m}^3$		
Solid2: Mooney-Rivlin Constants	Solid2: Quarter Circular Cylinder	
$C10 = 2.93 \times 10^5 \text{Pa}$	Radius = 0.2 m	
C01 = 1.77 x 10 ⁵ Pa	Length = 0.05 m	
Incompressibility Parameter D1 1/Pa = 0		

Analysis

Due to geometric and loading symmetry, the analysis can be performed using one quarter of the cross section.

- $\bullet\,$ Frictionless supports are applied on 3 faces (X = 0, Z = 0 and Z = 0.05 m).
- Given displacement of 0.1 m is applied on the top surface.
- The bottom surface of Solid1 is completely fixed.
- Frictionless Contact with Contact stiffness factor of 100 is used to simulate the rigid target.
- Augmented Lagrange is used for Contact formulation.

Results Comparison

Results	Target	Mechanical	Error (%)
Total Deformation (m)	0.165285	0.16527	-0.009075

4.6.5. Mooney-Rivlin Hyperelasticity

The Mooney-Rivlin model applies to current-technology shell, beam, solid, and plane elements.

 $\label{eq:local_transformation} \textbf{The $\underline{\textbf{TB}}$,HYPER,,,,,MOONEY option allows you to define 2, 3, 5, or 9 parameter Mooney-Rivlin models using \textit{NPTS} = 2, 3, 5, or 9, respectively.$

For NPTS = 2 (2 parameter Mooney-Rivlin option, which is also the default), the form of the strain energy potential is:

$$W=c_{10}(\overline{I}_{1}-3)+c_{01}(\overline{I}_{2}-3)+\frac{1}{d}(J-1)^{2}$$

where:

W = strain energy potential

 \overline{I}_1 = first deviatoric strain invariant

 \overline{I}_2 = second deviatoric strain invariant

 c_{IO} , c_{OI} = material constants characterizing the deviatoric deformation of the material

d = material incompressibility parameter

The initial shear modulus is defined as:

$$\mu$$
=2(c_{10} + c_{01})

and the initial bulk modulus is defined as:

$$K = \frac{2}{d}$$

where:

$$d = (1 - 2*v) / (C_{10} + C_{01})$$

The constants c_{10} , c_{01} , and d are defined by C1, C2, and C3 using the $\underline{\mathsf{TBDATA}}$ command.